ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.1 by benhoob, Sun Jun 24 15:06:07 2012 UTC vs.
Revision 1.23 by linacre, Sat Oct 20 21:21:34 2012 UTC

# Line 1 | Line 1
1 < \section{Systematics Uncertainties in the Background Prediction}
2 < \label{sec:systematics}
1 > %\section{Systematics Uncertainties on the Background Prediction}
2 > %\label{sec:systematics}
3  
4 < The methodology for determining the systematics on the background
5 < predictions has not changed with respect to the nominal analysis.
6 < Because the template method has not changed, the same
7 < systematic uncertainty is assessed on this prediction (32\%).
8 < The 50\% uncertainty on the WZ and ZZ background is also unchanged.
9 < The systematic uncertainty in the OF background prediction based on
10 < e$\mu$ events has changed, due to the different composition of this
11 < sample after vetoing events containing b-tagged jets.
12 <
13 < As in the nominal analysis, we do not require the e$\mu$ events
14 < to satisfy the dilepton mass requirement and apply a scaling factor K,
15 < extracted from MC, to account for the fraction of e$\mu$ events
16 < which satisfy the dilepton mass requirement. This procedure is used
17 < in order to improve the statistical precision of the OF background estimate.
18 <
19 < For the selection used in the nominal analysis,
20 < the e$\mu$ sample is completely dominated by $t\bar{t}$
21 < events, and we observe that K is statistically consistent with constant with
22 < respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
23 < background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
24 < backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
25 < At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
26 < and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
27 < Therefore, the sample composition changes
28 < as the \MET\ requirement is varied, and as a result K depends
29 < on the \MET\ requirement.
30 <
31 < We thus measure K in MC separately for each
32 < \MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
33 < %The systematic uncertainty on K is determined separately for each \MET\
34 < %requirement by comparing the relative difference in K in data vs. MC.
35 < The values of K used are the MC predictions
36 < %and the total systematic uncertainty on the OF prediction
37 < %as shown in
38 < (Table \ref{fig:kvmettable}).
39 < The contribution to the total OF prediction systematic uncertainty
40 < from K is assessed from the ratio of K in data and MC,
41 < shown in Fig.~\ref{fig:kvmet} (right).
42 < The ratio is consistent with unity to roughly 17\%,
43 < so we take this value as the systematic from K.
44 < 17\% added in quadrature with 7\% from
45 < the electron to muon efficieny ratio
46 < (as assessed in the inclusive analysis)
47 < yields a total systematic of $\sim$18\%
48 < which we round up to 20\%.
49 < For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
50 < so we take a systematic based on the statistical uncertainty
51 < of the MC prediction for K.
52 < This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
53 < %Although we cannot check the value of K in data for \MET\ $>$ 150
54 < %because we find no OF events inside the Z mass window for this \MET\
55 < %cut, the overall OF yields with no dilepton mass requirement
56 < %agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
57 <
58 <
59 < %Below Old
60 <
61 < %In reevaluating the systematics on the OF prediction, however,
62 < %we observed a different behavior of K as a function of \MET\
63 < %as was seen in the inclusive analysis.
64 <
65 < %Recall that K is the ratio of the number of \emu\ events
66 < %inside the Z window to the total number of \emu\ events.
67 < %In the inclusive analysis, it is taken from \ttbar\ MC
68 < %and used to scale the inclusive \emu\ yield in data.
69 < %The yield scaled by K is then corrected for
70 < %the $e$ vs $\mu$ efficiency difference to obtain the
71 < %final OF prediction.
72 <
73 < %Based on the plot in figure \ref{fig:kvmet},
74 < %we choose to use a different
75 < %K for each \MET\ cut and assess a systematic uncertainty
76 < %on the OF prediction based on the difference between
77 < %K in data and MC.
78 < %The variation of K as a function of \MET\ is caused
79 < %by a change in sample composition with increasing \MET.
80 < %At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
81 < %not negligible (as it was in the inclusive analysis)
82 < %because of the b veto. (See appendix \ref{app:kinemu}.)
83 < %At higher \MET, \ttbar\ and diboson backgrounds dominate.
4 > In this Section we discuss the systematic uncertainty on the BG
5 > prediction.  This prediction is assembled from the event
6 > counts in the peak region of the transverse mass distribution as
7 > well as Monte Carlo
8 > with a number of correction factors, as described previously.
9 > The
10 > final uncertainty on the prediction is built up from the uncertainties in these
11 > individual
12 > components.
13 > The calculation is done for each signal
14 > region,
15 > for electrons and muons separately.
16 >
17 > The choice to normalize to the peak region of $M_T$ has the
18 > advantage that some uncertainties, e.g., luminosity, cancel.
19 > It does however introduce complications because it couples
20 > some of the uncertainties in non-trivial ways.  For example,
21 > the primary effect of an uncertainty on the rare MC cross-section
22 > is to introduce an uncertainty in the rare MC background estimate
23 > which comes entirely from MC.   But this uncertainty also affects,
24 > for example,
25 > the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 > $t\bar{t}$ normalization to the peak region (because some of the
27 > events in the peak region are from rare processes).  These effects
28 > are carefully accounted for. The contribution to the overall
29 > uncertainty from each background source is tabulated in
30 > Section~\ref{sec:bgunc-bottomline}.
31 > Here we discuss the uncertainties one-by-one and comment
32 > on their impact on the overall result, at least to first order.
33 > Second order effects, such as the one described, are also included.
34 >
35 > \subsection{Statistical uncertainties on the event counts in the $M_T$
36 > peak regions}
37 > These vary between 2\% and 20\%, depending on the signal region
38 > (different
39 > signal regions have different \met\ requirements, thus they also have
40 > different $M_T$ regions used as control).
41 > Since
42 > the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
43 > fractional uncertainty is pretty much carried through all the way to
44 > the end.  There is also an uncertainty from the finite MC event counts
45 > in the $M_T$ peak regions.  This is also included, but it is smaller.
46 >
47 > Normalizing to the $M_T$ peak has the distinct advantages that
48 > uncertainties on luminosity, cross-sections, trigger efficiency,
49 > lepton ID, cancel out.
50 > For the low statistics regions with high \met\ requirements, the
51 > price to pay in terms of event count is that statistical uncertainties start
52 > to become significant.  In the future we may consider a different
53 > normalization startegy in the low statistics regions.
54 >
55 > \subsection{Uncertainty from the choice of $M_T$ peak region}
56 >
57 > This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
58 > If the $M_T$ peak region is not well modelled, this would introduce an
59 > uncertainty.
60 >
61 > We have tested this possibility by recalculating the post-veto scale factors for a different
62 > choice
63 > of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 > $50 < M_T < 80$ GeV).  This is shown in Table~\ref{tab:mtpeaksf2}.  
65 > The two results for the scale factors are very compatible.
66 > We do not take any systematic uncertainty for this possible effect.
67 >
68 > \begin{table}[!h]
69 > \begin{center}
70 > {\footnotesize
71 > \begin{tabular}{l||c|c|c|c|c|c|c}
72 > \hline
73 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 > \hline
75 > \hline
76 > \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 > \hline
78 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 > \hline
81 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 > \hline
83 > \hline
84 > e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 > e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 > \hline
87 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 > \hline
89 > \hline
90 > \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 > \hline
92 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 > \hline
95 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 > \hline
97 > \hline
98 > e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 > e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 > \hline
101 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 > \hline
103 > \end{tabular}}
104 > \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 >  \ttdl\ sample, while the post-veto SFs are applied to the single
106 >  lepton samples. The veto SF is shown for comparison across channels.
107 >  The raw MC is used for backgrounds from rare processes.
108 >  The uncertainties are statistical only.
109 > \label{tab:mtpeaksf2}}
110 > \end{center}
111 > \end{table}
112 >
113 >
114 > \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
115 > These are taken as 50\%, uncorrelated.  
116 > The primary effect is to introduce a 50\%
117 > uncertainty
118 > on the $W +$ jets and rare BG
119 > background predictions, respectively.  However they also
120 > have an effect on the other BGs via the $M_T$ peak normalization
121 > in a way that tends to reduce the uncertainty.  This is easy
122 > to understand: if the $W$ cross-section is increased by 50\%, then
123 > the $W$ background goes up.  But the number of $M_T$ peak events
124 > attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125 > scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126 > BG goes down.  
127 >
128 > \subsection{Tail-to-peak ratios for lepton +
129 >  jets top and W events}
130 > The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131 > The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132 > Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its uncertainty is given in Table~\ref{tab:cr1yields}). This uncertainty affects both $R_{wjet}$ and $R_{top}$.
133 > The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
134 >
135 >
136 > \subsection{Uncertainty on extra jet radiation for dilepton
137 >  background}
138 > As discussed in Section~\ref{sec:jetmultiplicity}, the
139 > jet distribution in
140 > $t\bar{t} \to$
141 > dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
142 > it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
143 > comes from data/MC statistics.  This  
144 > results directly in a 3\% uncertainty on the dilepton background, which is by far
145 > the most important one.
146 >
147 > \subsection{Uncertainty from MC statistics}
148 > This affects mostly the \ttll\ background estimate, which is taken
149 > from
150 > Monte Carlo with appropriate correction factors.  This uncertainty
151 > is negligible in the low \met\ signal regions, and grows to about
152 > 15\% in SRG.
153 >
154 >
155 > \subsection{Uncertainty on the \ttll\ Background}
156 > \label{sec:ttdilbkgunc}
157 > The \ttbar\ background prediction is obtained from MC, with corrections
158 > derived from control samples in data. The uncertainty associated with
159 > the \ttbar\ background is derived from the level of closure of the
160 > background prediction in CR4 (Table~\ref{tab:cr4yields}) and
161 > CR5 (Table~\ref{tab:cr5yields}). The results from these control region
162 > checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned
163 > to the \ttdl\ background prediction based on these tests are
164 > 5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G).
165 >
166 > \begin{figure}[hbt]
167 >  \begin{center}
168 >        \includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf}
169 >        \caption{
170 >          \label{fig:ttdlunc}%\protect
171 >          Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after
172 >          applying SFs) to data for CR4 and CR5 for all the signal
173 >          region requirements considered (A-G). The bands indicate the
174 >          systematic uncertainties assigned based on these tests,
175 >          ranging from $5\%$ for SRA to $40\%$ for SRE-G.}
176 >      \end{center}
177 > \end{figure}
178  
179  
180 + \subsubsection{Check of the uncertainty on the \ttll\ Background}
181  
182 + We check that the systematic uncertainty assigned to the \ttll\ background prediction
183 + covers the uncertainty associated with
184 + the theoretical modeling of the \ttbar\ production and decay
185 + by comparing the background predictions obtained using
186 + alternative MC samples. It should be noted that the full analysis is
187 + performed with the alternative samples under consideration,
188 + including the derivation of the various data-to-MC scale factors.
189 + The variations considered are
190 +
191 + \begin{itemize}
192 + \item Top mass: The alternative values for the top mass differ
193 +  from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
194 +  = 166.5~\GeV$.
195 + \item Jet-parton matching scale: This corresponds to variations in the
196 +  scale at which the Matrix Element partons from Madgraph are matched
197 +  to Parton Shower partons from Pythia. The nominal value is
198 +  $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
199 +  $x_q>40~\GeV$.
200 + \item Renormalization and factorization scale: The alternative samples
201 +  correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
202 +  value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
203 +  \sum_{\mathrm{jets}} \pt^2$.
204 + \item Alternative generators: Samples produced with different
205 +  generators, Powheg (our default) and Madgraph.
206 + \item Modeling of taus: The alternative sample does not include
207 +  Tauola and is otherwise identical to the Powheg sample.
208 +  This effect was studied earlier using 7~TeV samples and found to be negligible.
209 + \item The PDF uncertainty is estimated following the PDF4LHC
210 +  recommendations. The events are reweighted using alternative
211 +  PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
212 +  alternative eigenvector variations and the ``master equation''.
213 +  The NNPDF2.1 set with 100 replicas is also used. The central value is
214 +  determined from the mean and the uncertainty is derived from the
215 +  $1\sigma$ range. The overall uncertainty is derived from the envelope of the
216 +  alternative predictions and their uncertainties.
217 +  This effect was studied earlier using 7~TeV samples and found to be negligible.
218 +  \end{itemize}
219  
220   \begin{figure}[hbt]
221    \begin{center}
222 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
223 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
222 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
223 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
224 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
225 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
226 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
227          \caption{
228 <          \label{fig:kvmet}\protect
229 <          The left plot shows
230 <          K as a function of \MET\ in MC (red) and data (black).
231 <          The bin low edge corresponds to the \MET\ cut, and the
232 <          bins are inclusive.
233 <          The MC used is a sum of all SM MC used in the yield table of
234 <          section \ref{sec:yields}.
235 <          The right plot is the ratio of K in data to MC.
236 <          The ratio is fit to a line whose slope is consistent with zero
237 <          (the fit parameters are
238 <          0.9 $\pm$  0.4 for the intercept and
239 <      0.001 $\pm$ 0.005 for the slope).
240 <        }
241 <  \end{center}
228 >          \label{fig:ttllsyst}\protect
229 >          Comparison of the \ttll\ central prediction with those using
230 >          alternative MC samples. The blue band corresponds to the
231 >          total statistical error for all data and MC samples. The
232 >          alternative sample predictions are indicated by the
233 >          datapoints. The uncertainties on the alternative predictions
234 >          correspond to the uncorrelated statistical uncertainty from
235 >          the size of the alternative sample only.  Note the
236 >          suppressed vertical scales.}
237 >      \end{center}
238 >    \end{figure}
239 >
240 >
241 > \begin{table}[!h]
242 > \begin{center}
243 > {\footnotesize
244 > \begin{tabular}{l||c|c|c|c|c|c|c}
245 > \hline
246 > $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
247 > Match Up & Match Down \\
248 > \hline
249 > \hline
250 > SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
251 > \hline
252 > SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
253 > \hline
254 > % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
255 > % \hline
256 > % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
257 > % \hline
258 > % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
259 > \hline
260 > \end{tabular}}
261 > \caption{ Relative difference in \ttdl\ predictions for alternative MC
262 >  samples in
263 > the higher statistics regions SRA and SRB.  These differences
264 > are based on the central values of the predictions.  For a fuller
265 > picture
266 > of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
267 > \label{tab:fracdiff}}
268 > \end{center}
269 > \end{table}
270 >
271 >
272 > In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
273 > for regions A through E.  We can make the following observations based
274 > on this Figure.
275 >
276 > \begin{itemize}
277 > \item In the tighter signal regions we are running out of
278 >  statistics.    
279 > \item Within the limited statistics, there is no evidence that the
280 >  situation changes as we go from signal region A to signal region E.
281 > %Therefore, we assess a systematic based on the relatively high
282 > %statistics
283 > %test in signal region A, and apply the same systematic uncertainty
284 > %to all other regions.
285 > \item In signal regions B and above, the uncertainties assigned in Section~\ref{sec:ttdilbkgunc}
286 > fully cover the alternative MC variations.
287 > \item In order to fully (as opposed as 1$\sigma$) cover the
288 > alternative MC variations in region A we would have to take a
289 > systematic
290 > uncertainty of $\approx 10\%$ instead of $5\%$.  This would be driven by the
291 > scale up/scale down variations, see Table~\ref{tab:fracdiff}.
292 > \end{itemize}
293 >
294 > \begin{table}[!ht]
295 > \begin{center}
296 > \begin{tabular}{l|c|c}
297 > \hline
298 >            Sample
299 >            &                K3   & K4\\
300 > \hline
301 > \hline
302 > Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
303 > Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
304 > Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
305 > Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
306 > Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
307 > Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
308 > Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
309 > Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
310 > \hline
311 > \end{tabular}
312 > \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
313 >  fraction of events with additional hard jets from radiation in
314 >  \ttll\ events. \label{tab:njetskfactors_met100}}
315 > \end{center}
316 > \end{table}
317 >
318 >
319 > However, we have two pieces of information indicating that the
320 > scale up/scale down variations are inconsistent with the data.
321 > These are described below.
322 >
323 > The first piece of information is that the jet multiplicity in the scale
324 > up/scale down sample is the most inconsistent with the data.  This is shown
325 > in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
326 > $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
327 > different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
328 > distribution
329 > for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
330 > and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
331 > equivalent $N_{jets}$ plots for the default Powheg MC, see
332 > Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
333 >
334 > \begin{figure}[hbt]
335 >  \begin{center}
336 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
337 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
338 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
339 >        \caption{
340 >          \label{fig:dileptonnjets_scaleup}%\protect
341 >          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
342 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
343 >      \end{center}
344   \end{figure}
345  
346 + \begin{figure}[hbt]
347 +  \begin{center}
348 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
349 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
350 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
351 +        \caption{
352 +          \label{fig:dileptonnjets_scaledw}%\protect
353 +          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
354 +          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
355 +      \end{center}
356 + \end{figure}
357  
358  
359 < \begin{table}[htb]
359 > \clearpage
360 >
361 > The second piece of information is that we have performed closure
362 > tests in CR5 using the alternative MC samples.  These are exactly
363 > the same tests as the one performed in Section~\ref{sec:CR5} on the
364 > Powheg sample.  As we argued previously, this is a very powerful
365 > test of the background calculation.
366 > The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
367 > Concentrating on the relatively high statistics CR5A region, we see
368 > for all \ttbar\ MC samples except scale up/scale down we obtain
369 > closure within 1$\sigma$.  The scale up/scale down tests closes
370 > worse, only within 2$\sigma$.  This again is evidence that the
371 > scale up/scale down variations are in disagreement with the data.
372 >
373 > \input{hugeCR5Table.tex}
374 >
375 > Based on the two observations above, we argue that the MC
376 > scale up/scale down variations are too extreme.  We feel that
377 > a reasonable choice would be to take one-half of the scale up/scale
378 > down variations in our MC.  This factor of 1/2 would then bring
379 > the discrepancy in the closure test of
380 > Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
381 > from about 2$\sigma$ to about 1$\sigma$.
382 >
383 > Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
384 > up/scale
385 > down variations by a factor 2, we can see that a systematic
386 > uncertainty
387 > of 5\% covers the range of reasonable variations from different MC
388 > models in SRA and SRB.
389 > %The alternative MC models indicate that a 6\% systematic uncertainty
390 > %covers the range of reasonable variations.
391 > Note that this 5\% is also consistent with the level at which we are
392 > able to test the closure of the method with alternative samples in CR5 for the high statistics
393 > regions (Table~\ref{tab:hugecr5yields}).
394 > The range of reasonable variations obtained with the alternative
395 > samples are consistent with the uncertainties assigned for
396 > the \ttll\ background based on the closure of the background
397 > predictions and data in CR4 and CR5.
398 >
399 >
400 >
401 >
402 >
403 > %\begin{table}[!h]
404 > %\begin{center}
405 > %{\footnotesize
406 > %\begin{tabular}{l||c||c|c|c|c|c|c|c}
407 > %\hline
408 > %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
409 > %Up & Scale Down &
410 > %Match Up & Match Down \\
411 > %\hline
412 > %\hline
413 > %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
414 > %\hline
415 > %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
416 > %\hline
417 > %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
418 > %\hline
419 > %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
420 > %\hline
421 > %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
422 > %\hline
423 > %\end{tabular}}
424 > %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
425 > %\label{tab:ttdlalt}}
426 > %\end{center}
427 > %\end{table}
428 >
429 >
430 >
431 >
432 > %\begin{table}[!h]
433 > %\begin{center}
434 > %{\footnotesize
435 > %\begin{tabular}{l||c|c|c|c|c|c|c}
436 > %\hline
437 > %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
438 > %Match Up & Match Down \\
439 > %\hline
440 > %\hline
441 > %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
442 > %\hline
443 > %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
444 > %\hline
445 > %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
446 > %\hline
447 > %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
448 > %\hline
449 > %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
450 > %\hline
451 > %\end{tabular}}
452 > %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
453 > %\label{tab:nsig}}
454 > %\end{center}
455 > %\end{table}
456 >
457 >
458 > %\begin{table}[!h]
459 > %\begin{center}
460 > %\begin{tabular}{l||c|c|c|c}
461 > %\hline
462 > %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
463 > %& $\Delta$ Match \\
464 > %\hline
465 > %\hline
466 > %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
467 > %\hline
468 > %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
469 > %\hline
470 > %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
471 > %\hline
472 > %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
473 > %\hline
474 > %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
475 > %\hline
476 > %\end{tabular}
477 > %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
478 > %\label{tab:devt}}
479 > %\end{center}
480 > %\end{table}
481 >
482 >
483 >
484 > \clearpage
485 >
486 > %
487 > %
488 > %The methodology for determining the systematics on the background
489 > %predictions has not changed with respect to the nominal analysis.
490 > %Because the template method has not changed, the same
491 > %systematic uncertainty is assessed on this prediction (32\%).
492 > %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
493 > %The systematic uncertainty in the OF background prediction based on
494 > %e$\mu$ events has changed, due to the different composition of this
495 > %sample after vetoing events containing b-tagged jets.
496 > %
497 > %As in the nominal analysis, we do not require the e$\mu$ events
498 > %to satisfy the dilepton mass requirement and apply a scaling factor K,
499 > %extracted from MC, to account for the fraction of e$\mu$ events
500 > %which satisfy the dilepton mass requirement. This procedure is used
501 > %in order to improve the statistical precision of the OF background estimate.
502 > %
503 > %For the selection used in the nominal analysis,
504 > %the e$\mu$ sample is completely dominated by $t\bar{t}$
505 > %events, and we observe that K is statistically consistent with constant with
506 > %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
507 > %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
508 > %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
509 > %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
510 > %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
511 > %Therefore, the sample composition changes
512 > %as the \MET\ requirement is varied, and as a result K depends
513 > %on the \MET\ requirement.
514 > %
515 > %We thus measure K in MC separately for each
516 > %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
517 > %%The systematic uncertainty on K is determined separately for each \MET\
518 > %%requirement by comparing the relative difference in K in data vs. MC.
519 > %The values of K used are the MC predictions
520 > %%and the total systematic uncertainty on the OF prediction
521 > %%as shown in
522 > %(Table \ref{fig:kvmettable}).
523 > %The contribution to the total OF prediction systematic uncertainty
524 > %from K is assessed from the ratio of K in data and MC,
525 > %shown in Fig.~\ref{fig:kvmet} (right).
526 > %The ratio is consistent with unity to roughly 17\%,
527 > %so we take this value as the systematic from K.
528 > %17\% added in quadrature with 7\% from
529 > %the electron to muon efficieny ratio
530 > %(as assessed in the inclusive analysis)
531 > %yields a total systematic of $\sim$18\%
532 > %which we round up to 20\%.
533 > %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
534 > %so we take a systematic based on the statistical uncertainty
535 > %of the MC prediction for K.
536 > %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
537 > %%Although we cannot check the value of K in data for \MET\ $>$ 150
538 > %%because we find no OF events inside the Z mass window for this \MET\
539 > %%cut, the overall OF yields with no dilepton mass requirement
540 > %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
541 > %
542 > %
543 > %%Below Old
544 > %
545 > %%In reevaluating the systematics on the OF prediction, however,
546 > %%we observed a different behavior of K as a function of \MET\
547 > %%as was seen in the inclusive analysis.
548 > %
549 > %%Recall that K is the ratio of the number of \emu\ events
550 > %%inside the Z window to the total number of \emu\ events.
551 > %%In the inclusive analysis, it is taken from \ttbar\ MC
552 > %%and used to scale the inclusive \emu\ yield in data.
553 > %%The yield scaled by K is then corrected for
554 > %%the $e$ vs $\mu$ efficiency difference to obtain the
555 > %%final OF prediction.
556 > %
557 > %%Based on the plot in figure \ref{fig:kvmet},
558 > %%we choose to use a different
559 > %%K for each \MET\ cut and assess a systematic uncertainty
560 > %%on the OF prediction based on the difference between
561 > %%K in data and MC.
562 > %%The variation of K as a function of \MET\ is caused
563 > %%by a change in sample composition with increasing \MET.
564 > %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
565 > %%not negligible (as it was in the inclusive analysis)
566 > %%because of the b veto. (See appendix \ref{app:kinemu}.)
567 > %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
568 > %
569 > %
570 > %
571 > %
572 > %\begin{figure}[hbt]
573 > %  \begin{center}
574 > %       \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
575 > %       \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
576 > %       \caption{
577 > %         \label{fig:kvmet}\protect
578 > %         The left plot shows
579 > %         K as a function of \MET\ in MC (red) and data (black).
580 > %         The bin low edge corresponds to the \MET\ cut, and the
581 > %         bins are inclusive.
582 > %         The MC used is a sum of all SM MC used in the yield table of
583 > %         section \ref{sec:yields}.
584 > %         The right plot is the ratio of K in data to MC.
585 > %         The ratio is fit to a line whose slope is consistent with zero
586 > %         (the fit parameters are
587 > %         0.9 $\pm$  0.4 for the intercept and
588 > %      0.001 $\pm$ 0.005 for the slope).
589 > %       }
590 > %  \end{center}
591 > %\end{figure}
592 > %
593 > %
594 > %
595 > %\begin{table}[htb]
596 > %\begin{center}
597 > %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
598 > %The uncertainties shown are the total relative systematic used for the OF prediction,
599 > %which is the systematic uncertainty from K added in quadrature with
600 > %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
601 > %inclusive analysis.
602 > %}
603 > %\begin{tabular}{lcc}
604 > %\hline
605 > %\MET\ Cut    &    K        &  Relative Systematic \\
606 > %\hline
607 > %%the met zero row is used only for normalization of the money plot.
608 > %%0    &  0.1   &        \\  
609 > %30   &  0.12  &  20\%  \\  
610 > %60   &  0.13  &  20\%  \\  
611 > %80   &  0.12  &  20\%  \\  
612 > %100  &  0.12  &  20\%  \\  
613 > %150  &  0.09  &  25\%  \\  
614 > %200  &  0.06  &  60\%  \\  
615 > %\hline
616 > %\end{tabular}
617 > %\end{center}
618 > %\end{table}
619 >
620 > \subsection{Uncertainty from the isolated track veto}
621 > This is the uncertainty associated with how well the isolated track
622 > veto performance is modeled by the Monte Carlo.  This uncertainty
623 > only applies to the fraction of dilepton BG events that have
624 > a second e/$\mu$ or a one prong $\tau \to h$, with
625 > $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
626 > Table~\ref{tab:trueisotrk}.
627 > The uncertainty for these events
628 > is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
629 >
630 > \begin{table}[!h]
631   \begin{center}
632 < \caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
633 < The uncertainties shown are the total relative systematic used for the OF prediction,
634 < which is the systematic uncertainty from K added in quadrature with
635 < a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
636 < inclusive analysis.
637 < }
638 < \begin{tabular}{lcc}
639 < \hline
640 < \MET\ Cut    &    K        &  Relative Systematic \\
641 < \hline
123 < %the met zero row is used only for normalization of the money plot.
124 < %0    &  0.1   &        \\  
125 < 30   &  0.12  &  20\%  \\  
126 < 60   &  0.13  &  20\%  \\  
127 < 80   &  0.12  &  20\%  \\  
128 < 100  &  0.12  &  20\%  \\  
129 < 150  &  0.09  &  25\%  \\  
130 < 200  &  0.06  &  60\%  \\  
632 > {\footnotesize
633 > \begin{tabular}{l||c|c|c|c|c|c|c}
634 > \hline
635 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
636 > \hline
637 > \hline
638 > $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
639 > \hline
640 > \hline
641 > e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
642   \hline
643 + \end{tabular}}
644 + \caption{ Fraction of \ttdl\ events with a true isolated track.
645 + \label{tab:trueisotrk}}
646 + \end{center}
647 + \end{table}
648 +
649 + \subsubsection{Isolated Track Veto: Tag and Probe Studies}
650 + \label{sec:trkveto}
651 +
652 +
653 + In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
654 + with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
655 + to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
656 + we would need to apply a data-to-MC scale factor in order to correctly
657 + predict the \ttll\ background.
658 +
659 + This study
660 + addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
661 + second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
662 + in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
663 + procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
664 +
665 + Furthermore, we test the data and MC
666 + isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
667 + directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
668 + may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
669 + or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
670 + the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
671 + consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
672 + $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
673 + decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
674 + Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
675 + As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
676 + leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
677 + due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
678 +
679 + The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
680 + All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
681 + We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
682 + this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
683 + not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
684 + fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
685 + \met\ $<$ 30 GeV and 0 b-tagged events.
686 + The specific criteria for tags and probes for electrons and muons are:
687 +
688 + %We study the isolated track veto efficiency in bins of \njets.
689 + %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
690 + %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
691 +
692 +
693 + \begin{itemize}
694 +  \item{Electrons}
695 +
696 +    \begin{itemize}
697 +    \item{Tag criteria}
698 +
699 +      \begin{itemize}
700 +      \item Electron passes full analysis ID/iso selection
701 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
702 +      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
703 +      \end{itemize}
704 +
705 +    \item{Probe criteria}
706 +      \begin{itemize}
707 +      \item Electron passes full analysis ID selection
708 +      \item \pt\ $>$ 30 GeV
709 +      \end{itemize}
710 +      \end{itemize}
711 +  \item{Muons}
712 +    \begin{itemize}
713 +    \item{Tag criteria}
714 +      \begin{itemize}
715 +      \item Muon passes full analysis ID/iso selection
716 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
717 +      \item Matched to 1 of the 2 single muon triggers
718 +        \begin{itemize}
719 +        \item \verb=HLT_IsoMu30_v*=
720 +        \item \verb=HLT_IsoMu30_eta2p1_v*=
721 +        \end{itemize}
722 +      \end{itemize}
723 +    \item{Probe criteria}
724 +      \begin{itemize}
725 +      \item Muon passes full analysis ID selection
726 +      \item \pt\ $>$ 30 GeV
727 +      \end{itemize}
728 +    \end{itemize}
729 + \end{itemize}
730 +
731 + The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
732 + good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
733 + absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
734 + In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
735 + efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
736 + For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
737 + a data vs. MC discrepancy in the isolated track veto efficiency.
738 +
739 +
740 + %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
741 + %This requirement is chosen because most of the tracks rejected by the isolated
742 + %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
743 +
744 + \begin{figure}[hbt]
745 +  \begin{center}
746 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
747 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
748 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
749 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
750 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
751 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
752 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
753 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
754 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
755 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
756 +        \caption{
757 +          \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
758 + for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
759 + }  
760 +      \end{center}
761 + \end{figure}
762 +
763 + \clearpage
764 +
765 + \begin{table}[!ht]
766 + \begin{center}
767 + \begin{tabular}{l|c|c|c|c|c}
768 +
769 + %Electrons:
770 + %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
771 + %Total MC yields        : 2497277
772 + %Total DATA yields      : 2649453
773 + %Muons:
774 + %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
775 + %Total MC yields        : 3749863
776 + %Total DATA yields      : 4210022
777 + %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
778 + %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
779 +
780 + \hline
781 + \hline
782 + e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
783 + \hline
784 +      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
785 +        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
786 +   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
787 +
788 + \hline
789 + \hline
790 + $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
791 + \hline
792 +      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
793 +        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
794 +   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
795 +
796 + \hline
797 + \hline
798 + e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
799 + \hline
800 +      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
801 +        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
802 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
803 +
804 + \hline
805 + \hline
806 + $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
807 + \hline
808 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
809 +        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
810 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
811 +
812 + \hline
813 + \hline
814 + e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
815 + \hline
816 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
817 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
818 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
819 +
820 + \hline
821 + \hline
822 + $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
823 + \hline
824 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
825 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
826 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
827 +
828 + \hline
829 + \hline
830 + e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
831 + \hline
832 +      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
833 +        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
834 +   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
835 +
836 + \hline
837 + \hline
838 + $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
839 + \hline
840 +      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
841 +        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
842 +   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
843 +
844 + \hline
845 + \hline
846 + e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
847 + \hline
848 +      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
849 +        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
850 +   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
851 +
852 + \hline
853 + \hline
854 + $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
855 + \hline
856 +      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
857 +        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
858 +   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
859 +
860 + \hline
861 + \hline
862 +
863   \end{tabular}
864 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
865 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
866 + jet multiplicity requirements.}
867   \end{center}
868   \end{table}
869 +
870 + \clearpage
871 + \subsection{Summary of uncertainties}
872 + \label{sec:bgunc-bottomline}.
873 + \input{uncertainties_table.tex}
874 +
875 + %Figure.~\ref{fig:reliso} compares the relative track isolation
876 + %for events with a track with $\pt > 10~\GeV$ in addition to a selected
877 + %muon for $\Z+4$ jet events and various \ttll\ components. The
878 + %isolation distributions show significant differences, particularly
879 + %between the leptons from a \W\ or \Z\ decay and the tracks arising
880 + %from $\tau$ decays. As can also be seen in the figure, the \pt\
881 + %distribution for the various categories of tracks is different, where
882 + %the decay products from $\tau$s are significantly softer. Since the
883 + %\pt\ enters the denominator of the isolation definition and hence
884 + %alters the isolation variable...
885 +
886 + %\begin{figure}[hbt]
887 + %  \begin{center}
888 + %       \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
889 + %       \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
890 + %       \caption{
891 + %         \label{fig:reliso}%\protect
892 + %          Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
893 + %          Z+Jets and ttbar dilepton have similar isolation distributions
894 + %          ttbar with leptonic and single prong taus tend to be less
895 + %          isolated. The difference in the isolation can be attributed
896 + %          to the different \pt\ distribution of the samples, since
897 + %          $\tau$ decay products tend to be softer than leptons arising
898 + %          from \W\ or \Z\ decays.}  
899 + %      \end{center}
900 + %\end{figure}
901 +
902 + %       \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
903 +
904 +
905 + %BEGIN SECTION TO WRITE OUT
906 + %In detail, the procedure to correct the dilepton background is:
907 +
908 + %\begin{itemize}
909 + %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
910 + %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
911 + %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
912 + %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
913 + %the lepton \pt {\bf TODO: verify this in data and MC.}.
914 + %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
915 + %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
916 + %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
917 + %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
918 + %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
919 + %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
920 + %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
921 + %\end{itemize}
922 + %END SECTION TO WRITE OUT
923 +
924 +
925 + %{\bf fix me: What you have written in the next paragraph does not
926 + %explain how $\epsilon_{fake}$ is measured.
927 + %Why not measure $\epsilon_{fake}$ in the b-veto region?}
928 +
929 + %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
930 + %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
931 + %applying an additional scale factor for the single lepton background
932 + %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
933 + %veto and after subtracting the \ttll\ component, corrected for the
934 + %isolation efficiency derived previously.
935 + %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
936 + %isolated track in single lepton events is independent of \mt\, so the use of
937 + %an overall scale factor is justified to estimate the contribution in
938 + %the \mt\ tail.
939 + %
940 + %\begin{figure}[hbt]
941 + %  \begin{center}
942 + %       \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
943 + %       \caption{
944 + %         \label{fig:vetoeffcomp}%\protect
945 + %          Efficiency for selecting an isolated track comparing
946 + %          single lepton \ttlj\ and dilepton \ttll\ events in MC and
947 + %          data as a function of \mt. The
948 + %          efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
949 + %          \mt\, while the data ranges between the two. This behavior
950 + %          is expected since the low \mt\ region is predominantly \ttlj, while the
951 + %          high \mt\ region contains mostly \ttll\ events.}  
952 + %      \end{center}
953 + %\end{figure}
954 +
955 +
956 +
957 + % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines