1 |
|
%\section{Systematics Uncertainties on the Background Prediction} |
2 |
|
%\label{sec:systematics} |
3 |
|
|
4 |
< |
[ADD INTRODUCTORY BLURB ON UNCERTAINTIES \\ |
5 |
< |
ADD COMPARISONS OF ALL THE ALTERNATIVE SAMPLES FOR ALL THE SIGNAL |
6 |
< |
REGIONS \\ |
7 |
< |
LIST ALL THE UNCERTAINTIES INCLUDED AND THEIR VALUES] |
4 |
> |
In this Section we discuss the systematic uncertainty on the BG |
5 |
> |
prediction. This prediction is assembled from the event |
6 |
> |
counts in the peak region of the transverse mass distribution as |
7 |
> |
well as Monte Carlo |
8 |
> |
with a number of correction factors, as described previously. |
9 |
> |
The |
10 |
> |
final uncertainty on the prediction is built up from the uncertainties in these |
11 |
> |
individual |
12 |
> |
components. |
13 |
> |
The calculation is done for each signal |
14 |
> |
region, |
15 |
> |
for electrons and muons separately. |
16 |
> |
|
17 |
> |
The choice to normalize to the peak region of $M_T$ has the |
18 |
> |
advantage that some uncertainties, e.g., luminosity, cancel. |
19 |
> |
It does however introduce complications because it couples |
20 |
> |
some of the uncertainties in non-trivial ways. For example, |
21 |
> |
the primary effect of an uncertainty on the rare MC cross-section |
22 |
> |
is to introduce an uncertainty in the rare MC background estimate |
23 |
> |
which comes entirely from MC. But this uncertainty also affects, |
24 |
> |
for example, |
25 |
> |
the $t\bar{t} \to$ dilepton BG estimate because it changes the |
26 |
> |
$t\bar{t}$ normalization to the peak region (because some of the |
27 |
> |
events in the peak region are from rare processes). These effects |
28 |
> |
are carefully accounted for. |
29 |
> |
%%%TO ADD BACK IN IF WE HAVE SYSTEMATICS TABLE. |
30 |
> |
%The contribution to the overall |
31 |
> |
%uncertainty from each BG source is tabulated in |
32 |
> |
%Section~\ref{sec:bgunc-bottomline}. |
33 |
> |
Here we discuss the uncertainties one-by-one and comment |
34 |
> |
on their impact on the overall result, at least to first order. |
35 |
> |
Second order effects, such as the one described, are also included. |
36 |
> |
|
37 |
> |
\subsection{Statistical uncertainties on the event counts in the $M_T$ |
38 |
> |
peak regions} |
39 |
> |
These vary between 2\% and 20\%, depending on the signal region |
40 |
> |
(different |
41 |
> |
signal regions have different \met\ requirements, thus they also have |
42 |
> |
different $M_T$ regions used as control). |
43 |
> |
Since |
44 |
> |
the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this |
45 |
> |
fractional uncertainty is pretty much carried through all the way to |
46 |
> |
the end. There is also an uncertainty from the finite MC event counts |
47 |
> |
in the $M_T$ peak regions. This is also included, but it is smaller. |
48 |
> |
|
49 |
> |
Normalizing to the $M_T$ peak has the distinct advantages that |
50 |
> |
uncertainties on luminosity, cross-sections, trigger efficiency, |
51 |
> |
lepton ID, cancel out. |
52 |
> |
For the low statistics regions with high \met\ requirements, the |
53 |
> |
price to pay in terms of event count is that statistical uncertainties start |
54 |
> |
to become significant. In the future we may consider a different |
55 |
> |
normalization startegy in the low statistics regions. |
56 |
> |
|
57 |
> |
\subsection{Uncertainty from the choice of $M_T$ peak region} |
58 |
> |
|
59 |
> |
This choice affects the scale factors of Table~\ref{tab:mtpeaksf}. |
60 |
> |
If the $M_T$ peak region is not well modelled, this would introduce an |
61 |
> |
uncertainty. |
62 |
> |
|
63 |
> |
We have tested this possibility by recalculating the post-veto scale factors for a different |
64 |
> |
choice |
65 |
> |
of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default |
66 |
> |
$50 < M_T < 80$ GeV). This is shown in Table~\ref{tab:mtpeaksf2}. |
67 |
> |
The two results for the scale factors are very compatible. |
68 |
> |
We do not take any systematic uncertainty for this possible effect. |
69 |
> |
|
70 |
> |
\begin{table}[!h] |
71 |
> |
\begin{center} |
72 |
> |
{\footnotesize |
73 |
> |
\begin{tabular}{l||c|c|c|c|c|c|c} |
74 |
> |
\hline |
75 |
> |
Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\ |
76 |
> |
\hline |
77 |
> |
\hline |
78 |
> |
\multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\ |
79 |
> |
\hline |
80 |
> |
$\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\ |
81 |
> |
$\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\ |
82 |
> |
\hline |
83 |
> |
$\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\ |
84 |
> |
\hline |
85 |
> |
\hline |
86 |
> |
e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\ |
87 |
> |
e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\ |
88 |
> |
\hline |
89 |
> |
e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\ |
90 |
> |
\hline |
91 |
> |
\hline |
92 |
> |
\multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\ |
93 |
> |
\hline |
94 |
> |
$\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\ |
95 |
> |
$\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\ |
96 |
> |
\hline |
97 |
> |
$\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\ |
98 |
> |
\hline |
99 |
> |
\hline |
100 |
> |
e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\ |
101 |
> |
e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\ |
102 |
> |
\hline |
103 |
> |
e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\ |
104 |
> |
\hline |
105 |
> |
\end{tabular}} |
106 |
> |
\caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the |
107 |
> |
\ttdl\ sample, while the post-veto SFs are applied to the single |
108 |
> |
lepton samples. The veto SF is shown for comparison across channels. |
109 |
> |
The raw MC is used for backgrounds from rare processes. |
110 |
> |
The uncertainties are statistical only. |
111 |
> |
\label{tab:mtpeaksf2}} |
112 |
> |
\end{center} |
113 |
> |
\end{table} |
114 |
> |
|
115 |
> |
|
116 |
> |
\subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections} |
117 |
> |
These are taken as 50\%, uncorrelated. |
118 |
> |
The primary effect is to introduce a 50\% |
119 |
> |
uncertainty |
120 |
> |
on the $W +$ jets and rare BG |
121 |
> |
background predictions, respectively. However they also |
122 |
> |
have an effect on the other BGs via the $M_T$ peak normalization |
123 |
> |
in a way that tends to reduce the uncertainty. This is easy |
124 |
> |
to understand: if the $W$ cross-section is increased by 50\%, then |
125 |
> |
the $W$ background goes up. But the number of $M_T$ peak events |
126 |
> |
attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is |
127 |
> |
scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$ |
128 |
> |
BG goes down. |
129 |
> |
|
130 |
> |
\subsection{Tail-to-peak ratios for lepton + |
131 |
> |
jets top and W events} |
132 |
> |
The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}. |
133 |
> |
The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}). |
134 |
> |
Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its uncertainty is given in Table~\ref{tab:cr1yields}). This uncertainty affects both $R_{wjet}$ and $R_{top}$. |
135 |
> |
The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}. |
136 |
> |
|
137 |
> |
|
138 |
> |
\subsection{Uncertainty on extra jet radiation for dilepton |
139 |
> |
background} |
140 |
> |
As discussed in Section~\ref{sec:jetmultiplicity}, the |
141 |
> |
jet distribution in |
142 |
> |
$t\bar{t} \to$ |
143 |
> |
dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make |
144 |
> |
it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$ |
145 |
> |
comes from data/MC statistics. This |
146 |
> |
results directly in a 3\% uncertainty on the dilepton background, which is by far |
147 |
> |
the most important one. |
148 |
> |
|
149 |
> |
\subsection{Uncertainty from MC statistics} |
150 |
> |
This affects mostly the \ttll\ background estimate, which is taken |
151 |
> |
from |
152 |
> |
Monte Carlo with appropriate correction factors. This uncertainty |
153 |
> |
is negligible in the low \met\ signal regions, and grows to about |
154 |
> |
15\% in SRG. |
155 |
> |
|
156 |
|
|
157 |
|
\subsection{Uncertainty on the \ttll\ Acceptance} |
158 |
|
|
167 |
|
|
168 |
|
\begin{itemize} |
169 |
|
\item Top mass: The alternative values for the top mass differ |
170 |
< |
from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}} |
170 |
> |
from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}} |
171 |
|
= 166.5~\GeV$. |
172 |
|
\item Jet-parton matching scale: This corresponds to variations in the |
173 |
|
scale at which the Matrix Element partons from Madgraph are matched |
179 |
|
value for the scale used is $Q^2 = m_{\mathrm{top}}^2 + |
180 |
|
\sum_{\mathrm{jets}} \pt^2$. |
181 |
|
\item Alternative generators: Samples produced with different |
182 |
< |
generators include MC@NLO and Powheg (NLO generators) and |
35 |
< |
Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the |
36 |
< |
hadronisation, while POWHEG uses Pythia6. |
182 |
> |
generators, Powheg (our default) and Madgraph. |
183 |
|
\item Modeling of taus: The alternative sample does not include |
184 |
< |
Tauola and is otherwise identical to the Powheg sample. [DONE AT |
185 |
< |
7TEV AND FOUND TO BE NEGLIGIBLE] |
184 |
> |
Tauola and is otherwise identical to the Powheg sample. |
185 |
> |
This effect was studied earlier using 7~TeV samples and found to be negligible. |
186 |
|
\item The PDF uncertainty is estimated following the PDF4LHC |
187 |
< |
recommendations[CITE]. The events are reweighted using alternative |
187 |
> |
recommendations. The events are reweighted using alternative |
188 |
|
PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the |
189 |
< |
alternative eigenvector variations and the ``master equation''. In |
190 |
< |
addition, the NNPDF2.1 set with 100 replicas. The central value is |
189 |
> |
alternative eigenvector variations and the ``master equation''. |
190 |
> |
The NNPDF2.1 set with 100 replicas is also used. The central value is |
191 |
|
determined from the mean and the uncertainty is derived from the |
192 |
|
$1\sigma$ range. The overall uncertainty is derived from the envelope of the |
193 |
< |
alternative predictions and their uncertainties. [DONE AT 7 TEV AND |
194 |
< |
FOUND TO BE NEGLIGIBLE] |
195 |
< |
\end{itemize} |
50 |
< |
|
193 |
> |
alternative predictions and their uncertainties. |
194 |
> |
This effect was studied earlier using 7~TeV samples and found to be negligible. |
195 |
> |
\end{itemize} |
196 |
|
|
197 |
|
\begin{figure}[hbt] |
198 |
|
\begin{center} |
199 |
< |
\includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png} |
199 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}% |
200 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf} |
201 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}% |
202 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf} |
203 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf} |
204 |
|
\caption{ |
205 |
< |
\label{fig:ttllsyst}%\protect |
205 |
> |
\label{fig:ttllsyst}\protect |
206 |
|
Comparison of the \ttll\ central prediction with those using |
207 |
|
alternative MC samples. The blue band corresponds to the |
208 |
|
total statistical error for all data and MC samples. The |
209 |
|
alternative sample predictions are indicated by the |
210 |
|
datapoints. The uncertainties on the alternative predictions |
211 |
|
correspond to the uncorrelated statistical uncertainty from |
212 |
< |
the size of the alternative sample only.} |
212 |
> |
the size of the alternative sample only. Note the |
213 |
> |
suppressed vertical scales.} |
214 |
|
\end{center} |
215 |
|
\end{figure} |
216 |
|
|
217 |
|
|
218 |
+ |
\begin{table}[!h] |
219 |
+ |
\begin{center} |
220 |
+ |
{\footnotesize |
221 |
+ |
\begin{tabular}{l||c|c|c|c|c|c|c} |
222 |
+ |
\hline |
223 |
+ |
$\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down & |
224 |
+ |
Match Up & Match Down \\ |
225 |
+ |
\hline |
226 |
+ |
\hline |
227 |
+ |
SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\ |
228 |
+ |
\hline |
229 |
+ |
SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\ |
230 |
+ |
\hline |
231 |
+ |
% SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\ |
232 |
+ |
% \hline |
233 |
+ |
% SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\ |
234 |
+ |
% \hline |
235 |
+ |
% SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\ |
236 |
+ |
\hline |
237 |
+ |
\end{tabular}} |
238 |
+ |
\caption{ Relative difference in \ttdl\ predictions for alternative MC |
239 |
+ |
samples in |
240 |
+ |
the higher statistics regions SRA and SRB. These differences |
241 |
+ |
are based on the central values of the predictions. For a fuller |
242 |
+ |
picture |
243 |
+ |
of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}. |
244 |
+ |
\label{tab:fracdiff}} |
245 |
+ |
\end{center} |
246 |
+ |
\end{table} |
247 |
+ |
|
248 |
+ |
|
249 |
+ |
In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions |
250 |
+ |
for regions A through E. We can make the following observations based |
251 |
+ |
on this Figure. |
252 |
+ |
|
253 |
+ |
\begin{itemize} |
254 |
+ |
\item In the tighter signal regions we are running out of |
255 |
+ |
statistics. |
256 |
+ |
\item Within the limited statistics, there is no evidence that the |
257 |
+ |
situation changes as we go from signal region A to signal region E. |
258 |
+ |
Therefore, we assess a systematic based on the relatively high |
259 |
+ |
statistics |
260 |
+ |
test in signal region A, and apply the same systematic uncertainty |
261 |
+ |
to all other regions. |
262 |
+ |
\item In order to fully (as opposed as 1$\sigma$) cover the |
263 |
+ |
alternative MC variations in region A we would have to take a |
264 |
+ |
systematic |
265 |
+ |
uncertainty of $\approx 10\%$. This would be driven by the |
266 |
+ |
scale up/scale down variations, see Table~\ref{tab:fracdiff}. |
267 |
+ |
\end{itemize} |
268 |
+ |
|
269 |
+ |
\begin{table}[!ht] |
270 |
+ |
\begin{center} |
271 |
+ |
\begin{tabular}{l|c|c} |
272 |
+ |
\hline |
273 |
+ |
Sample |
274 |
+ |
& K3 & K4\\ |
275 |
+ |
\hline |
276 |
+ |
\hline |
277 |
+ |
Powheg & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\ |
278 |
+ |
Madgraph & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\ |
279 |
+ |
Mass Up & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\ |
280 |
+ |
Mass Down & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\ |
281 |
+ |
Scale Up & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\ |
282 |
+ |
Scale Down & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\ |
283 |
+ |
Match Up & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\ |
284 |
+ |
Match Down & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\ |
285 |
+ |
\hline |
286 |
+ |
\end{tabular} |
287 |
+ |
\caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the |
288 |
+ |
fraction of events with additional hard jets from radiation in |
289 |
+ |
\ttll\ events. \label{tab:njetskfactors_met100}} |
290 |
+ |
\end{center} |
291 |
+ |
\end{table} |
292 |
+ |
|
293 |
+ |
|
294 |
+ |
However, we have two pieces of information indicating that the |
295 |
+ |
scale up/scale down variations are inconsistent with the data. |
296 |
+ |
These are described below. |
297 |
+ |
|
298 |
+ |
The first piece of information is that the jet multiplicity in the scale |
299 |
+ |
up/scale down sample is the most inconsistent with the data. This is shown |
300 |
+ |
in Table~\ref{tab:njetskfactors_met100}, where we tabulate the |
301 |
+ |
$K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for |
302 |
+ |
different \ttbar\ MC samples. The data/MC disagreement in the $N_{jets}$ |
303 |
+ |
distribution |
304 |
+ |
for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup} |
305 |
+ |
and~\ref{fig:dileptonnjets_scaledw}. This should be compared with the |
306 |
+ |
equivalent $N_{jets}$ plots for the default Powheg MC, see |
307 |
+ |
Fig.~\ref{fig:dileptonnjets}, which agrees much better with data. |
308 |
+ |
|
309 |
+ |
\begin{figure}[hbt] |
310 |
+ |
\begin{center} |
311 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf} |
312 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}% |
313 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf} |
314 |
+ |
\caption{ |
315 |
+ |
\label{fig:dileptonnjets_scaleup}%\protect |
316 |
+ |
SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\ |
317 |
+ |
(top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.} |
318 |
+ |
\end{center} |
319 |
+ |
\end{figure} |
320 |
+ |
|
321 |
+ |
\begin{figure}[hbt] |
322 |
+ |
\begin{center} |
323 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf} |
324 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}% |
325 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf} |
326 |
+ |
\caption{ |
327 |
+ |
\label{fig:dileptonnjets_scaledw}%\protect |
328 |
+ |
SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\ |
329 |
+ |
(top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.} |
330 |
+ |
\end{center} |
331 |
+ |
\end{figure} |
332 |
+ |
|
333 |
+ |
|
334 |
+ |
\clearpage |
335 |
+ |
|
336 |
+ |
The second piece of information is that we have performed closure |
337 |
+ |
tests in CR5 using the alternative MC samples. These are exactly |
338 |
+ |
the same tests as the one performed in Section~\ref{sec:CR5} on the |
339 |
+ |
Powheg sample. As we argued previously, this is a very powerful |
340 |
+ |
test of the background calculation. |
341 |
+ |
The results of this test are summarized in Table~\ref{tab:hugecr5yields}. |
342 |
+ |
Concentrating on the relatively high statistics CR5A region, we see |
343 |
+ |
for all \ttbar\ MC samples except scale up/scale down we obtain |
344 |
+ |
closure within 1$\sigma$. The scale up/scale down tests closes |
345 |
+ |
worse, only within 2$\sigma$. This again is evidence that the |
346 |
+ |
scale up/scale down variations are in disagreement with the data. |
347 |
+ |
|
348 |
+ |
\input{hugeCR5Table.tex} |
349 |
+ |
|
350 |
+ |
Based on the two observations above, we argue that the MC |
351 |
+ |
scale up/scale down variations are too extreme. We feel that |
352 |
+ |
a reasonable choice would be to take one-half of the scale up/scale |
353 |
+ |
down variations in our MC. This factor of 1/2 would then bring |
354 |
+ |
the discrepancy in the closure test of |
355 |
+ |
Table~\ref{tab:hugecr5yields} for the scale up/scale down variations |
356 |
+ |
from about 2$\sigma$ to about 1$\sigma$. |
357 |
+ |
|
358 |
+ |
Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale |
359 |
+ |
up/scale |
360 |
+ |
down variations by a factor 2, we can see that a systematic |
361 |
+ |
uncertainty |
362 |
+ |
of 6\% would fully cover all of the variations from different MC |
363 |
+ |
samples in SRA and SRB. |
364 |
+ |
{\bf Thus, we take a 6\% systematic uncertainty, constant as a |
365 |
+ |
function of signal region, as the systematic due to alternative MC |
366 |
+ |
models.} |
367 |
+ |
Note that this 6\% is also consistent with the level at which we are |
368 |
+ |
able |
369 |
+ |
to test the closure of the method in CR5 for the high statistics |
370 |
+ |
regions |
371 |
+ |
(Table~\ref{tab:hugecr5yields}). |
372 |
+ |
|
373 |
+ |
|
374 |
+ |
|
375 |
+ |
|
376 |
+ |
|
377 |
+ |
|
378 |
+ |
%\begin{table}[!h] |
379 |
+ |
%\begin{center} |
380 |
+ |
%{\footnotesize |
381 |
+ |
%\begin{tabular}{l||c||c|c|c|c|c|c|c} |
382 |
+ |
%\hline |
383 |
+ |
%Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale |
384 |
+ |
%Up & Scale Down & |
385 |
+ |
%Match Up & Match Down \\ |
386 |
+ |
%\hline |
387 |
+ |
%\hline |
388 |
+ |
%SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\ |
389 |
+ |
%\hline |
390 |
+ |
%SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\ |
391 |
+ |
%\hline |
392 |
+ |
%SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\ |
393 |
+ |
%\hline |
394 |
+ |
%SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\ |
395 |
+ |
%\hline |
396 |
+ |
%SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\ |
397 |
+ |
%\hline |
398 |
+ |
%\end{tabular}} |
399 |
+ |
%\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only. |
400 |
+ |
%\label{tab:ttdlalt}} |
401 |
+ |
%\end{center} |
402 |
+ |
%\end{table} |
403 |
+ |
|
404 |
+ |
|
405 |
+ |
|
406 |
+ |
|
407 |
+ |
%\begin{table}[!h] |
408 |
+ |
%\begin{center} |
409 |
+ |
%{\footnotesize |
410 |
+ |
%\begin{tabular}{l||c|c|c|c|c|c|c} |
411 |
+ |
%\hline |
412 |
+ |
%$N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down & |
413 |
+ |
%Match Up & Match Down \\ |
414 |
+ |
%\hline |
415 |
+ |
%\hline |
416 |
+ |
%SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\ |
417 |
+ |
%\hline |
418 |
+ |
%SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\ |
419 |
+ |
%\hline |
420 |
+ |
%SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\ |
421 |
+ |
%\hline |
422 |
+ |
%SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\ |
423 |
+ |
%\hline |
424 |
+ |
%SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\ |
425 |
+ |
%\hline |
426 |
+ |
%\end{tabular}} |
427 |
+ |
%\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples. |
428 |
+ |
%\label{tab:nsig}} |
429 |
+ |
%\end{center} |
430 |
+ |
%\end{table} |
431 |
+ |
|
432 |
+ |
|
433 |
+ |
%\begin{table}[!h] |
434 |
+ |
%\begin{center} |
435 |
+ |
%\begin{tabular}{l||c|c|c|c} |
436 |
+ |
%\hline |
437 |
+ |
%Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale |
438 |
+ |
%& $\Delta$ Match \\ |
439 |
+ |
%\hline |
440 |
+ |
%\hline |
441 |
+ |
%SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\ |
442 |
+ |
%\hline |
443 |
+ |
%SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\ |
444 |
+ |
%\hline |
445 |
+ |
%SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\ |
446 |
+ |
%\hline |
447 |
+ |
%SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\ |
448 |
+ |
%\hline |
449 |
+ |
%SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\ |
450 |
+ |
%\hline |
451 |
+ |
%\end{tabular} |
452 |
+ |
%\caption{ Av. difference in \ttdl\ events for alternative sample pairs. |
453 |
+ |
%\label{tab:devt}} |
454 |
+ |
%\end{center} |
455 |
+ |
%\end{table} |
456 |
+ |
|
457 |
+ |
|
458 |
+ |
|
459 |
+ |
\clearpage |
460 |
|
|
461 |
|
% |
462 |
|
% |
592 |
|
%\end{center} |
593 |
|
%\end{table} |
594 |
|
|
595 |
+ |
\subsection{Uncertainty from the isolated track veto} |
596 |
+ |
This is the uncertainty associated with how well the isolated track |
597 |
+ |
veto performance is modeled by the Monte Carlo. This uncertainty |
598 |
+ |
only applies to the fraction of dilepton BG events that have |
599 |
+ |
a second e/$\mu$ or a one prong $\tau \to h$, with |
600 |
+ |
$P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see |
601 |
+ |
Table~\ref{tab:trueisotrk}. |
602 |
+ |
The uncertainty for these events |
603 |
+ |
is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}. |
604 |
|
|
605 |
< |
\subsection{Isolated Track Veto: Tag and Probe Studies} |
605 |
> |
\begin{table}[!h] |
606 |
> |
\begin{center} |
607 |
> |
{\footnotesize |
608 |
> |
\begin{tabular}{l||c|c|c|c|c|c|c} |
609 |
> |
\hline |
610 |
> |
Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\ |
611 |
> |
\hline |
612 |
> |
\hline |
613 |
> |
$\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\ |
614 |
> |
\hline |
615 |
> |
\hline |
616 |
> |
e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\ |
617 |
> |
\hline |
618 |
> |
\end{tabular}} |
619 |
> |
\caption{ Fraction of \ttdl\ events with a true isolated track. |
620 |
> |
\label{tab:trueisotrk}} |
621 |
> |
\end{center} |
622 |
> |
\end{table} |
623 |
> |
|
624 |
> |
\subsubsection{Isolated Track Veto: Tag and Probe Studies} |
625 |
> |
\label{sec:trkveto} |
626 |
|
|
206 |
– |
[EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\ |
207 |
– |
ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK] |
627 |
|
|
628 |
|
In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies |
629 |
|
with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency |
630 |
|
to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case |
631 |
< |
we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study |
631 |
> |
we would need to apply a data-to-MC scale factor in order to correctly |
632 |
> |
predict the \ttll\ background. |
633 |
> |
|
634 |
> |
This study |
635 |
|
addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a |
636 |
|
second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies |
637 |
|
in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization |
638 |
|
procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto. |
639 |
+ |
|
640 |
|
Furthermore, we test the data and MC |
641 |
|
isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not |
642 |
|
directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products |
649 |
|
Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed. |
650 |
|
As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%, |
651 |
|
leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background |
652 |
< |
due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible. |
652 |
> |
due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible. |
653 |
|
|
654 |
< |
The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample. |
654 |
> |
The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample. |
655 |
|
All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV. |
656 |
|
We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to |
657 |
|
this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do |
673 |
|
|
674 |
|
\begin{itemize} |
675 |
|
\item Electron passes full analysis ID/iso selection |
676 |
< |
\item \pt\ $>$ 30 GeV, $|\eta|<2.5$ |
677 |
< |
|
255 |
< |
\item Matched to 1 of the 2 electron tag-and-probe triggers |
256 |
< |
\begin{itemize} |
257 |
< |
\item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8_Mass30_v*= |
258 |
< |
\item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_Ele8_Mass30_v*= |
259 |
< |
\end{itemize} |
676 |
> |
\item \pt\ $>$ 30 GeV, $|\eta|<2.1$ |
677 |
> |
\item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*= |
678 |
|
\end{itemize} |
679 |
|
|
680 |
|
\item{Probe criteria} |
689 |
|
\begin{itemize} |
690 |
|
\item Muon passes full analysis ID/iso selection |
691 |
|
\item \pt\ $>$ 30 GeV, $|\eta|<2.1$ |
692 |
< |
\item Matched to 1 of the 2 electron tag-and-probe triggers |
692 |
> |
\item Matched to 1 of the 2 single muon triggers |
693 |
|
\begin{itemize} |
694 |
|
\item \verb=HLT_IsoMu30_v*= |
695 |
|
\item \verb=HLT_IsoMu30_eta2p1_v*= |
706 |
|
The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe |
707 |
|
good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy |
708 |
|
absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}. |
709 |
< |
In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC |
710 |
< |
efficiencies agree within 7\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency. |
709 |
> |
In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC |
710 |
> |
efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency. |
711 |
|
For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for |
712 |
|
a data vs. MC discrepancy in the isolated track veto efficiency. |
713 |
|
|
718 |
|
|
719 |
|
\begin{figure}[hbt] |
720 |
|
\begin{center} |
721 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}% |
722 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf} |
723 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}% |
724 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf} |
725 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}% |
726 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf} |
727 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}% |
728 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf} |
729 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}% |
730 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf} |
721 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}% |
722 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf} |
723 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}% |
724 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf} |
725 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}% |
726 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf} |
727 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}% |
728 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf} |
729 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}% |
730 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf} |
731 |
|
\caption{ |
732 |
|
\label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right) |
733 |
|
for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4. |
739 |
|
|
740 |
|
\begin{table}[!ht] |
741 |
|
\begin{center} |
742 |
< |
\caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements |
743 |
< |
on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various |
744 |
< |
jet multiplicity requirements.} |
745 |
< |
\begin{tabular}{l|l|c|c|c|c|c} |
742 |
> |
\begin{tabular}{l|c|c|c|c|c} |
743 |
> |
|
744 |
> |
%Electrons: |
745 |
> |
%Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05) |
746 |
> |
%Total MC yields : 2497277 |
747 |
> |
%Total DATA yields : 2649453 |
748 |
> |
%Muons: |
749 |
> |
%Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05) |
750 |
> |
%Total MC yields : 3749863 |
751 |
> |
%Total DATA yields : 4210022 |
752 |
> |
%Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1 |
753 |
> |
%Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created |
754 |
> |
|
755 |
|
\hline |
756 |
|
\hline |
757 |
< |
e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
757 |
> |
e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
758 |
|
\hline |
759 |
< |
data & 0.088 $\pm$ 0.0003 & 0.030 $\pm$ 0.0002 & 0.013 $\pm$ 0.0001 & 0.007 $\pm$ 0.0001 & 0.005 $\pm$ 0.0001 \\ |
760 |
< |
mc & 0.087 $\pm$ 0.0001 & 0.030 $\pm$ 0.0001 & 0.014 $\pm$ 0.0001 & 0.008 $\pm$ 0.0000 & 0.005 $\pm$ 0.0000 \\ |
761 |
< |
data/mc & 1.01 $\pm$ 0.00 & 0.99 $\pm$ 0.01 & 0.97 $\pm$ 0.01 & 0.95 $\pm$ 0.01 & 0.93 $\pm$ 0.01 \\ |
759 |
> |
data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\ |
760 |
> |
mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\ |
761 |
> |
data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\ |
762 |
> |
|
763 |
|
\hline |
764 |
|
\hline |
765 |
< |
$\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
765 |
> |
$\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
766 |
|
\hline |
767 |
< |
data & 0.087 $\pm$ 0.0002 & 0.031 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.008 $\pm$ 0.0001 & 0.005 $\pm$ 0.0001 \\ |
768 |
< |
mc & 0.085 $\pm$ 0.0001 & 0.030 $\pm$ 0.0001 & 0.014 $\pm$ 0.0000 & 0.008 $\pm$ 0.0000 & 0.005 $\pm$ 0.0000 \\ |
769 |
< |
data/mc & 1.02 $\pm$ 0.00 & 1.06 $\pm$ 0.00 & 1.06 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\ |
767 |
> |
data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\ |
768 |
> |
mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\ |
769 |
> |
data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\ |
770 |
> |
|
771 |
|
\hline |
343 |
– |
\hline |
344 |
– |
e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
772 |
|
\hline |
773 |
< |
data & 0.099 $\pm$ 0.0008 & 0.038 $\pm$ 0.0005 & 0.019 $\pm$ 0.0004 & 0.011 $\pm$ 0.0003 & 0.008 $\pm$ 0.0002 \\ |
347 |
< |
mc & 0.100 $\pm$ 0.0004 & 0.038 $\pm$ 0.0003 & 0.019 $\pm$ 0.0002 & 0.012 $\pm$ 0.0002 & 0.008 $\pm$ 0.0001 \\ |
348 |
< |
data/mc & 0.99 $\pm$ 0.01 & 1.00 $\pm$ 0.02 & 0.99 $\pm$ 0.02 & 0.98 $\pm$ 0.03 & 0.97 $\pm$ 0.03 \\ |
773 |
> |
e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
774 |
|
\hline |
775 |
+ |
data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\ |
776 |
+ |
mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\ |
777 |
+ |
data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\ |
778 |
+ |
|
779 |
|
\hline |
351 |
– |
$\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
780 |
|
\hline |
781 |
< |
data & 0.100 $\pm$ 0.0006 & 0.041 $\pm$ 0.0004 & 0.022 $\pm$ 0.0003 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0002 \\ |
782 |
< |
mc & 0.099 $\pm$ 0.0004 & 0.039 $\pm$ 0.0002 & 0.020 $\pm$ 0.0002 & 0.013 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 \\ |
783 |
< |
data/mc & 1.01 $\pm$ 0.01 & 1.05 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.06 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\ |
781 |
> |
$\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
782 |
> |
\hline |
783 |
> |
data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\ |
784 |
> |
mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\ |
785 |
> |
data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\ |
786 |
> |
|
787 |
|
\hline |
788 |
|
\hline |
789 |
< |
e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
789 |
> |
e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
790 |
|
\hline |
791 |
< |
data & 0.105 $\pm$ 0.0020 & 0.042 $\pm$ 0.0013 & 0.021 $\pm$ 0.0009 & 0.013 $\pm$ 0.0007 & 0.009 $\pm$ 0.0006 \\ |
792 |
< |
mc & 0.109 $\pm$ 0.0011 & 0.043 $\pm$ 0.0007 & 0.021 $\pm$ 0.0005 & 0.013 $\pm$ 0.0004 & 0.009 $\pm$ 0.0003 \\ |
793 |
< |
data/mc & 0.96 $\pm$ 0.02 & 0.97 $\pm$ 0.03 & 1.00 $\pm$ 0.05 & 1.01 $\pm$ 0.06 & 0.97 $\pm$ 0.08 \\ |
791 |
> |
data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\ |
792 |
> |
mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\ |
793 |
> |
data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\ |
794 |
> |
|
795 |
|
\hline |
796 |
|
\hline |
797 |
< |
$\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
797 |
> |
$\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
798 |
|
\hline |
799 |
< |
data & 0.106 $\pm$ 0.0016 & 0.045 $\pm$ 0.0011 & 0.025 $\pm$ 0.0008 & 0.016 $\pm$ 0.0007 & 0.012 $\pm$ 0.0006 \\ |
800 |
< |
mc & 0.108 $\pm$ 0.0009 & 0.044 $\pm$ 0.0006 & 0.024 $\pm$ 0.0004 & 0.016 $\pm$ 0.0004 & 0.011 $\pm$ 0.0003 \\ |
801 |
< |
data/mc & 0.98 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.04 $\pm$ 0.04 & 1.04 $\pm$ 0.05 & 1.06 $\pm$ 0.06 \\ |
799 |
> |
data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\ |
800 |
> |
mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\ |
801 |
> |
data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\ |
802 |
> |
|
803 |
|
\hline |
804 |
|
\hline |
805 |
< |
e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
805 |
> |
e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
806 |
|
\hline |
807 |
< |
data & 0.117 $\pm$ 0.0055 & 0.051 $\pm$ 0.0038 & 0.029 $\pm$ 0.0029 & 0.018 $\pm$ 0.0023 & 0.012 $\pm$ 0.0019 \\ |
808 |
< |
mc & 0.120 $\pm$ 0.0031 & 0.052 $\pm$ 0.0021 & 0.027 $\pm$ 0.0015 & 0.018 $\pm$ 0.0012 & 0.013 $\pm$ 0.0011 \\ |
809 |
< |
data/mc & 0.97 $\pm$ 0.05 & 0.99 $\pm$ 0.08 & 1.10 $\pm$ 0.13 & 1.03 $\pm$ 0.15 & 0.91 $\pm$ 0.16 \\ |
807 |
> |
data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\ |
808 |
> |
mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\ |
809 |
> |
data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\ |
810 |
> |
|
811 |
|
\hline |
812 |
|
\hline |
813 |
< |
$\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
813 |
> |
$\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
814 |
|
\hline |
815 |
< |
data & 0.111 $\pm$ 0.0044 & 0.050 $\pm$ 0.0030 & 0.029 $\pm$ 0.0024 & 0.019 $\pm$ 0.0019 & 0.014 $\pm$ 0.0017 \\ |
816 |
< |
mc & 0.115 $\pm$ 0.0025 & 0.051 $\pm$ 0.0017 & 0.030 $\pm$ 0.0013 & 0.020 $\pm$ 0.0011 & 0.015 $\pm$ 0.0009 \\ |
817 |
< |
data/mc & 0.97 $\pm$ 0.04 & 0.97 $\pm$ 0.07 & 0.95 $\pm$ 0.09 & 0.97 $\pm$ 0.11 & 0.99 $\pm$ 0.13 \\ |
815 |
> |
data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\ |
816 |
> |
mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\ |
817 |
> |
data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\ |
818 |
> |
|
819 |
|
\hline |
820 |
|
\hline |
821 |
< |
e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
821 |
> |
e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
822 |
|
\hline |
823 |
< |
data & 0.113 $\pm$ 0.0148 & 0.048 $\pm$ 0.0100 & 0.033 $\pm$ 0.0083 & 0.020 $\pm$ 0.0065 & 0.017 $\pm$ 0.0062 \\ |
824 |
< |
mc & 0.146 $\pm$ 0.0092 & 0.064 $\pm$ 0.0064 & 0.034 $\pm$ 0.0048 & 0.024 $\pm$ 0.0040 & 0.021 $\pm$ 0.0037 \\ |
825 |
< |
data/mc & 0.78 $\pm$ 0.11 & 0.74 $\pm$ 0.17 & 0.96 $\pm$ 0.28 & 0.82 $\pm$ 0.30 & 0.85 $\pm$ 0.34 \\ |
823 |
> |
data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\ |
824 |
> |
mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\ |
825 |
> |
data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\ |
826 |
> |
|
827 |
|
\hline |
828 |
|
\hline |
829 |
< |
$\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
829 |
> |
$\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
830 |
|
\hline |
831 |
< |
data & 0.130 $\pm$ 0.0128 & 0.052 $\pm$ 0.0085 & 0.028 $\pm$ 0.0063 & 0.019 $\pm$ 0.0052 & 0.019 $\pm$ 0.0052 \\ |
832 |
< |
mc & 0.105 $\pm$ 0.0064 & 0.045 $\pm$ 0.0043 & 0.027 $\pm$ 0.0034 & 0.019 $\pm$ 0.0028 & 0.014 $\pm$ 0.0024 \\ |
833 |
< |
data/mc & 1.23 $\pm$ 0.14 & 1.18 $\pm$ 0.22 & 1.03 $\pm$ 0.27 & 1.01 $\pm$ 0.32 & 1.37 $\pm$ 0.45 \\ |
831 |
> |
data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\ |
832 |
> |
mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\ |
833 |
> |
data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\ |
834 |
> |
|
835 |
|
\hline |
836 |
|
\hline |
837 |
|
|
838 |
|
\end{tabular} |
839 |
+ |
\caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements |
840 |
+ |
on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various |
841 |
+ |
jet multiplicity requirements.} |
842 |
|
\end{center} |
843 |
|
\end{table} |
844 |
|
|
845 |
|
|
406 |
– |
|
846 |
|
%Figure.~\ref{fig:reliso} compares the relative track isolation |
847 |
|
%for events with a track with $\pt > 10~\GeV$ in addition to a selected |
848 |
|
%muon for $\Z+4$ jet events and various \ttll\ components. The |
893 |
|
%END SECTION TO WRITE OUT |
894 |
|
|
895 |
|
|
896 |
< |
{\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured. |
897 |
< |
Why not measure $\epsilon_{fake}$ in the b-veto region?} |
896 |
> |
%{\bf fix me: What you have written in the next paragraph does not |
897 |
> |
%explain how $\epsilon_{fake}$ is measured. |
898 |
> |
%Why not measure $\epsilon_{fake}$ in the b-veto region?} |
899 |
|
|
900 |
|
%A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is |
901 |
|
%possible to correct for differences in the $\epsilon_{fake}$ between data and MC by |
923 |
|
% \end{center} |
924 |
|
%\end{figure} |
925 |
|
|
926 |
+ |
% \subsection{Summary of uncertainties} |
927 |
+ |
% \label{sec:bgunc-bottomline}. |
928 |
+ |
|
929 |
+ |
% THIS NEEDS TO BE WRITTEN |