ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.14 by vimartin, Wed Oct 10 04:03:33 2012 UTC vs.
Revision 1.21 by linacre, Thu Oct 18 22:41:52 2012 UTC

# Line 1 | Line 1
1   %\section{Systematics Uncertainties on the Background Prediction}
2   %\label{sec:systematics}
3  
4 [DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET
5 FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS
6 AND
7 WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL
8 UNCERTAINTIES
9 CORRECTLY THROUGH.  WE WILL DO IT ONCE WE HAVE SETTLED ON THE
10 INDIVIDUAL PIECES WHICH ARE STILL IN FLUX]
11
4   In this Section we discuss the systematic uncertainty on the BG
5   prediction.  This prediction is assembled from the event
6   counts in the peak region of the transverse mass distribution as
# Line 22 | Line 14 | The calculation is done for each signal
14   region,
15   for electrons and muons separately.
16  
17 < The choice to normalizing to the peak region of $M_T$ has the
17 > The choice to normalize to the peak region of $M_T$ has the
18   advantage that some uncertainties, e.g., luminosity, cancel.
19   It does however introduce complications because it couples
20   some of the uncertainties in non-trivial ways.  For example,
# Line 33 | Line 25 | for example,
25   the $t\bar{t} \to$ dilepton BG estimate because it changes the
26   $t\bar{t}$ normalization to the peak region (because some of the
27   events in the peak region are from rare processes).  These effects
28 < are carefully accounted for.  The contribution to the overall
29 < uncertainty from each BG source is tabulated in
30 < Section~\ref{sec:bgunc-bottomline}.
31 < First, however, we discuss the uncertainties one-by-one and we comment
28 > are carefully accounted for.  
29 > %%%TO ADD BACK IN IF WE HAVE SYSTEMATICS TABLE.
30 > %The contribution to the overall
31 > %uncertainty from each BG source is tabulated in
32 > %Section~\ref{sec:bgunc-bottomline}.
33 > Here we discuss the uncertainties one-by-one and comment
34   on their impact on the overall result, at least to first order.
35   Second order effects, such as the one described, are also included.
36  
37   \subsection{Statistical uncertainties on the event counts in the $M_T$
38   peak regions}
39 < These vary between XX and XX \%, depending on the signal region
39 > These vary between 2\% and 20\%, depending on the signal region
40   (different
41   signal regions have different \met\ requirements, thus they also have
42 < different $M_T$ regions used as control.
42 > different $M_T$ regions used as control).
43   Since
44 < the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
44 > the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
45   fractional uncertainty is pretty much carried through all the way to
46   the end.  There is also an uncertainty from the finite MC event counts
47   in the $M_T$ peak regions.  This is also included, but it is smaller.
48  
49 + Normalizing to the $M_T$ peak has the distinct advantages that
50 + uncertainties on luminosity, cross-sections, trigger efficiency,
51 + lepton ID, cancel out.
52 + For the low statistics regions with high \met\ requirements, the
53 + price to pay in terms of event count is that statistical uncertainties start
54 + to become significant.  In the future we may consider a different
55 + normalization startegy in the low statistics regions.
56 +
57   \subsection{Uncertainty from the choice of $M_T$ peak region}
56 IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT
57 LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY.  WE NEED TO LOOK
58 INTO THIS AGAIN
58  
59 < \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
59 > This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
60 > If the $M_T$ peak region is not well modelled, this would introduce an
61 > uncertainty.
62 >
63 > We have tested this possibility by recalculating the post-veto scale factors for a different
64 > choice
65 > of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
66 > $50 < M_T < 80$ GeV).  This is shown in Table~\ref{tab:mtpeaksf2}.  
67 > The two results for the scale factors are very compatible.
68 > We do not take any systematic uncertainty for this possible effect.
69 >
70 > \begin{table}[!h]
71 > \begin{center}
72 > {\footnotesize
73 > \begin{tabular}{l||c|c|c|c|c|c|c}
74 > \hline
75 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
76 > \hline
77 > \hline
78 > \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
79 > \hline
80 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
81 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
82 > \hline
83 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
84 > \hline
85 > \hline
86 > e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
87 > e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
88 > \hline
89 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
90 > \hline
91 > \hline
92 > \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
93 > \hline
94 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
95 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
96 > \hline
97 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
98 > \hline
99 > \hline
100 > e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
101 > e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
102 > \hline
103 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
104 > \hline
105 > \end{tabular}}
106 > \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
107 >  \ttdl\ sample, while the post-veto SFs are applied to the single
108 >  lepton samples. The veto SF is shown for comparison across channels.
109 >  The raw MC is used for backgrounds from rare processes.
110 >  The uncertainties are statistical only.
111 > \label{tab:mtpeaksf2}}
112 > \end{center}
113 > \end{table}
114 >
115 >
116 > \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
117   These are taken as 50\%, uncorrelated.  
118   The primary effect is to introduce a 50\%
119   uncertainty
# Line 71 | Line 127 | attributed to $t\bar{t}$ goes down, and
127   scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
128   BG goes down.  
129  
130 < \subsection{Scale factors for the tail-to-peak ratios for lepton +
130 > \subsection{Tail-to-peak ratios for lepton +
131    jets top and W events}
132 < These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
133 < They are studied in CR1 and CR2.  The studies are described
134 < in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
135 < we also give the uncertainty on the scale factors.
132 > The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
133 > The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
134 > Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its uncertainty is given in Table~\ref{tab:cr1yields}). This uncertainty affects both $R_{wjet}$ and $R_{top}$.
135 > The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
136 >
137  
138   \subsection{Uncertainty on extra jet radiation for dilepton
139    background}
# Line 84 | Line 141 | As discussed in Section~\ref{sec:jetmult
141   jet distribution in
142   $t\bar{t} \to$
143   dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
144 < it agree with the data.  The XX\% uncertainties on $K_3$ and $K_4$
144 > it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
145   comes from data/MC statistics.  This  
146 < result directly in a XX\% uncertainty on the dilepton BG, which is by far
146 > results directly in a 3\% uncertainty on the dilepton background, which is by far
147   the most important one.
148  
149 + \subsection{Uncertainty from MC statistics}
150 + This affects mostly the \ttll\ background estimate, which is taken
151 + from
152 + Monte Carlo with appropriate correction factors.  This uncertainty
153 + is negligible in the low \met\ signal regions, and grows to about
154 + 15\% in SRG.
155 +
156  
157   \subsection{Uncertainty on the \ttll\ Acceptance}
158  
# Line 103 | Line 167 | The variations considered are
167  
168   \begin{itemize}
169   \item Top mass: The alternative values for the top mass differ
170 <  from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
170 >  from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
171    = 166.5~\GeV$.
172   \item Jet-parton matching scale: This corresponds to variations in the
173    scale at which the Matrix Element partons from Madgraph are matched
# Line 115 | Line 179 | The variations considered are
179    value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
180    \sum_{\mathrm{jets}} \pt^2$.
181   \item Alternative generators: Samples produced with different
182 <  generators include MC@NLO and Powheg (NLO generators) and
119 <  Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
120 <  hadronisation, while POWHEG uses Pythia6.
182 >  generators, Powheg (our default) and Madgraph.
183   \item Modeling of taus: The alternative sample does not include
184    Tauola and is otherwise identical to the Powheg sample.
185    This effect was studied earlier using 7~TeV samples and found to be negligible.
186   \item The PDF uncertainty is estimated following the PDF4LHC
187 <  recommendations[CITE]. The events are reweighted using alternative
187 >  recommendations. The events are reweighted using alternative
188    PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
189 <  alternative eigenvector variations and the ``master equation''. In
190 <  addition, the NNPDF2.1 set with 100 replicas. The central value is
189 >  alternative eigenvector variations and the ``master equation''.
190 >  The NNPDF2.1 set with 100 replicas is also used. The central value is
191    determined from the mean and the uncertainty is derived from the
192    $1\sigma$ range. The overall uncertainty is derived from the envelope of the
193    alternative predictions and their uncertainties.
194    This effect was studied earlier using 7~TeV samples and found to be negligible.
195    \end{itemize}
196  
197 <
198 < \begin{table}[!h]
199 < \begin{center}
200 < {\footnotesize
201 < \begin{tabular}{l||c||c|c|c|c|c|c|c}
202 < \hline
203 < Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
204 < Match Up & Match Down \\
205 < \hline
206 < \hline
207 < SRA      & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
208 < \hline
209 < SRB      & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
210 < \hline
211 < SRC      & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
212 < \hline
213 < SRD      & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
214 < \hline
215 < SRE      & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
154 < \hline
155 < \end{tabular}}
156 < \caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
157 < \label{tab:ttdlalt}}
158 < \end{center}
159 < \end{table}
197 > \begin{figure}[hbt]
198 >  \begin{center}
199 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
200 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
201 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
202 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
203 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
204 >        \caption{
205 >          \label{fig:ttllsyst}\protect
206 >          Comparison of the \ttll\ central prediction with those using
207 >          alternative MC samples. The blue band corresponds to the
208 >          total statistical error for all data and MC samples. The
209 >          alternative sample predictions are indicated by the
210 >          datapoints. The uncertainties on the alternative predictions
211 >          correspond to the uncorrelated statistical uncertainty from
212 >          the size of the alternative sample only.  Note the
213 >          suppressed vertical scales.}
214 >      \end{center}
215 >    \end{figure}
216  
217  
218   \begin{table}[!h]
# Line 172 | Line 228 | SRA     & $2$ & $2$ & $5$ & $12$ & $7$ & $
228   \hline
229   SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
230   \hline
231 < SRC      & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
232 < \hline
233 < SRD      & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
234 < \hline
235 < SRE      & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
231 > % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
232 > % \hline
233 > % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
234 > % \hline
235 > % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
236   \hline
237   \end{tabular}}
238 < \caption{ Relative difference in \ttdl\ predictions for alternative MC samples.
238 > \caption{ Relative difference in \ttdl\ predictions for alternative MC
239 >  samples in
240 > the higher statistics regions SRA and SRB.  These differences
241 > are based on the central values of the predictions.  For a fuller
242 > picture
243 > of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
244   \label{tab:fracdiff}}
245   \end{center}
246   \end{table}
247  
248  
249 < \begin{table}[!h]
250 < \begin{center}
251 < {\footnotesize
191 < \begin{tabular}{l||c|c|c|c|c|c|c}
192 < \hline
193 < $N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
194 < Match Up & Match Down \\
195 < \hline
196 < \hline
197 < SRA      & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
198 < \hline
199 < SRB      & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
200 < \hline
201 < SRC      & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
202 < \hline
203 < SRD      & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
204 < \hline
205 < SRE      & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
206 < \hline
207 < \end{tabular}}
208 < \caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
209 < \label{tab:nsig}}
210 < \end{center}
211 < \end{table}
249 > In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
250 > for regions A through E.  We can make the following observations based
251 > on this Figure.
252  
253 + \begin{itemize}
254 + \item In the tighter signal regions we are running out of
255 +  statistics.    
256 + \item Within the limited statistics, there is no evidence that the
257 +  situation changes as we go from signal region A to signal region E.
258 + Therefore, we assess a systematic based on the relatively high
259 + statistics
260 + test in signal region A, and apply the same systematic uncertainty
261 + to all other regions.
262 + \item In order to fully (as opposed as 1$\sigma$) cover the
263 + alternative MC variations in region A we would have to take a
264 + systematic
265 + uncertainty of $\approx 10\%$.  This would be driven by the
266 + scale up/scale down variations, see Table~\ref{tab:fracdiff}.
267 + \end{itemize}
268  
269 < \begin{table}[!h]
269 > \begin{table}[!ht]
270   \begin{center}
271 < \begin{tabular}{l||c|c|c|c}
217 < \hline
218 < Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
219 < & $\Delta$ Match \\
220 < \hline
221 < \hline
222 < SRA      & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
223 < \hline
224 < SRB      & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
271 > \begin{tabular}{l|c|c}
272   \hline
273 < SRC      & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
273 >            Sample
274 >            &                K3   & K4\\
275   \hline
228 SRD      & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
276   \hline
277 < SRE      & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
277 > Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
278 > Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
279 > Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
280 > Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
281 > Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
282 > Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
283 > Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
284 > Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
285   \hline
286   \end{tabular}
287 < \caption{ Av. difference in \ttdl\ events for alternative sample pairs.
288 < \label{tab:devt}}
287 > \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
288 >  fraction of events with additional hard jets from radiation in
289 >  \ttll\ events. \label{tab:njetskfactors_met100}}
290   \end{center}
291   \end{table}
292  
293  
294 + However, we have two pieces of information indicating that the
295 + scale up/scale down variations are inconsistent with the data.
296 + These are described below.
297 +
298 + The first piece of information is that the jet multiplicity in the scale
299 + up/scale down sample is the most inconsistent with the data.  This is shown
300 + in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
301 + $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
302 + different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
303 + distribution
304 + for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
305 + and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
306 + equivalent $N_{jets}$ plots for the default Powheg MC, see
307 + Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
308 +
309   \begin{figure}[hbt]
310    \begin{center}
311 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
312 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
313 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
314 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
315 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
316 <        \caption{
317 <          \label{fig:ttllsyst}\protect
248 <          Comparison of the \ttll\ central prediction with those using
249 <          alternative MC samples. The blue band corresponds to the
250 <          total statistical error for all data and MC samples. The
251 <          alternative sample predictions are indicated by the
252 <          datapoints. The uncertainties on the alternative predictions
253 <          correspond to the uncorrelated statistical uncertainty from
254 <          the size of the alternative sample only.
255 <        [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
311 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
312 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
313 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
314 >        \caption{
315 >          \label{fig:dileptonnjets_scaleup}%\protect
316 >          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
317 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
318        \end{center}
319 <    \end{figure}
319 > \end{figure}
320 >
321 > \begin{figure}[hbt]
322 >  \begin{center}
323 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
324 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
325 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
326 >        \caption{
327 >          \label{fig:dileptonnjets_scaledw}%\protect
328 >          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
329 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
330 >      \end{center}
331 > \end{figure}
332 >
333 >
334 > \clearpage
335 >
336 > The second piece of information is that we have performed closure
337 > tests in CR5 using the alternative MC samples.  These are exactly
338 > the same tests as the one performed in Section~\ref{sec:CR5} on the
339 > Powheg sample.  As we argued previously, this is a very powerful
340 > test of the background calculation.
341 > The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
342 > Concentrating on the relatively high statistics CR5A region, we see
343 > for all \ttbar\ MC samples except scale up/scale down we obtain
344 > closure within 1$\sigma$.  The scale up/scale down tests closes
345 > worse, only within 2$\sigma$.  This again is evidence that the
346 > scale up/scale down variations are in disagreement with the data.
347 >
348 > \input{hugeCR5Table.tex}
349 >
350 > Based on the two observations above, we argue that the MC
351 > scale up/scale down variations are too extreme.  We feel that
352 > a reasonable choice would be to take one-half of the scale up/scale
353 > down variations in our MC.  This factor of 1/2 would then bring
354 > the discrepancy in the closure test of
355 > Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
356 > from about 2$\sigma$ to about 1$\sigma$.
357 >
358 > Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
359 > up/scale
360 > down variations by a factor 2, we can see that a systematic
361 > uncertainty
362 > of 6\% would fully cover all of the variations from different MC
363 > samples in SRA and SRB.
364 > {\bf Thus, we take a 6\% systematic uncertainty,  constant as a
365 > function of signal region, as the systematic due to alternative MC
366 > models.}
367 > Note that this 6\% is also consistent with the level at which we are
368 > able
369 > to test the closure of the method in CR5 for the high statistics
370 > regions
371 > (Table~\ref{tab:hugecr5yields}).
372 >
373 >
374 >
375 >
376 >
377 >
378 > %\begin{table}[!h]
379 > %\begin{center}
380 > %{\footnotesize
381 > %\begin{tabular}{l||c||c|c|c|c|c|c|c}
382 > %\hline
383 > %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
384 > %Up & Scale Down &
385 > %Match Up & Match Down \\
386 > %\hline
387 > %\hline
388 > %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
389 > %\hline
390 > %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
391 > %\hline
392 > %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
393 > %\hline
394 > %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
395 > %\hline
396 > %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
397 > %\hline
398 > %\end{tabular}}
399 > %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
400 > %\label{tab:ttdlalt}}
401 > %\end{center}
402 > %\end{table}
403 >
404 >
405 >
406 >
407 > %\begin{table}[!h]
408 > %\begin{center}
409 > %{\footnotesize
410 > %\begin{tabular}{l||c|c|c|c|c|c|c}
411 > %\hline
412 > %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
413 > %Match Up & Match Down \\
414 > %\hline
415 > %\hline
416 > %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
417 > %\hline
418 > %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
419 > %\hline
420 > %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
421 > %\hline
422 > %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
423 > %\hline
424 > %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
425 > %\hline
426 > %\end{tabular}}
427 > %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
428 > %\label{tab:nsig}}
429 > %\end{center}
430 > %\end{table}
431 >
432 >
433 > %\begin{table}[!h]
434 > %\begin{center}
435 > %\begin{tabular}{l||c|c|c|c}
436 > %\hline
437 > %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
438 > %& $\Delta$ Match \\
439 > %\hline
440 > %\hline
441 > %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
442 > %\hline
443 > %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
444 > %\hline
445 > %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
446 > %\hline
447 > %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
448 > %\hline
449 > %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
450 > %\hline
451 > %\end{tabular}
452 > %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
453 > %\label{tab:devt}}
454 > %\end{center}
455 > %\end{table}
456 >
457 >
458  
459   \clearpage
460  
# Line 397 | Line 597 | This is the uncertainty associated with
597   veto performance is modeled by the Monte Carlo.  This uncertainty
598   only applies to the fraction of dilepton BG events that have
599   a second e/$\mu$ or a one prong $\tau \to h$, with
600 < $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is 1/3 (THIS WAS THE
601 < 7 TEV NUMBER, CHECK).  The uncertainty for these events
602 < is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
603 <
404 < \subsubsection{Isolated Track Veto: Tag and Probe Studies}
405 < \label{sec:trkveto}
406 <
407 < [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
408 < ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
600 > $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
601 > Table~\ref{tab:trueisotrk}.
602 > The uncertainty for these events
603 > is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
604  
605   \begin{table}[!h]
606   \begin{center}
# Line 426 | Line 621 | e Frac. \ttdl\ with true iso. trk.      & $
621   \end{center}
622   \end{table}
623  
624 + \subsubsection{Isolated Track Veto: Tag and Probe Studies}
625 + \label{sec:trkveto}
626 +
627  
628   In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
629   with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
630   to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
631 < we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
631 > we would need to apply a data-to-MC scale factor in order to correctly
632 > predict the \ttll\ background.
633 >
634 > This study
635   addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
636   second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
637   in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
638   procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
639 +
640   Furthermore, we test the data and MC
641   isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
642   directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
# Line 447 | Line 649 | decays are well-understood, we currently
649   Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
650   As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
651   leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
652 < due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
652 > due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
653  
654 < The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
654 > The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
655   All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
656   We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
657   this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
# Line 504 | Line 706 | The specific criteria for tags and probe
706   The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
707   good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
708   absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
709 < In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
709 > In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
710   efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
711   For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
712   a data vs. MC discrepancy in the isolated track veto efficiency.
# Line 537 | Line 739 | for events with the \njets\ requirement
739  
740   \begin{table}[!ht]
741   \begin{center}
540 \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
541 on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
542 jet multiplicity requirements.}
742   \begin{tabular}{l|c|c|c|c|c}
743  
744   %Electrons:
# Line 637 | Line 836 | $\mu$ + $\geq$4 jets   &           $>$ 1
836   \hline
837  
838   \end{tabular}
839 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
840 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
841 + jet multiplicity requirements.}
842   \end{center}
843   \end{table}
844  
# Line 691 | Line 893 | $\mu$ + $\geq$4 jets   &           $>$ 1
893   %END SECTION TO WRITE OUT
894  
895  
896 < {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
897 < Why not measure $\epsilon_{fake}$ in the b-veto region?}
896 > %{\bf fix me: What you have written in the next paragraph does not
897 > %explain how $\epsilon_{fake}$ is measured.
898 > %Why not measure $\epsilon_{fake}$ in the b-veto region?}
899  
900   %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
901   %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
# Line 720 | Line 923 | Why not measure $\epsilon_{fake}$ in the
923   %      \end{center}
924   %\end{figure}
925  
926 < \subsection{Summary of uncertainties}
927 < \label{sec:bgunc-bottomline}.
926 > % \subsection{Summary of uncertainties}
927 > % \label{sec:bgunc-bottomline}.
928  
929 < THIS NEEDS TO BE WRITTEN
929 > % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines