ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.3 by vimartin, Fri Jun 29 03:00:35 2012 UTC vs.
Revision 1.14 by vimartin, Wed Oct 10 04:03:33 2012 UTC

# Line 1 | Line 1
1   %\section{Systematics Uncertainties on the Background Prediction}
2   %\label{sec:systematics}
3  
4 + [DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET
5 + FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS
6 + AND
7 + WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL
8 + UNCERTAINTIES
9 + CORRECTLY THROUGH.  WE WILL DO IT ONCE WE HAVE SETTLED ON THE
10 + INDIVIDUAL PIECES WHICH ARE STILL IN FLUX]
11 +
12 + In this Section we discuss the systematic uncertainty on the BG
13 + prediction.  This prediction is assembled from the event
14 + counts in the peak region of the transverse mass distribution as
15 + well as Monte Carlo
16 + with a number of correction factors, as described previously.
17 + The
18 + final uncertainty on the prediction is built up from the uncertainties in these
19 + individual
20 + components.
21 + The calculation is done for each signal
22 + region,
23 + for electrons and muons separately.
24 +
25 + The choice to normalizing to the peak region of $M_T$ has the
26 + advantage that some uncertainties, e.g., luminosity, cancel.
27 + It does however introduce complications because it couples
28 + some of the uncertainties in non-trivial ways.  For example,
29 + the primary effect of an uncertainty on the rare MC cross-section
30 + is to introduce an uncertainty in the rare MC background estimate
31 + which comes entirely from MC.   But this uncertainty also affects,
32 + for example,
33 + the $t\bar{t} \to$ dilepton BG estimate because it changes the
34 + $t\bar{t}$ normalization to the peak region (because some of the
35 + events in the peak region are from rare processes).  These effects
36 + are carefully accounted for.  The contribution to the overall
37 + uncertainty from each BG source is tabulated in
38 + Section~\ref{sec:bgunc-bottomline}.
39 + First, however, we discuss the uncertainties one-by-one and we comment
40 + on their impact on the overall result, at least to first order.
41 + Second order effects, such as the one described, are also included.
42 +
43 + \subsection{Statistical uncertainties on the event counts in the $M_T$
44 + peak regions}
45 + These vary between XX and XX \%, depending on the signal region
46 + (different
47 + signal regions have different \met\ requirements, thus they also have
48 + different $M_T$ regions used as control.
49 + Since
50 + the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
51 + fractional uncertainty is pretty much carried through all the way to
52 + the end.  There is also an uncertainty from the finite MC event counts
53 + in the $M_T$ peak regions.  This is also included, but it is smaller.
54 +
55 + \subsection{Uncertainty from the choice of $M_T$ peak region}
56 + IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT
57 + LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY.  WE NEED TO LOOK
58 + INTO THIS AGAIN
59 +
60 + \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
61 + These are taken as 50\%, uncorrelated.  
62 + The primary effect is to introduce a 50\%
63 + uncertainty
64 + on the $W +$ jets and rare BG
65 + background predictions, respectively.  However they also
66 + have an effect on the other BGs via the $M_T$ peak normalization
67 + in a way that tends to reduce the uncertainty.  This is easy
68 + to understand: if the $W$ cross-section is increased by 50\%, then
69 + the $W$ background goes up.  But the number of $M_T$ peak events
70 + attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
71 + scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
72 + BG goes down.  
73 +
74 + \subsection{Scale factors for the tail-to-peak ratios for lepton +
75 +  jets top and W events}
76 + These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
77 + They are studied in CR1 and CR2.  The studies are described
78 + in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
79 + we also give the uncertainty on the scale factors.
80 +
81 + \subsection{Uncertainty on extra jet radiation for dilepton
82 +  background}
83 + As discussed in Section~\ref{sec:jetmultiplicity}, the
84 + jet distribution in
85 + $t\bar{t} \to$
86 + dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
87 + it agree with the data.  The XX\% uncertainties on $K_3$ and $K_4$
88 + comes from data/MC statistics.  This  
89 + result directly in a XX\% uncertainty on the dilepton BG, which is by far
90 + the most important one.
91 +
92 +
93   \subsection{Uncertainty on the \ttll\ Acceptance}
94  
95   The \ttbar\ background prediction is obtained from MC, with corrections
# Line 30 | Line 119 | The variations considered are
119    Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
120    hadronisation, while POWHEG uses Pythia6.
121   \item Modeling of taus: The alternative sample does not include
122 <  Tauola and is otherwise identical to the Powheg sample.
122 >  Tauola and is otherwise identical to the Powheg sample.
123 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
124   \item The PDF uncertainty is estimated following the PDF4LHC
125    recommendations[CITE]. The events are reweighted using alternative
126    PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
# Line 38 | Line 128 | The variations considered are
128    addition, the NNPDF2.1 set with 100 replicas. The central value is
129    determined from the mean and the uncertainty is derived from the
130    $1\sigma$ range. The overall uncertainty is derived from the envelope of the
131 <  alternative predictions and their uncertainties.
132 < \end{itemize}
131 >  alternative predictions and their uncertainties.
132 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
133 >  \end{itemize}
134 >
135 >
136 > \begin{table}[!h]
137 > \begin{center}
138 > {\footnotesize
139 > \begin{tabular}{l||c||c|c|c|c|c|c|c}
140 > \hline
141 > Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
142 > Match Up & Match Down \\
143 > \hline
144 > \hline
145 > SRA      & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
146 > \hline
147 > SRB      & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
148 > \hline
149 > SRC      & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
150 > \hline
151 > SRD      & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
152 > \hline
153 > SRE      & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
154 > \hline
155 > \end{tabular}}
156 > \caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
157 > \label{tab:ttdlalt}}
158 > \end{center}
159 > \end{table}
160 >
161 >
162 > \begin{table}[!h]
163 > \begin{center}
164 > {\footnotesize
165 > \begin{tabular}{l||c|c|c|c|c|c|c}
166 > \hline
167 > $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
168 > Match Up & Match Down \\
169 > \hline
170 > \hline
171 > SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
172 > \hline
173 > SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
174 > \hline
175 > SRC      & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
176 > \hline
177 > SRD      & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
178 > \hline
179 > SRE      & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
180 > \hline
181 > \end{tabular}}
182 > \caption{ Relative difference in \ttdl\ predictions for alternative MC samples.
183 > \label{tab:fracdiff}}
184 > \end{center}
185 > \end{table}
186 >
187 >
188 > \begin{table}[!h]
189 > \begin{center}
190 > {\footnotesize
191 > \begin{tabular}{l||c|c|c|c|c|c|c}
192 > \hline
193 > $N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
194 > Match Up & Match Down \\
195 > \hline
196 > \hline
197 > SRA      & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
198 > \hline
199 > SRB      & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
200 > \hline
201 > SRC      & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
202 > \hline
203 > SRD      & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
204 > \hline
205 > SRE      & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
206 > \hline
207 > \end{tabular}}
208 > \caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
209 > \label{tab:nsig}}
210 > \end{center}
211 > \end{table}
212 >
213 >
214 > \begin{table}[!h]
215 > \begin{center}
216 > \begin{tabular}{l||c|c|c|c}
217 > \hline
218 > Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
219 > & $\Delta$ Match \\
220 > \hline
221 > \hline
222 > SRA      & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
223 > \hline
224 > SRB      & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
225 > \hline
226 > SRC      & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
227 > \hline
228 > SRD      & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
229 > \hline
230 > SRE      & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
231 > \hline
232 > \end{tabular}
233 > \caption{ Av. difference in \ttdl\ events for alternative sample pairs.
234 > \label{tab:devt}}
235 > \end{center}
236 > \end{table}
237  
238  
239   \begin{figure}[hbt]
240    \begin{center}
241 <        \includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png}
241 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
242 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
243 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
244 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
245 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
246          \caption{
247 <          \label{fig:ttllsyst}%\protect
247 >          \label{fig:ttllsyst}\protect
248            Comparison of the \ttll\ central prediction with those using
249            alternative MC samples. The blue band corresponds to the
250            total statistical error for all data and MC samples. The
251            alternative sample predictions are indicated by the
252            datapoints. The uncertainties on the alternative predictions
253            correspond to the uncorrelated statistical uncertainty from
254 <          the size of the alternative sample only.}
254 >          the size of the alternative sample only.
255 >        [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
256        \end{center}
257      \end{figure}
258  
259 <
259 > \clearpage
260  
261   %
262   %
# Line 192 | Line 391 | The variations considered are
391   %\end{tabular}
392   %\end{center}
393   %\end{table}
394 +
395 + \subsection{Uncertainty from the isolated track veto}
396 + This is the uncertainty associated with how well the isolated track
397 + veto performance is modeled by the Monte Carlo.  This uncertainty
398 + only applies to the fraction of dilepton BG events that have
399 + a second e/$\mu$ or a one prong $\tau \to h$, with
400 + $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is 1/3 (THIS WAS THE
401 + 7 TEV NUMBER, CHECK).  The uncertainty for these events
402 + is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
403 +
404 + \subsubsection{Isolated Track Veto: Tag and Probe Studies}
405 + \label{sec:trkveto}
406 +
407 + [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
408 + ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
409 +
410 + \begin{table}[!h]
411 + \begin{center}
412 + {\footnotesize
413 + \begin{tabular}{l||c|c|c|c|c|c|c}
414 + \hline
415 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
416 + \hline
417 + \hline
418 + $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
419 + \hline
420 + \hline
421 + e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
422 + \hline
423 + \end{tabular}}
424 + \caption{ Fraction of \ttdl\ events with a true isolated track.
425 + \label{tab:trueisotrk}}
426 + \end{center}
427 + \end{table}
428 +
429 +
430 + In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
431 + with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
432 + to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
433 + we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
434 + addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
435 + second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
436 + in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
437 + procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
438 + Furthermore, we test the data and MC
439 + isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
440 + directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
441 + may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
442 + or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
443 + the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
444 + consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
445 + $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
446 + decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
447 + Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
448 + As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
449 + leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
450 + due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
451 +
452 + The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
453 + All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
454 + We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
455 + this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
456 + not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
457 + fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
458 + \met\ $<$ 30 GeV and 0 b-tagged events.
459 + The specific criteria for tags and probes for electrons and muons are:
460 +
461 + %We study the isolated track veto efficiency in bins of \njets.
462 + %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
463 + %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
464 +
465 +
466 + \begin{itemize}
467 +  \item{Electrons}
468 +
469 +    \begin{itemize}
470 +    \item{Tag criteria}
471 +
472 +      \begin{itemize}
473 +      \item Electron passes full analysis ID/iso selection
474 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
475 +      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
476 +      \end{itemize}
477 +
478 +    \item{Probe criteria}
479 +      \begin{itemize}
480 +      \item Electron passes full analysis ID selection
481 +      \item \pt\ $>$ 30 GeV
482 +      \end{itemize}
483 +      \end{itemize}
484 +  \item{Muons}
485 +    \begin{itemize}
486 +    \item{Tag criteria}
487 +      \begin{itemize}
488 +      \item Muon passes full analysis ID/iso selection
489 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
490 +      \item Matched to 1 of the 2 single muon triggers
491 +        \begin{itemize}
492 +        \item \verb=HLT_IsoMu30_v*=
493 +        \item \verb=HLT_IsoMu30_eta2p1_v*=
494 +        \end{itemize}
495 +      \end{itemize}
496 +    \item{Probe criteria}
497 +      \begin{itemize}
498 +      \item Muon passes full analysis ID selection
499 +      \item \pt\ $>$ 30 GeV
500 +      \end{itemize}
501 +    \end{itemize}
502 + \end{itemize}
503 +
504 + The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
505 + good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
506 + absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
507 + In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
508 + efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
509 + For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
510 + a data vs. MC discrepancy in the isolated track veto efficiency.
511 +
512 +
513 + %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
514 + %This requirement is chosen because most of the tracks rejected by the isolated
515 + %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
516 +
517 + \begin{figure}[hbt]
518 +  \begin{center}
519 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
520 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
521 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
522 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
523 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
524 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
525 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
526 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
527 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
528 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
529 +        \caption{
530 +          \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
531 + for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
532 + }  
533 +      \end{center}
534 + \end{figure}
535 +
536 + \clearpage
537 +
538 + \begin{table}[!ht]
539 + \begin{center}
540 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
541 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
542 + jet multiplicity requirements.}
543 + \begin{tabular}{l|c|c|c|c|c}
544 +
545 + %Electrons:
546 + %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
547 + %Total MC yields        : 2497277
548 + %Total DATA yields      : 2649453
549 + %Muons:
550 + %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
551 + %Total MC yields        : 3749863
552 + %Total DATA yields      : 4210022
553 + %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
554 + %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
555 +
556 + \hline
557 + \hline
558 + e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
559 + \hline
560 +      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
561 +        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
562 +   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
563 +
564 + \hline
565 + \hline
566 + $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
567 + \hline
568 +      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
569 +        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
570 +   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
571 +
572 + \hline
573 + \hline
574 + e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
575 + \hline
576 +      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
577 +        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
578 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
579 +
580 + \hline
581 + \hline
582 + $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
583 + \hline
584 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
585 +        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
586 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
587 +
588 + \hline
589 + \hline
590 + e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
591 + \hline
592 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
593 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
594 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
595 +
596 + \hline
597 + \hline
598 + $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
599 + \hline
600 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
601 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
602 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
603 +
604 + \hline
605 + \hline
606 + e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
607 + \hline
608 +      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
609 +        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
610 +   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
611 +
612 + \hline
613 + \hline
614 + $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
615 + \hline
616 +      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
617 +        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
618 +   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
619 +
620 + \hline
621 + \hline
622 + e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
623 + \hline
624 +      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
625 +        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
626 +   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
627 +
628 + \hline
629 + \hline
630 + $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
631 + \hline
632 +      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
633 +        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
634 +   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
635 +
636 + \hline
637 + \hline
638 +
639 + \end{tabular}
640 + \end{center}
641 + \end{table}
642 +
643 +
644 + %Figure.~\ref{fig:reliso} compares the relative track isolation
645 + %for events with a track with $\pt > 10~\GeV$ in addition to a selected
646 + %muon for $\Z+4$ jet events and various \ttll\ components. The
647 + %isolation distributions show significant differences, particularly
648 + %between the leptons from a \W\ or \Z\ decay and the tracks arising
649 + %from $\tau$ decays. As can also be seen in the figure, the \pt\
650 + %distribution for the various categories of tracks is different, where
651 + %the decay products from $\tau$s are significantly softer. Since the
652 + %\pt\ enters the denominator of the isolation definition and hence
653 + %alters the isolation variable...
654 +
655 + %\begin{figure}[hbt]
656 + %  \begin{center}
657 + %       \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
658 + %       \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
659 + %       \caption{
660 + %         \label{fig:reliso}%\protect
661 + %          Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
662 + %          Z+Jets and ttbar dilepton have similar isolation distributions
663 + %          ttbar with leptonic and single prong taus tend to be less
664 + %          isolated. The difference in the isolation can be attributed
665 + %          to the different \pt\ distribution of the samples, since
666 + %          $\tau$ decay products tend to be softer than leptons arising
667 + %          from \W\ or \Z\ decays.}  
668 + %      \end{center}
669 + %\end{figure}
670 +
671 + %       \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
672 +
673 +
674 + %BEGIN SECTION TO WRITE OUT
675 + %In detail, the procedure to correct the dilepton background is:
676 +
677 + %\begin{itemize}
678 + %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
679 + %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
680 + %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
681 + %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
682 + %the lepton \pt {\bf TODO: verify this in data and MC.}.
683 + %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
684 + %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
685 + %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
686 + %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
687 + %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
688 + %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
689 + %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
690 + %\end{itemize}
691 + %END SECTION TO WRITE OUT
692 +
693 +
694 + {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
695 + Why not measure $\epsilon_{fake}$ in the b-veto region?}
696 +
697 + %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
698 + %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
699 + %applying an additional scale factor for the single lepton background
700 + %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
701 + %veto and after subtracting the \ttll\ component, corrected for the
702 + %isolation efficiency derived previously.
703 + %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
704 + %isolated track in single lepton events is independent of \mt\, so the use of
705 + %an overall scale factor is justified to estimate the contribution in
706 + %the \mt\ tail.
707 + %
708 + %\begin{figure}[hbt]
709 + %  \begin{center}
710 + %       \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
711 + %       \caption{
712 + %         \label{fig:vetoeffcomp}%\protect
713 + %          Efficiency for selecting an isolated track comparing
714 + %          single lepton \ttlj\ and dilepton \ttll\ events in MC and
715 + %          data as a function of \mt. The
716 + %          efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
717 + %          \mt\, while the data ranges between the two. This behavior
718 + %          is expected since the low \mt\ region is predominantly \ttlj, while the
719 + %          high \mt\ region contains mostly \ttll\ events.}  
720 + %      \end{center}
721 + %\end{figure}
722 +
723 + \subsection{Summary of uncertainties}
724 + \label{sec:bgunc-bottomline}.
725 +
726 + THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines