ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.22 by vimartin, Sat Oct 20 19:57:24 2012 UTC vs.
Revision 1.29 by benhoob, Wed Oct 31 22:19:34 2012 UTC

# Line 129 | Line 129 | BG goes down.
129    jets top and W events}
130   The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131   The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132 < Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its uncertainty is given in Table~\ref{tab:cr1yields}). This uncertainty affects both $R_{wjet}$ and $R_{top}$.
132 > Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its
133 > uncertainty is given in Table~\ref{tab:cr1yields}.
134 > This uncertainty affects both $R_{wjet}$ and $R_{top}$.
135   The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
136  
137  
# Line 153 | Line 155 | is negligible in the low \met\ signal re
155  
156  
157   \subsection{Uncertainty on the \ttll\ Background}
158 <
158 > \label{sec:ttdilbkgunc}
159   The \ttbar\ background prediction is obtained from MC, with corrections
160   derived from control samples in data. The uncertainty associated with
161   the \ttbar\ background is derived from the level of closure of the
# Line 176 | Line 178 | to the \ttdl\ background prediction base
178        \end{center}
179   \end{figure}
180  
181 + \clearpage
182 + \subsubsection{Check of the impact of Signal Contamination}
183 +
184 + We examine the contribution of possible signal events in the \ttll\
185 + control regions (CR4 and CR5). It should be emphasized that these
186 + regions are not used to apply data/MC SFs. They are used only to quantify
187 + the level of data/MC agreement and assign a corresponding uncertainty.
188 + As a result, if signal events were to populate these control regions
189 + this would not lead to an increase in the predicted background.
190 +
191 + To illustrate how much signal is expected to populate these control
192 + regions, we examine signal points near the edge of the analysis
193 + sensitivity (m(stop) = 450 m($\chi^0$) = 0 for T2tt, m(stop) = 450
194 + m($\chi^0$) = 0, x=0.75 for T2bw)
195 + Table~\ref{tab:signalcontamination} compares the expected signal
196 + yields and the raw total MC background prediction in the control
197 + regions with the \met\ and \mt\ requirements corresponding to SRB, SRC
198 + and SRD (these are the signal regions that dominate the
199 + sensitivity). The signal contamination is smaller than the uncertainty
200 + on the dilepton background and smaller than the signal/background in
201 + the signal regions.
202 + Based on the fact that the CR4 and CR5 are not used to extract
203 + data/MC scale factors and that we do not observe evidence for signal
204 + contamination in these control regions (CR5, the control region with
205 + larger statistical precision, actually shows a slight deficit of data w.r.t. MC), we
206 + do not assign a correction for signal contamination in these control regions.
207 +
208 + \begin{table}[!h]
209 + \begin{center}
210 + {\small
211 + \begin{tabular}{l l||c|c|c}
212 + \hline
213 + \multicolumn{2}{c||}{Sample}              & CR B & CR C & CR D \\
214 + \hline
215 + \hline
216 + \multirow{4}{*}{CR4} & Raw MC            & $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$ \\
217 + %\hline
218 + & T2tt m(stop) = 450 m($\chi^0$) = 0  & $2.6 \pm 0.3$ $(2\%)$ & $2.0 \pm 0.2$ $(4\%)$ & $1.4 \pm 0.2$ $(7\%)$ \\
219 + & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $10.5 \pm 0.4$ $(6\%)$ &$6.1 \pm 0.3$ $(12\%)$ & $3.1 \pm 0.2$ $(16\%)$ \\
220 + \hline
221 + \hline
222 + \multirow{4}{*}{CR5} & Raw MC            & $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$ \\
223 + %\hline
224 + & T2tt m(stop) = 450 m($\chi^0$) = 0  & $10.6 \pm 0.6$ $(3\%)$ & $7.8 \pm 0.5$ $(8\%)$ & $5.4 \pm 0.4$ $(14\%)$ \\
225 + & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $17.3 \pm 0.5$ $(6\%)$ &$11.3 \pm 0.4$ $(11\%)$ & $6.2 \pm 0.3$ $(16\%)$\\
226 + \hline
227 + \hline
228 + \hline
229 + \multirow{4}{*}{SIGNAL} & Raw MC                 & $486.3 \pm 7.8$& $164.3 \pm 4.5$& $61.5 \pm 2.8$ \\
230 + & T2tt m(stop) = 450 m($\chi^0$) = 0    & $65.3 \pm 1.4$ $(13\%)$& $48.8 \pm 1.2$ $(30\%)$& $32.9 \pm 1.0$ $(53\%)$ \\
231 + & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0     & $69.3 \pm 1.0$ $(14\%)$& $47.3 \pm 0.8$ $(29\%)$& $27.3 \pm 0.6$ $(44\%)$ \\
232 + \hline
233 + \end{tabular}}
234 + \caption{ Yields in \mt\ tail comparing the raw SM MC prediction to the
235 +  yields for a few signal points on the edge of our sensitivity in the \ttll\
236 +  control regions CR4, CR5 and in the corresponding signal region.
237 +  The numbers in parenthesis are the expected signal yield divided by
238 +  the total background. The uncertainties are statistical only.
239 + \label{tab:signalcontamination}}
240 + \end{center}
241 + \end{table}
242 +
243 + %CR5 DUMP
244 + %Total           & $880.3 \pm 10.4$& $560.0 \pm 8.3$& $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$& $16.4 \pm 1.4$& $8.2 \pm 1.0$& $4.6 \pm 0.8$ \\
245 + %\hline
246 + %\hline
247 + %Data            & $941$& $559$& $287$& $95$& $26$& $8$& $5$& $3$ \\
248 + %\hline
249 + %T2tt m(stop) = 250 m($\chi^0$) = 0     & $84.3 \pm 9.2$& $61.9 \pm 7.9$& $35.7 \pm 6.0$& $5.9 \pm 2.4$& $1.0 \pm 1.0$& $1.0 \pm 1.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
250 + %\hline
251 + %T2tt m(stop) = 300 m($\chi^0$) = 50    & $61.4 \pm 4.7$& $53.6 \pm 4.4$& $42.0 \pm 3.9$& $14.3 \pm 2.3$& $7.2 \pm 1.6$& $1.8 \pm 0.8$& $0.7 \pm 0.5$& $0.0 \pm 0.0$ \\
252 + %\hline
253 + %T2tt m(stop) = 300 m($\chi^0$) = 100   & $33.3 \pm 3.5$& $28.6 \pm 3.2$& $19.2 \pm 2.6$& $6.1 \pm 1.5$& $1.8 \pm 0.8$& $0.4 \pm 0.4$& $0.4 \pm 0.4$& $0.4 \pm 0.4$ \\
254 + %\hline
255 + %T2tt m(stop) = 350 m($\chi^0$) = 0     & $33.4 \pm 2.2$& $29.8 \pm 2.1$& $27.3 \pm 2.0$& $15.3 \pm 1.5$& $5.6 \pm 0.9$& $1.9 \pm 0.5$& $0.3 \pm 0.2$& $0.0 \pm 0.0$ \\
256 + %\hline
257 + %T2tt m(stop) = 450 m($\chi^0$) = 0     & $12.0 \pm 0.6$& $11.3 \pm 0.6$& $10.6 \pm 0.6$& $7.8 \pm 0.5$& $5.4 \pm 0.4$& $3.1 \pm 0.3$& $1.8 \pm 0.2$& $0.6 \pm 0.1$ \\
258 + %\hline
259 + %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0       & $48.5 \pm 1.9$& $40.2 \pm 1.7$& $33.0 \pm 1.5$& $14.4 \pm 1.0$& $5.7 \pm 0.6$& $2.7 \pm 0.4$& $1.3 \pm 0.3$& $0.5 \pm 0.2$ \\
260 + %\hline
261 + %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0      & $22.3 \pm 0.6$& $20.2 \pm 0.6$& $17.3 \pm 0.5$& $11.3 \pm 0.4$& $6.2 \pm 0.3$& $3.1 \pm 0.2$& $1.3 \pm 0.1$& $0.7 \pm 0.1$ \\
262 + %\hline
263 +
264 + %CR4 DUMP
265 + %\hline
266 + %Total           & $510.1 \pm 8.0$& $324.2 \pm 6.3$& $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$& $7.8 \pm 1.0$& $2.6 \pm 0.6$& $1.1 \pm 0.3$ \\
267 + %\hline
268 + %\hline
269 + %Data            & $462$& $289$& $169$& $45$& $10$& $7$& $5$& $3$ \\
270 + %\hline
271 + %T2tt m(stop) = 250 m($\chi^0$) = 0     & $37.7 \pm 6.1$& $30.9 \pm 5.5$& $18.0 \pm 4.2$& $6.0 \pm 2.5$& $2.0 \pm 1.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
272 + %\hline
273 + %T2tt m(stop) = 300 m($\chi^0$) = 50    & $16.6 \pm 2.4$& $14.4 \pm 2.3$& $11.3 \pm 2.0$& $5.6 \pm 1.4$& $3.2 \pm 1.1$& $1.8 \pm 0.8$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
274 + %\hline
275 + %T2tt m(stop) = 300 m($\chi^0$) = 100   & $9.6 \pm 1.8$& $6.4 \pm 1.5$& $4.6 \pm 1.3$& $0.7 \pm 0.5$& $0.4 \pm 0.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
276 + %\hline
277 + %T2tt m(stop) = 350 m($\chi^0$) = 0     & $8.2 \pm 1.1$& $7.6 \pm 1.0$& $5.7 \pm 0.9$& $3.4 \pm 0.7$& $1.9 \pm 0.5$& $0.6 \pm 0.3$& $0.3 \pm 0.2$& $0.1 \pm 0.1$ \\
278 + %\hline
279 + %T2tt m(stop) = 450 m($\chi^0$) = 0     & $3.1 \pm 0.3$& $2.9 \pm 0.3$& $2.6 \pm 0.3$& $2.0 \pm 0.2$& $1.4 \pm 0.2$& $1.0 \pm 0.2$& $0.4 \pm 0.1$& $0.2 \pm 0.1$ \\
280 + %\hline
281 + %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0       & $52.6 \pm 1.9$& $42.6 \pm 1.7$& $32.1 \pm 1.5$& $14.7 \pm 1.0$& $5.5 \pm 0.6$& $1.9 \pm 0.4$& $0.6 \pm 0.2$& $0.3 \pm 0.1$ \\
282 + %\hline
283 + %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0      & $16.9 \pm 0.5$& $14.9 \pm 0.5$& $10.5 \pm 0.4$& $6.1 \pm 0.3$& $3.1 \pm 0.2$& $1.5 \pm 0.1$& $0.6 \pm 0.1$& $0.3 \pm 0.1$ \\
284 + %\hline
285 +
286  
287 < \subsubsection{Check of the uncertainty on the \ttll\ Acceptance}
287 > \subsubsection{Check of the uncertainty on the \ttll\ Background}
288  
289 < The uncertainty associated with
290 < the theoretical modeling of the \ttbar\ production and decay is
291 < checked by comparing the background predictions obtained using
289 > We check that the systematic uncertainty assigned to the \ttll\ background prediction
290 > covers the uncertainty associated with
291 > the theoretical modeling of the \ttbar\ production and decay
292 > by comparing the background predictions obtained using
293   alternative MC samples. It should be noted that the full analysis is
294   performed with the alternative samples under consideration,
295   including the derivation of the various data-to-MC scale factors.
# Line 277 | Line 385 | on this Figure.
385    statistics.    
386   \item Within the limited statistics, there is no evidence that the
387    situation changes as we go from signal region A to signal region E.
388 < Therefore, we assess a systematic based on the relatively high
389 < statistics
390 < test in signal region A, and apply the same systematic uncertainty
391 < to all other regions.
388 > %Therefore, we assess a systematic based on the relatively high
389 > %statistics
390 > %test in signal region A, and apply the same systematic uncertainty
391 > %to all other regions.
392 > \item In signal regions B and above, the uncertainties assigned in Section~\ref{sec:ttdilbkgunc}
393 > fully cover the alternative MC variations.
394   \item In order to fully (as opposed as 1$\sigma$) cover the
395   alternative MC variations in region A we would have to take a
396   systematic
397 < uncertainty of $\approx 10\%$.  This would be driven by the
397 > uncertainty of $\approx 10\%$ instead of $5\%$.  This would be driven by the
398   scale up/scale down variations, see Table~\ref{tab:fracdiff}.
399   \end{itemize}
400  
# Line 381 | Line 491 | Then, going back to Table~\ref{tab:fracd
491   up/scale
492   down variations by a factor 2, we can see that a systematic
493   uncertainty
494 < of 6\% would fully cover all of the variations from different MC
495 < samples in SRA and SRB.
496 < The alternative MC models indicate that a 6\% systematic uncertainty to
497 < cover the range of reasonable variations.
498 < Note that this 6\% is also consistent with the level at which we are
494 > of 5\% covers the range of reasonable variations from different MC
495 > models in SRA and SRB.
496 > %The alternative MC models indicate that a 6\% systematic uncertainty
497 > %covers the range of reasonable variations.
498 > Note that this 5\% is also consistent with the level at which we are
499   able to test the closure of the method with alternative samples in CR5 for the high statistics
500   regions (Table~\ref{tab:hugecr5yields}).
501   The range of reasonable variations obtained with the alternative
# Line 866 | Line 976 | jet multiplicity requirements.}
976  
977   \clearpage
978   \subsection{Summary of uncertainties}
979 < \label{sec:bgunc-bottomline}.
979 > \label{sec:bgunc-bottomline}
980 >
981 > The contribution from each source to the total uncertainty on the background yield is given in Tables~\ref{tab:relativeuncertaintycomponents} and~\ref{tab:uncertaintycomponents} for the relative and absolute uncertainties, respectively. In the low-\met\ regions the dominant uncertainty comes from the top tail-to-peak ratio, $R_{top}$ (Section~\ref{sec:ttp}), while in the high-\met\ regions the \ttll\ systematic uncertainty dominates (Section~\ref{sec:ttdilbkgunc}).
982 >
983   \input{uncertainties_table.tex}
984  
985 +
986 +
987 +
988 +
989   %Figure.~\ref{fig:reliso} compares the relative track isolation
990   %for events with a track with $\pt > 10~\GeV$ in addition to a selected
991   %muon for $\Z+4$ jet events and various \ttll\ components. The

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines