ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.3 by vimartin, Fri Jun 29 03:00:35 2012 UTC vs.
Revision 1.22 by vimartin, Sat Oct 20 19:57:24 2012 UTC

# Line 1 | Line 1
1   %\section{Systematics Uncertainties on the Background Prediction}
2   %\label{sec:systematics}
3  
4 < \subsection{Uncertainty on the \ttll\ Acceptance}
4 > In this Section we discuss the systematic uncertainty on the BG
5 > prediction.  This prediction is assembled from the event
6 > counts in the peak region of the transverse mass distribution as
7 > well as Monte Carlo
8 > with a number of correction factors, as described previously.
9 > The
10 > final uncertainty on the prediction is built up from the uncertainties in these
11 > individual
12 > components.
13 > The calculation is done for each signal
14 > region,
15 > for electrons and muons separately.
16 >
17 > The choice to normalize to the peak region of $M_T$ has the
18 > advantage that some uncertainties, e.g., luminosity, cancel.
19 > It does however introduce complications because it couples
20 > some of the uncertainties in non-trivial ways.  For example,
21 > the primary effect of an uncertainty on the rare MC cross-section
22 > is to introduce an uncertainty in the rare MC background estimate
23 > which comes entirely from MC.   But this uncertainty also affects,
24 > for example,
25 > the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 > $t\bar{t}$ normalization to the peak region (because some of the
27 > events in the peak region are from rare processes).  These effects
28 > are carefully accounted for. The contribution to the overall
29 > uncertainty from each background source is tabulated in
30 > Section~\ref{sec:bgunc-bottomline}.
31 > Here we discuss the uncertainties one-by-one and comment
32 > on their impact on the overall result, at least to first order.
33 > Second order effects, such as the one described, are also included.
34 >
35 > \subsection{Statistical uncertainties on the event counts in the $M_T$
36 > peak regions}
37 > These vary between 2\% and 20\%, depending on the signal region
38 > (different
39 > signal regions have different \met\ requirements, thus they also have
40 > different $M_T$ regions used as control).
41 > Since
42 > the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
43 > fractional uncertainty is pretty much carried through all the way to
44 > the end.  There is also an uncertainty from the finite MC event counts
45 > in the $M_T$ peak regions.  This is also included, but it is smaller.
46 >
47 > Normalizing to the $M_T$ peak has the distinct advantages that
48 > uncertainties on luminosity, cross-sections, trigger efficiency,
49 > lepton ID, cancel out.
50 > For the low statistics regions with high \met\ requirements, the
51 > price to pay in terms of event count is that statistical uncertainties start
52 > to become significant.  In the future we may consider a different
53 > normalization startegy in the low statistics regions.
54 >
55 > \subsection{Uncertainty from the choice of $M_T$ peak region}
56 >
57 > This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
58 > If the $M_T$ peak region is not well modelled, this would introduce an
59 > uncertainty.
60 >
61 > We have tested this possibility by recalculating the post-veto scale factors for a different
62 > choice
63 > of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 > $50 < M_T < 80$ GeV).  This is shown in Table~\ref{tab:mtpeaksf2}.  
65 > The two results for the scale factors are very compatible.
66 > We do not take any systematic uncertainty for this possible effect.
67 >
68 > \begin{table}[!h]
69 > \begin{center}
70 > {\footnotesize
71 > \begin{tabular}{l||c|c|c|c|c|c|c}
72 > \hline
73 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 > \hline
75 > \hline
76 > \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 > \hline
78 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 > \hline
81 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 > \hline
83 > \hline
84 > e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 > e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 > \hline
87 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 > \hline
89 > \hline
90 > \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 > \hline
92 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 > \hline
95 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 > \hline
97 > \hline
98 > e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 > e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 > \hline
101 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 > \hline
103 > \end{tabular}}
104 > \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 >  \ttdl\ sample, while the post-veto SFs are applied to the single
106 >  lepton samples. The veto SF is shown for comparison across channels.
107 >  The raw MC is used for backgrounds from rare processes.
108 >  The uncertainties are statistical only.
109 > \label{tab:mtpeaksf2}}
110 > \end{center}
111 > \end{table}
112 >
113 >
114 > \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
115 > These are taken as 50\%, uncorrelated.  
116 > The primary effect is to introduce a 50\%
117 > uncertainty
118 > on the $W +$ jets and rare BG
119 > background predictions, respectively.  However they also
120 > have an effect on the other BGs via the $M_T$ peak normalization
121 > in a way that tends to reduce the uncertainty.  This is easy
122 > to understand: if the $W$ cross-section is increased by 50\%, then
123 > the $W$ background goes up.  But the number of $M_T$ peak events
124 > attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125 > scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126 > BG goes down.  
127 >
128 > \subsection{Tail-to-peak ratios for lepton +
129 >  jets top and W events}
130 > The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131 > The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132 > Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its uncertainty is given in Table~\ref{tab:cr1yields}). This uncertainty affects both $R_{wjet}$ and $R_{top}$.
133 > The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
134 >
135 >
136 > \subsection{Uncertainty on extra jet radiation for dilepton
137 >  background}
138 > As discussed in Section~\ref{sec:jetmultiplicity}, the
139 > jet distribution in
140 > $t\bar{t} \to$
141 > dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
142 > it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
143 > comes from data/MC statistics.  This  
144 > results directly in a 3\% uncertainty on the dilepton background, which is by far
145 > the most important one.
146 >
147 > \subsection{Uncertainty from MC statistics}
148 > This affects mostly the \ttll\ background estimate, which is taken
149 > from
150 > Monte Carlo with appropriate correction factors.  This uncertainty
151 > is negligible in the low \met\ signal regions, and grows to about
152 > 15\% in SRG.
153 >
154 >
155 > \subsection{Uncertainty on the \ttll\ Background}
156  
157   The \ttbar\ background prediction is obtained from MC, with corrections
158   derived from control samples in data. The uncertainty associated with
159 + the \ttbar\ background is derived from the level of closure of the
160 + background prediction in CR4 (Table~\ref{tab:cr4yields}) and
161 + CR5 (Table~\ref{tab:cr5yields}). The results from these control region
162 + checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned
163 + to the \ttdl\ background prediction based on these tests are
164 + 5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G).
165 +
166 + \begin{figure}[hbt]
167 +  \begin{center}
168 +        \includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf}
169 +        \caption{
170 +          \label{fig:ttdlunc}%\protect
171 +          Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after
172 +          applying SFs) to data for CR4 and CR5 for all the signal
173 +          region requirements considered (A-G). The bands indicate the
174 +          systematic uncertainties assigned based on these tests,
175 +          ranging from $5\%$ for SRA to $40\%$ for SRE-G.}
176 +      \end{center}
177 + \end{figure}
178 +
179 +
180 + \subsubsection{Check of the uncertainty on the \ttll\ Acceptance}
181 +
182 + The uncertainty associated with
183   the theoretical modeling of the \ttbar\ production and decay is
184 < estimated by comparing the background predictions obtained using
184 > checked by comparing the background predictions obtained using
185   alternative MC samples. It should be noted that the full analysis is
186   performed with the alternative samples under consideration,
187   including the derivation of the various data-to-MC scale factors.
# Line 14 | Line 189 | The variations considered are
189  
190   \begin{itemize}
191   \item Top mass: The alternative values for the top mass differ
192 <  from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
192 >  from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
193    = 166.5~\GeV$.
194   \item Jet-parton matching scale: This corresponds to variations in the
195    scale at which the Matrix Element partons from Madgraph are matched
# Line 26 | Line 201 | The variations considered are
201    value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
202    \sum_{\mathrm{jets}} \pt^2$.
203   \item Alternative generators: Samples produced with different
204 <  generators include MC@NLO and Powheg (NLO generators) and
30 <  Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
31 <  hadronisation, while POWHEG uses Pythia6.
204 >  generators, Powheg (our default) and Madgraph.
205   \item Modeling of taus: The alternative sample does not include
206 <  Tauola and is otherwise identical to the Powheg sample.
206 >  Tauola and is otherwise identical to the Powheg sample.
207 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
208   \item The PDF uncertainty is estimated following the PDF4LHC
209 <  recommendations[CITE]. The events are reweighted using alternative
209 >  recommendations. The events are reweighted using alternative
210    PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
211 <  alternative eigenvector variations and the ``master equation''. In
212 <  addition, the NNPDF2.1 set with 100 replicas. The central value is
211 >  alternative eigenvector variations and the ``master equation''.
212 >  The NNPDF2.1 set with 100 replicas is also used. The central value is
213    determined from the mean and the uncertainty is derived from the
214    $1\sigma$ range. The overall uncertainty is derived from the envelope of the
215 <  alternative predictions and their uncertainties.
216 < \end{itemize}
217 <
215 >  alternative predictions and their uncertainties.
216 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
217 >  \end{itemize}
218  
219   \begin{figure}[hbt]
220    \begin{center}
221 <        \includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png}
221 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
222 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
223 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
224 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
225 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
226          \caption{
227 <          \label{fig:ttllsyst}%\protect
227 >          \label{fig:ttllsyst}\protect
228            Comparison of the \ttll\ central prediction with those using
229            alternative MC samples. The blue band corresponds to the
230            total statistical error for all data and MC samples. The
231            alternative sample predictions are indicated by the
232            datapoints. The uncertainties on the alternative predictions
233            correspond to the uncorrelated statistical uncertainty from
234 <          the size of the alternative sample only.}
234 >          the size of the alternative sample only.  Note the
235 >          suppressed vertical scales.}
236        \end{center}
237      \end{figure}
238  
239  
240 + \begin{table}[!h]
241 + \begin{center}
242 + {\footnotesize
243 + \begin{tabular}{l||c|c|c|c|c|c|c}
244 + \hline
245 + $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
246 + Match Up & Match Down \\
247 + \hline
248 + \hline
249 + SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
250 + \hline
251 + SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
252 + \hline
253 + % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
254 + % \hline
255 + % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
256 + % \hline
257 + % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
258 + \hline
259 + \end{tabular}}
260 + \caption{ Relative difference in \ttdl\ predictions for alternative MC
261 +  samples in
262 + the higher statistics regions SRA and SRB.  These differences
263 + are based on the central values of the predictions.  For a fuller
264 + picture
265 + of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
266 + \label{tab:fracdiff}}
267 + \end{center}
268 + \end{table}
269 +
270 +
271 + In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
272 + for regions A through E.  We can make the following observations based
273 + on this Figure.
274 +
275 + \begin{itemize}
276 + \item In the tighter signal regions we are running out of
277 +  statistics.    
278 + \item Within the limited statistics, there is no evidence that the
279 +  situation changes as we go from signal region A to signal region E.
280 + Therefore, we assess a systematic based on the relatively high
281 + statistics
282 + test in signal region A, and apply the same systematic uncertainty
283 + to all other regions.
284 + \item In order to fully (as opposed as 1$\sigma$) cover the
285 + alternative MC variations in region A we would have to take a
286 + systematic
287 + uncertainty of $\approx 10\%$.  This would be driven by the
288 + scale up/scale down variations, see Table~\ref{tab:fracdiff}.
289 + \end{itemize}
290 +
291 + \begin{table}[!ht]
292 + \begin{center}
293 + \begin{tabular}{l|c|c}
294 + \hline
295 +            Sample
296 +            &                K3   & K4\\
297 + \hline
298 + \hline
299 + Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
300 + Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
301 + Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
302 + Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
303 + Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
304 + Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
305 + Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
306 + Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
307 + \hline
308 + \end{tabular}
309 + \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
310 +  fraction of events with additional hard jets from radiation in
311 +  \ttll\ events. \label{tab:njetskfactors_met100}}
312 + \end{center}
313 + \end{table}
314 +
315 +
316 + However, we have two pieces of information indicating that the
317 + scale up/scale down variations are inconsistent with the data.
318 + These are described below.
319 +
320 + The first piece of information is that the jet multiplicity in the scale
321 + up/scale down sample is the most inconsistent with the data.  This is shown
322 + in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
323 + $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
324 + different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
325 + distribution
326 + for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
327 + and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
328 + equivalent $N_{jets}$ plots for the default Powheg MC, see
329 + Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
330 +
331 + \begin{figure}[hbt]
332 +  \begin{center}
333 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
334 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
335 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
336 +        \caption{
337 +          \label{fig:dileptonnjets_scaleup}%\protect
338 +          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
339 +          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
340 +      \end{center}
341 + \end{figure}
342 +
343 + \begin{figure}[hbt]
344 +  \begin{center}
345 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
346 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
347 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
348 +        \caption{
349 +          \label{fig:dileptonnjets_scaledw}%\protect
350 +          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
351 +          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
352 +      \end{center}
353 + \end{figure}
354 +
355 +
356 + \clearpage
357 +
358 + The second piece of information is that we have performed closure
359 + tests in CR5 using the alternative MC samples.  These are exactly
360 + the same tests as the one performed in Section~\ref{sec:CR5} on the
361 + Powheg sample.  As we argued previously, this is a very powerful
362 + test of the background calculation.
363 + The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
364 + Concentrating on the relatively high statistics CR5A region, we see
365 + for all \ttbar\ MC samples except scale up/scale down we obtain
366 + closure within 1$\sigma$.  The scale up/scale down tests closes
367 + worse, only within 2$\sigma$.  This again is evidence that the
368 + scale up/scale down variations are in disagreement with the data.
369 +
370 + \input{hugeCR5Table.tex}
371 +
372 + Based on the two observations above, we argue that the MC
373 + scale up/scale down variations are too extreme.  We feel that
374 + a reasonable choice would be to take one-half of the scale up/scale
375 + down variations in our MC.  This factor of 1/2 would then bring
376 + the discrepancy in the closure test of
377 + Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
378 + from about 2$\sigma$ to about 1$\sigma$.
379 +
380 + Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
381 + up/scale
382 + down variations by a factor 2, we can see that a systematic
383 + uncertainty
384 + of 6\% would fully cover all of the variations from different MC
385 + samples in SRA and SRB.
386 + The alternative MC models indicate that a 6\% systematic uncertainty to
387 + cover the range of reasonable variations.
388 + Note that this 6\% is also consistent with the level at which we are
389 + able to test the closure of the method with alternative samples in CR5 for the high statistics
390 + regions (Table~\ref{tab:hugecr5yields}).
391 + The range of reasonable variations obtained with the alternative
392 + samples are consistent with the uncertainties assigned for
393 + the \ttll\ background based on the closure of the background
394 + predictions and data in CR4 and CR5.
395 +
396 +
397 +
398 +
399 +
400 + %\begin{table}[!h]
401 + %\begin{center}
402 + %{\footnotesize
403 + %\begin{tabular}{l||c||c|c|c|c|c|c|c}
404 + %\hline
405 + %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
406 + %Up & Scale Down &
407 + %Match Up & Match Down \\
408 + %\hline
409 + %\hline
410 + %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
411 + %\hline
412 + %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
413 + %\hline
414 + %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
415 + %\hline
416 + %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
417 + %\hline
418 + %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
419 + %\hline
420 + %\end{tabular}}
421 + %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
422 + %\label{tab:ttdlalt}}
423 + %\end{center}
424 + %\end{table}
425 +
426 +
427 +
428 +
429 + %\begin{table}[!h]
430 + %\begin{center}
431 + %{\footnotesize
432 + %\begin{tabular}{l||c|c|c|c|c|c|c}
433 + %\hline
434 + %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
435 + %Match Up & Match Down \\
436 + %\hline
437 + %\hline
438 + %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
439 + %\hline
440 + %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
441 + %\hline
442 + %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
443 + %\hline
444 + %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
445 + %\hline
446 + %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
447 + %\hline
448 + %\end{tabular}}
449 + %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
450 + %\label{tab:nsig}}
451 + %\end{center}
452 + %\end{table}
453 +
454 +
455 + %\begin{table}[!h]
456 + %\begin{center}
457 + %\begin{tabular}{l||c|c|c|c}
458 + %\hline
459 + %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
460 + %& $\Delta$ Match \\
461 + %\hline
462 + %\hline
463 + %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
464 + %\hline
465 + %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
466 + %\hline
467 + %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
468 + %\hline
469 + %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
470 + %\hline
471 + %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
472 + %\hline
473 + %\end{tabular}
474 + %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
475 + %\label{tab:devt}}
476 + %\end{center}
477 + %\end{table}
478 +
479 +
480 +
481 + \clearpage
482  
483   %
484   %
# Line 192 | Line 613 | The variations considered are
613   %\end{tabular}
614   %\end{center}
615   %\end{table}
616 +
617 + \subsection{Uncertainty from the isolated track veto}
618 + This is the uncertainty associated with how well the isolated track
619 + veto performance is modeled by the Monte Carlo.  This uncertainty
620 + only applies to the fraction of dilepton BG events that have
621 + a second e/$\mu$ or a one prong $\tau \to h$, with
622 + $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
623 + Table~\ref{tab:trueisotrk}.
624 + The uncertainty for these events
625 + is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
626 +
627 + \begin{table}[!h]
628 + \begin{center}
629 + {\footnotesize
630 + \begin{tabular}{l||c|c|c|c|c|c|c}
631 + \hline
632 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
633 + \hline
634 + \hline
635 + $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
636 + \hline
637 + \hline
638 + e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
639 + \hline
640 + \end{tabular}}
641 + \caption{ Fraction of \ttdl\ events with a true isolated track.
642 + \label{tab:trueisotrk}}
643 + \end{center}
644 + \end{table}
645 +
646 + \subsubsection{Isolated Track Veto: Tag and Probe Studies}
647 + \label{sec:trkveto}
648 +
649 +
650 + In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
651 + with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
652 + to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
653 + we would need to apply a data-to-MC scale factor in order to correctly
654 + predict the \ttll\ background.
655 +
656 + This study
657 + addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
658 + second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
659 + in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
660 + procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
661 +
662 + Furthermore, we test the data and MC
663 + isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
664 + directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
665 + may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
666 + or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
667 + the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
668 + consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
669 + $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
670 + decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
671 + Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
672 + As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
673 + leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
674 + due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
675 +
676 + The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
677 + All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
678 + We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
679 + this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
680 + not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
681 + fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
682 + \met\ $<$ 30 GeV and 0 b-tagged events.
683 + The specific criteria for tags and probes for electrons and muons are:
684 +
685 + %We study the isolated track veto efficiency in bins of \njets.
686 + %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
687 + %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
688 +
689 +
690 + \begin{itemize}
691 +  \item{Electrons}
692 +
693 +    \begin{itemize}
694 +    \item{Tag criteria}
695 +
696 +      \begin{itemize}
697 +      \item Electron passes full analysis ID/iso selection
698 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
699 +      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
700 +      \end{itemize}
701 +
702 +    \item{Probe criteria}
703 +      \begin{itemize}
704 +      \item Electron passes full analysis ID selection
705 +      \item \pt\ $>$ 30 GeV
706 +      \end{itemize}
707 +      \end{itemize}
708 +  \item{Muons}
709 +    \begin{itemize}
710 +    \item{Tag criteria}
711 +      \begin{itemize}
712 +      \item Muon passes full analysis ID/iso selection
713 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
714 +      \item Matched to 1 of the 2 single muon triggers
715 +        \begin{itemize}
716 +        \item \verb=HLT_IsoMu30_v*=
717 +        \item \verb=HLT_IsoMu30_eta2p1_v*=
718 +        \end{itemize}
719 +      \end{itemize}
720 +    \item{Probe criteria}
721 +      \begin{itemize}
722 +      \item Muon passes full analysis ID selection
723 +      \item \pt\ $>$ 30 GeV
724 +      \end{itemize}
725 +    \end{itemize}
726 + \end{itemize}
727 +
728 + The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
729 + good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
730 + absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
731 + In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
732 + efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
733 + For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
734 + a data vs. MC discrepancy in the isolated track veto efficiency.
735 +
736 +
737 + %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
738 + %This requirement is chosen because most of the tracks rejected by the isolated
739 + %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
740 +
741 + \begin{figure}[hbt]
742 +  \begin{center}
743 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
744 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
745 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
746 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
747 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
748 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
749 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
750 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
751 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
752 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
753 +        \caption{
754 +          \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
755 + for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
756 + }  
757 +      \end{center}
758 + \end{figure}
759 +
760 + \clearpage
761 +
762 + \begin{table}[!ht]
763 + \begin{center}
764 + \begin{tabular}{l|c|c|c|c|c}
765 +
766 + %Electrons:
767 + %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
768 + %Total MC yields        : 2497277
769 + %Total DATA yields      : 2649453
770 + %Muons:
771 + %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
772 + %Total MC yields        : 3749863
773 + %Total DATA yields      : 4210022
774 + %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
775 + %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
776 +
777 + \hline
778 + \hline
779 + e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
780 + \hline
781 +      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
782 +        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
783 +   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
784 +
785 + \hline
786 + \hline
787 + $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
788 + \hline
789 +      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
790 +        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
791 +   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
792 +
793 + \hline
794 + \hline
795 + e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
796 + \hline
797 +      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
798 +        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
799 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
800 +
801 + \hline
802 + \hline
803 + $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
804 + \hline
805 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
806 +        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
807 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
808 +
809 + \hline
810 + \hline
811 + e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
812 + \hline
813 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
814 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
815 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
816 +
817 + \hline
818 + \hline
819 + $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
820 + \hline
821 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
822 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
823 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
824 +
825 + \hline
826 + \hline
827 + e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
828 + \hline
829 +      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
830 +        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
831 +   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
832 +
833 + \hline
834 + \hline
835 + $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
836 + \hline
837 +      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
838 +        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
839 +   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
840 +
841 + \hline
842 + \hline
843 + e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
844 + \hline
845 +      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
846 +        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
847 +   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
848 +
849 + \hline
850 + \hline
851 + $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
852 + \hline
853 +      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
854 +        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
855 +   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
856 +
857 + \hline
858 + \hline
859 +
860 + \end{tabular}
861 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
862 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
863 + jet multiplicity requirements.}
864 + \end{center}
865 + \end{table}
866 +
867 + \clearpage
868 + \subsection{Summary of uncertainties}
869 + \label{sec:bgunc-bottomline}.
870 + \input{uncertainties_table.tex}
871 +
872 + %Figure.~\ref{fig:reliso} compares the relative track isolation
873 + %for events with a track with $\pt > 10~\GeV$ in addition to a selected
874 + %muon for $\Z+4$ jet events and various \ttll\ components. The
875 + %isolation distributions show significant differences, particularly
876 + %between the leptons from a \W\ or \Z\ decay and the tracks arising
877 + %from $\tau$ decays. As can also be seen in the figure, the \pt\
878 + %distribution for the various categories of tracks is different, where
879 + %the decay products from $\tau$s are significantly softer. Since the
880 + %\pt\ enters the denominator of the isolation definition and hence
881 + %alters the isolation variable...
882 +
883 + %\begin{figure}[hbt]
884 + %  \begin{center}
885 + %       \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
886 + %       \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
887 + %       \caption{
888 + %         \label{fig:reliso}%\protect
889 + %          Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
890 + %          Z+Jets and ttbar dilepton have similar isolation distributions
891 + %          ttbar with leptonic and single prong taus tend to be less
892 + %          isolated. The difference in the isolation can be attributed
893 + %          to the different \pt\ distribution of the samples, since
894 + %          $\tau$ decay products tend to be softer than leptons arising
895 + %          from \W\ or \Z\ decays.}  
896 + %      \end{center}
897 + %\end{figure}
898 +
899 + %       \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
900 +
901 +
902 + %BEGIN SECTION TO WRITE OUT
903 + %In detail, the procedure to correct the dilepton background is:
904 +
905 + %\begin{itemize}
906 + %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
907 + %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
908 + %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
909 + %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
910 + %the lepton \pt {\bf TODO: verify this in data and MC.}.
911 + %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
912 + %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
913 + %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
914 + %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
915 + %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
916 + %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
917 + %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
918 + %\end{itemize}
919 + %END SECTION TO WRITE OUT
920 +
921 +
922 + %{\bf fix me: What you have written in the next paragraph does not
923 + %explain how $\epsilon_{fake}$ is measured.
924 + %Why not measure $\epsilon_{fake}$ in the b-veto region?}
925 +
926 + %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
927 + %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
928 + %applying an additional scale factor for the single lepton background
929 + %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
930 + %veto and after subtracting the \ttll\ component, corrected for the
931 + %isolation efficiency derived previously.
932 + %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
933 + %isolated track in single lepton events is independent of \mt\, so the use of
934 + %an overall scale factor is justified to estimate the contribution in
935 + %the \mt\ tail.
936 + %
937 + %\begin{figure}[hbt]
938 + %  \begin{center}
939 + %       \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
940 + %       \caption{
941 + %         \label{fig:vetoeffcomp}%\protect
942 + %          Efficiency for selecting an isolated track comparing
943 + %          single lepton \ttlj\ and dilepton \ttll\ events in MC and
944 + %          data as a function of \mt. The
945 + %          efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
946 + %          \mt\, while the data ranges between the two. This behavior
947 + %          is expected since the low \mt\ region is predominantly \ttlj, while the
948 + %          high \mt\ region contains mostly \ttll\ events.}  
949 + %      \end{center}
950 + %\end{figure}
951 +
952 +
953 +
954 + % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines