ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.31
Committed: Wed Oct 31 22:50:12 2012 UTC (12 years, 6 months ago) by vimartin
Content type: application/x-tex
Branch: MAIN
CVS Tags: HEAD
Changes since 1.30: +1 -1 lines
Log Message:
minor typo fix

File Contents

# User Rev Content
1 vimartin 1.2 %\section{Systematics Uncertainties on the Background Prediction}
2     %\label{sec:systematics}
3 benhoob 1.1
4 claudioc 1.7 In this Section we discuss the systematic uncertainty on the BG
5     prediction. This prediction is assembled from the event
6     counts in the peak region of the transverse mass distribution as
7     well as Monte Carlo
8     with a number of correction factors, as described previously.
9     The
10     final uncertainty on the prediction is built up from the uncertainties in these
11     individual
12     components.
13     The calculation is done for each signal
14     region,
15     for electrons and muons separately.
16    
17 linacre 1.21 The choice to normalize to the peak region of $M_T$ has the
18 claudioc 1.7 advantage that some uncertainties, e.g., luminosity, cancel.
19     It does however introduce complications because it couples
20     some of the uncertainties in non-trivial ways. For example,
21     the primary effect of an uncertainty on the rare MC cross-section
22     is to introduce an uncertainty in the rare MC background estimate
23     which comes entirely from MC. But this uncertainty also affects,
24     for example,
25     the $t\bar{t} \to$ dilepton BG estimate because it changes the
26     $t\bar{t}$ normalization to the peak region (because some of the
27     events in the peak region are from rare processes). These effects
28 vimartin 1.22 are carefully accounted for. The contribution to the overall
29     uncertainty from each background source is tabulated in
30     Section~\ref{sec:bgunc-bottomline}.
31 vimartin 1.19 Here we discuss the uncertainties one-by-one and comment
32 claudioc 1.7 on their impact on the overall result, at least to first order.
33     Second order effects, such as the one described, are also included.
34    
35     \subsection{Statistical uncertainties on the event counts in the $M_T$
36     peak regions}
37 claudioc 1.15 These vary between 2\% and 20\%, depending on the signal region
38 claudioc 1.7 (different
39     signal regions have different \met\ requirements, thus they also have
40 linacre 1.21 different $M_T$ regions used as control).
41 claudioc 1.7 Since
42 vimartin 1.19 the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
43 claudioc 1.7 fractional uncertainty is pretty much carried through all the way to
44     the end. There is also an uncertainty from the finite MC event counts
45     in the $M_T$ peak regions. This is also included, but it is smaller.
46    
47 claudioc 1.15 Normalizing to the $M_T$ peak has the distinct advantages that
48     uncertainties on luminosity, cross-sections, trigger efficiency,
49     lepton ID, cancel out.
50 vimartin 1.19 For the low statistics regions with high \met\ requirements, the
51     price to pay in terms of event count is that statistical uncertainties start
52 claudioc 1.15 to become significant. In the future we may consider a different
53     normalization startegy in the low statistics regions.
54    
55 claudioc 1.7 \subsection{Uncertainty from the choice of $M_T$ peak region}
56 claudioc 1.15
57     This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.
58     If the $M_T$ peak region is not well modelled, this would introduce an
59     uncertainty.
60    
61 linacre 1.21 We have tested this possibility by recalculating the post-veto scale factors for a different
62 claudioc 1.15 choice
63     of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 linacre 1.21 $50 < M_T < 80$ GeV). This is shown in Table~\ref{tab:mtpeaksf2}.
65 claudioc 1.15 The two results for the scale factors are very compatible.
66     We do not take any systematic uncertainty for this possible effect.
67    
68     \begin{table}[!h]
69     \begin{center}
70     {\footnotesize
71     \begin{tabular}{l||c|c|c|c|c|c|c}
72     \hline
73     Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74     \hline
75     \hline
76     \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77     \hline
78     $\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79     $\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80     \hline
81     $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82     \hline
83     \hline
84     e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85     e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86     \hline
87     e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88     \hline
89     \hline
90     \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91     \hline
92     $\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93     $\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94     \hline
95     $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96     \hline
97     \hline
98     e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99     e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100     \hline
101     e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102     \hline
103     \end{tabular}}
104     \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105     \ttdl\ sample, while the post-veto SFs are applied to the single
106     lepton samples. The veto SF is shown for comparison across channels.
107     The raw MC is used for backgrounds from rare processes.
108     The uncertainties are statistical only.
109     \label{tab:mtpeaksf2}}
110     \end{center}
111     \end{table}
112    
113 claudioc 1.7
114 linacre 1.21 \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
115 claudioc 1.7 These are taken as 50\%, uncorrelated.
116     The primary effect is to introduce a 50\%
117     uncertainty
118     on the $W +$ jets and rare BG
119     background predictions, respectively. However they also
120     have an effect on the other BGs via the $M_T$ peak normalization
121     in a way that tends to reduce the uncertainty. This is easy
122     to understand: if the $W$ cross-section is increased by 50\%, then
123     the $W$ background goes up. But the number of $M_T$ peak events
124     attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125     scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126     BG goes down.
127    
128 linacre 1.20 \subsection{Tail-to-peak ratios for lepton +
129 claudioc 1.7 jets top and W events}
130 linacre 1.20 The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131     The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132 claudioc 1.26 Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its
133     uncertainty is given in Table~\ref{tab:cr1yields}.
134     This uncertainty affects both $R_{wjet}$ and $R_{top}$.
135 linacre 1.20 The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
136    
137 claudioc 1.7
138     \subsection{Uncertainty on extra jet radiation for dilepton
139     background}
140     As discussed in Section~\ref{sec:jetmultiplicity}, the
141     jet distribution in
142     $t\bar{t} \to$
143     dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
144 claudioc 1.15 it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$
145 claudioc 1.7 comes from data/MC statistics. This
146 linacre 1.21 results directly in a 3\% uncertainty on the dilepton background, which is by far
147 claudioc 1.7 the most important one.
148    
149 claudioc 1.18 \subsection{Uncertainty from MC statistics}
150     This affects mostly the \ttll\ background estimate, which is taken
151     from
152     Monte Carlo with appropriate correction factors. This uncertainty
153     is negligible in the low \met\ signal regions, and grows to about
154     15\% in SRG.
155    
156 vimartin 1.5
157 vimartin 1.22 \subsection{Uncertainty on the \ttll\ Background}
158 linacre 1.23 \label{sec:ttdilbkgunc}
159 vimartin 1.2 The \ttbar\ background prediction is obtained from MC, with corrections
160     derived from control samples in data. The uncertainty associated with
161 vimartin 1.22 the \ttbar\ background is derived from the level of closure of the
162     background prediction in CR4 (Table~\ref{tab:cr4yields}) and
163     CR5 (Table~\ref{tab:cr5yields}). The results from these control region
164     checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned
165     to the \ttdl\ background prediction based on these tests are
166     5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G).
167    
168     \begin{figure}[hbt]
169     \begin{center}
170     \includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf}
171     \caption{
172     \label{fig:ttdlunc}%\protect
173     Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after
174     applying SFs) to data for CR4 and CR5 for all the signal
175     region requirements considered (A-G). The bands indicate the
176     systematic uncertainties assigned based on these tests,
177     ranging from $5\%$ for SRA to $40\%$ for SRE-G.}
178     \end{center}
179     \end{figure}
180    
181 vimartin 1.27 \clearpage
182     \subsubsection{Check of the impact of Signal Contamination}
183    
184     We examine the contribution of possible signal events in the \ttll\
185     control regions (CR4 and CR5). It should be emphasized that these
186 benhoob 1.28 regions are not used to apply data/MC SFs. They are used only to quantify
187 vimartin 1.27 the level of data/MC agreement and assign a corresponding uncertainty.
188 benhoob 1.28 As a result, if signal events were to populate these control regions
189     this would not lead to an increase in the predicted background.
190 vimartin 1.27
191     To illustrate how much signal is expected to populate these control
192 benhoob 1.28 regions, we examine signal points near the edge of the analysis
193 vimartin 1.27 sensitivity (m(stop) = 450 m($\chi^0$) = 0 for T2tt, m(stop) = 450
194 vimartin 1.31 m($\chi^0$) = 0, x=0.75 for T2bw).
195 vimartin 1.27 Table~\ref{tab:signalcontamination} compares the expected signal
196     yields and the raw total MC background prediction in the control
197     regions with the \met\ and \mt\ requirements corresponding to SRB, SRC
198     and SRD (these are the signal regions that dominate the
199     sensitivity). The signal contamination is smaller than the uncertainty
200 benhoob 1.30 on the dilepton background (10\%, 15\%, and 25\% for SRB, SRC, SRD, respectively) and smaller than the signal/background in
201 benhoob 1.29 the signal regions.
202     Based on the fact that the CR4 and CR5 are not used to extract
203 benhoob 1.28 data/MC scale factors and that we do not observe evidence for signal
204     contamination in these control regions (CR5, the control region with
205     larger statistical precision, actually shows a slight deficit of data w.r.t. MC), we
206     do not assign a correction for signal contamination in these control regions.
207 vimartin 1.27
208     \begin{table}[!h]
209     \begin{center}
210     {\small
211     \begin{tabular}{l l||c|c|c}
212     \hline
213     \multicolumn{2}{c||}{Sample} & CR B & CR C & CR D \\
214     \hline
215     \hline
216     \multirow{4}{*}{CR4} & Raw MC & $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$ \\
217     %\hline
218     & T2tt m(stop) = 450 m($\chi^0$) = 0 & $2.6 \pm 0.3$ $(2\%)$ & $2.0 \pm 0.2$ $(4\%)$ & $1.4 \pm 0.2$ $(7\%)$ \\
219     & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $10.5 \pm 0.4$ $(6\%)$ &$6.1 \pm 0.3$ $(12\%)$ & $3.1 \pm 0.2$ $(16\%)$ \\
220     \hline
221     \hline
222     \multirow{4}{*}{CR5} & Raw MC & $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$ \\
223     %\hline
224     & T2tt m(stop) = 450 m($\chi^0$) = 0 & $10.6 \pm 0.6$ $(3\%)$ & $7.8 \pm 0.5$ $(8\%)$ & $5.4 \pm 0.4$ $(14\%)$ \\
225     & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $17.3 \pm 0.5$ $(6\%)$ &$11.3 \pm 0.4$ $(11\%)$ & $6.2 \pm 0.3$ $(16\%)$\\
226     \hline
227     \hline
228     \hline
229     \multirow{4}{*}{SIGNAL} & Raw MC & $486.3 \pm 7.8$& $164.3 \pm 4.5$& $61.5 \pm 2.8$ \\
230     & T2tt m(stop) = 450 m($\chi^0$) = 0 & $65.3 \pm 1.4$ $(13\%)$& $48.8 \pm 1.2$ $(30\%)$& $32.9 \pm 1.0$ $(53\%)$ \\
231     & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $69.3 \pm 1.0$ $(14\%)$& $47.3 \pm 0.8$ $(29\%)$& $27.3 \pm 0.6$ $(44\%)$ \\
232     \hline
233     \end{tabular}}
234     \caption{ Yields in \mt\ tail comparing the raw SM MC prediction to the
235     yields for a few signal points on the edge of our sensitivity in the \ttll\
236     control regions CR4, CR5 and in the corresponding signal region.
237     The numbers in parenthesis are the expected signal yield divided by
238     the total background. The uncertainties are statistical only.
239     \label{tab:signalcontamination}}
240     \end{center}
241     \end{table}
242    
243     %CR5 DUMP
244     %Total & $880.3 \pm 10.4$& $560.0 \pm 8.3$& $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$& $16.4 \pm 1.4$& $8.2 \pm 1.0$& $4.6 \pm 0.8$ \\
245     %\hline
246     %\hline
247     %Data & $941$& $559$& $287$& $95$& $26$& $8$& $5$& $3$ \\
248     %\hline
249     %T2tt m(stop) = 250 m($\chi^0$) = 0 & $84.3 \pm 9.2$& $61.9 \pm 7.9$& $35.7 \pm 6.0$& $5.9 \pm 2.4$& $1.0 \pm 1.0$& $1.0 \pm 1.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
250     %\hline
251     %T2tt m(stop) = 300 m($\chi^0$) = 50 & $61.4 \pm 4.7$& $53.6 \pm 4.4$& $42.0 \pm 3.9$& $14.3 \pm 2.3$& $7.2 \pm 1.6$& $1.8 \pm 0.8$& $0.7 \pm 0.5$& $0.0 \pm 0.0$ \\
252     %\hline
253     %T2tt m(stop) = 300 m($\chi^0$) = 100 & $33.3 \pm 3.5$& $28.6 \pm 3.2$& $19.2 \pm 2.6$& $6.1 \pm 1.5$& $1.8 \pm 0.8$& $0.4 \pm 0.4$& $0.4 \pm 0.4$& $0.4 \pm 0.4$ \\
254     %\hline
255     %T2tt m(stop) = 350 m($\chi^0$) = 0 & $33.4 \pm 2.2$& $29.8 \pm 2.1$& $27.3 \pm 2.0$& $15.3 \pm 1.5$& $5.6 \pm 0.9$& $1.9 \pm 0.5$& $0.3 \pm 0.2$& $0.0 \pm 0.0$ \\
256     %\hline
257     %T2tt m(stop) = 450 m($\chi^0$) = 0 & $12.0 \pm 0.6$& $11.3 \pm 0.6$& $10.6 \pm 0.6$& $7.8 \pm 0.5$& $5.4 \pm 0.4$& $3.1 \pm 0.3$& $1.8 \pm 0.2$& $0.6 \pm 0.1$ \\
258     %\hline
259     %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0 & $48.5 \pm 1.9$& $40.2 \pm 1.7$& $33.0 \pm 1.5$& $14.4 \pm 1.0$& $5.7 \pm 0.6$& $2.7 \pm 0.4$& $1.3 \pm 0.3$& $0.5 \pm 0.2$ \\
260     %\hline
261     %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0 & $22.3 \pm 0.6$& $20.2 \pm 0.6$& $17.3 \pm 0.5$& $11.3 \pm 0.4$& $6.2 \pm 0.3$& $3.1 \pm 0.2$& $1.3 \pm 0.1$& $0.7 \pm 0.1$ \\
262     %\hline
263    
264     %CR4 DUMP
265     %\hline
266     %Total & $510.1 \pm 8.0$& $324.2 \pm 6.3$& $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$& $7.8 \pm 1.0$& $2.6 \pm 0.6$& $1.1 \pm 0.3$ \\
267     %\hline
268     %\hline
269     %Data & $462$& $289$& $169$& $45$& $10$& $7$& $5$& $3$ \\
270     %\hline
271     %T2tt m(stop) = 250 m($\chi^0$) = 0 & $37.7 \pm 6.1$& $30.9 \pm 5.5$& $18.0 \pm 4.2$& $6.0 \pm 2.5$& $2.0 \pm 1.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
272     %\hline
273     %T2tt m(stop) = 300 m($\chi^0$) = 50 & $16.6 \pm 2.4$& $14.4 \pm 2.3$& $11.3 \pm 2.0$& $5.6 \pm 1.4$& $3.2 \pm 1.1$& $1.8 \pm 0.8$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
274     %\hline
275     %T2tt m(stop) = 300 m($\chi^0$) = 100 & $9.6 \pm 1.8$& $6.4 \pm 1.5$& $4.6 \pm 1.3$& $0.7 \pm 0.5$& $0.4 \pm 0.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
276     %\hline
277     %T2tt m(stop) = 350 m($\chi^0$) = 0 & $8.2 \pm 1.1$& $7.6 \pm 1.0$& $5.7 \pm 0.9$& $3.4 \pm 0.7$& $1.9 \pm 0.5$& $0.6 \pm 0.3$& $0.3 \pm 0.2$& $0.1 \pm 0.1$ \\
278     %\hline
279     %T2tt m(stop) = 450 m($\chi^0$) = 0 & $3.1 \pm 0.3$& $2.9 \pm 0.3$& $2.6 \pm 0.3$& $2.0 \pm 0.2$& $1.4 \pm 0.2$& $1.0 \pm 0.2$& $0.4 \pm 0.1$& $0.2 \pm 0.1$ \\
280     %\hline
281     %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0 & $52.6 \pm 1.9$& $42.6 \pm 1.7$& $32.1 \pm 1.5$& $14.7 \pm 1.0$& $5.5 \pm 0.6$& $1.9 \pm 0.4$& $0.6 \pm 0.2$& $0.3 \pm 0.1$ \\
282     %\hline
283     %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0 & $16.9 \pm 0.5$& $14.9 \pm 0.5$& $10.5 \pm 0.4$& $6.1 \pm 0.3$& $3.1 \pm 0.2$& $1.5 \pm 0.1$& $0.6 \pm 0.1$& $0.3 \pm 0.1$ \\
284     %\hline
285    
286 vimartin 1.22
287 linacre 1.23 \subsubsection{Check of the uncertainty on the \ttll\ Background}
288 vimartin 1.22
289 linacre 1.23 We check that the systematic uncertainty assigned to the \ttll\ background prediction
290     covers the uncertainty associated with
291     the theoretical modeling of the \ttbar\ production and decay
292     by comparing the background predictions obtained using
293 vimartin 1.2 alternative MC samples. It should be noted that the full analysis is
294     performed with the alternative samples under consideration,
295     including the derivation of the various data-to-MC scale factors.
296     The variations considered are
297    
298     \begin{itemize}
299     \item Top mass: The alternative values for the top mass differ
300 linacre 1.21 from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
301 vimartin 1.2 = 166.5~\GeV$.
302     \item Jet-parton matching scale: This corresponds to variations in the
303     scale at which the Matrix Element partons from Madgraph are matched
304     to Parton Shower partons from Pythia. The nominal value is
305     $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
306     $x_q>40~\GeV$.
307     \item Renormalization and factorization scale: The alternative samples
308     correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
309     value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
310     \sum_{\mathrm{jets}} \pt^2$.
311     \item Alternative generators: Samples produced with different
312 claudioc 1.15 generators, Powheg (our default) and Madgraph.
313 vimartin 1.2 \item Modeling of taus: The alternative sample does not include
314 burkett 1.6 Tauola and is otherwise identical to the Powheg sample.
315     This effect was studied earlier using 7~TeV samples and found to be negligible.
316 vimartin 1.2 \item The PDF uncertainty is estimated following the PDF4LHC
317 vimartin 1.19 recommendations. The events are reweighted using alternative
318 vimartin 1.2 PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
319 linacre 1.21 alternative eigenvector variations and the ``master equation''.
320     The NNPDF2.1 set with 100 replicas is also used. The central value is
321 vimartin 1.2 determined from the mean and the uncertainty is derived from the
322     $1\sigma$ range. The overall uncertainty is derived from the envelope of the
323 burkett 1.6 alternative predictions and their uncertainties.
324     This effect was studied earlier using 7~TeV samples and found to be negligible.
325     \end{itemize}
326 benhoob 1.1
327 claudioc 1.16 \begin{figure}[hbt]
328     \begin{center}
329     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
330     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
331     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
332     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
333     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
334     \caption{
335     \label{fig:ttllsyst}\protect
336     Comparison of the \ttll\ central prediction with those using
337     alternative MC samples. The blue band corresponds to the
338     total statistical error for all data and MC samples. The
339     alternative sample predictions are indicated by the
340     datapoints. The uncertainties on the alternative predictions
341     correspond to the uncorrelated statistical uncertainty from
342     the size of the alternative sample only. Note the
343     suppressed vertical scales.}
344     \end{center}
345     \end{figure}
346 vimartin 1.14
347    
348     \begin{table}[!h]
349     \begin{center}
350     {\footnotesize
351     \begin{tabular}{l||c|c|c|c|c|c|c}
352     \hline
353     $\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
354     Match Up & Match Down \\
355     \hline
356     \hline
357     SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\
358     \hline
359     SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\
360     \hline
361 claudioc 1.16 % SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\
362     % \hline
363     % SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\
364     % \hline
365     % SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\
366 vimartin 1.14 \hline
367     \end{tabular}}
368 claudioc 1.16 \caption{ Relative difference in \ttdl\ predictions for alternative MC
369     samples in
370     the higher statistics regions SRA and SRB. These differences
371     are based on the central values of the predictions. For a fuller
372     picture
373     of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
374 vimartin 1.14 \label{tab:fracdiff}}
375     \end{center}
376     \end{table}
377    
378    
379 claudioc 1.16 In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
380     for regions A through E. We can make the following observations based
381     on this Figure.
382 vimartin 1.14
383 claudioc 1.16 \begin{itemize}
384     \item In the tighter signal regions we are running out of
385     statistics.
386     \item Within the limited statistics, there is no evidence that the
387     situation changes as we go from signal region A to signal region E.
388 linacre 1.23 %Therefore, we assess a systematic based on the relatively high
389     %statistics
390     %test in signal region A, and apply the same systematic uncertainty
391     %to all other regions.
392     \item In signal regions B and above, the uncertainties assigned in Section~\ref{sec:ttdilbkgunc}
393     fully cover the alternative MC variations.
394 claudioc 1.16 \item In order to fully (as opposed as 1$\sigma$) cover the
395     alternative MC variations in region A we would have to take a
396     systematic
397 linacre 1.23 uncertainty of $\approx 10\%$ instead of $5\%$. This would be driven by the
398 claudioc 1.16 scale up/scale down variations, see Table~\ref{tab:fracdiff}.
399     \end{itemize}
400 vimartin 1.14
401 claudioc 1.16 \begin{table}[!ht]
402 vimartin 1.14 \begin{center}
403 claudioc 1.16 \begin{tabular}{l|c|c}
404 vimartin 1.14 \hline
405 claudioc 1.16 Sample
406     & K3 & K4\\
407 vimartin 1.14 \hline
408     \hline
409 claudioc 1.16 Powheg & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
410     Madgraph & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
411     Mass Up & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
412     Mass Down & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
413     Scale Up & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
414     Scale Down & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
415     Match Up & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
416     Match Down & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
417 vimartin 1.14 \hline
418     \end{tabular}
419 claudioc 1.16 \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
420     fraction of events with additional hard jets from radiation in
421     \ttll\ events. \label{tab:njetskfactors_met100}}
422 vimartin 1.14 \end{center}
423     \end{table}
424    
425    
426 claudioc 1.16 However, we have two pieces of information indicating that the
427     scale up/scale down variations are inconsistent with the data.
428     These are described below.
429    
430     The first piece of information is that the jet multiplicity in the scale
431 vimartin 1.19 up/scale down sample is the most inconsistent with the data. This is shown
432 claudioc 1.16 in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
433 vimartin 1.19 $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
434 claudioc 1.16 different \ttbar\ MC samples. The data/MC disagreement in the $N_{jets}$
435     distribution
436     for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
437     and~\ref{fig:dileptonnjets_scaledw}. This should be compared with the
438     equivalent $N_{jets}$ plots for the default Powheg MC, see
439     Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
440    
441     \begin{figure}[hbt]
442     \begin{center}
443     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
444     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
445     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
446     \caption{
447     \label{fig:dileptonnjets_scaleup}%\protect
448     SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
449     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
450     \end{center}
451     \end{figure}
452    
453 benhoob 1.1 \begin{figure}[hbt]
454     \begin{center}
455 claudioc 1.16 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
456     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
457     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
458     \caption{
459     \label{fig:dileptonnjets_scaledw}%\protect
460     SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
461     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
462 vimartin 1.2 \end{center}
463 claudioc 1.16 \end{figure}
464    
465    
466     \clearpage
467    
468     The second piece of information is that we have performed closure
469     tests in CR5 using the alternative MC samples. These are exactly
470     the same tests as the one performed in Section~\ref{sec:CR5} on the
471     Powheg sample. As we argued previously, this is a very powerful
472     test of the background calculation.
473     The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
474     Concentrating on the relatively high statistics CR5A region, we see
475     for all \ttbar\ MC samples except scale up/scale down we obtain
476     closure within 1$\sigma$. The scale up/scale down tests closes
477     worse, only within 2$\sigma$. This again is evidence that the
478     scale up/scale down variations are in disagreement with the data.
479    
480     \input{hugeCR5Table.tex}
481    
482     Based on the two observations above, we argue that the MC
483     scale up/scale down variations are too extreme. We feel that
484     a reasonable choice would be to take one-half of the scale up/scale
485     down variations in our MC. This factor of 1/2 would then bring
486     the discrepancy in the closure test of
487     Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
488     from about 2$\sigma$ to about 1$\sigma$.
489    
490     Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
491     up/scale
492     down variations by a factor 2, we can see that a systematic
493     uncertainty
494 linacre 1.23 of 5\% covers the range of reasonable variations from different MC
495     models in SRA and SRB.
496     %The alternative MC models indicate that a 6\% systematic uncertainty
497     %covers the range of reasonable variations.
498     Note that this 5\% is also consistent with the level at which we are
499 vimartin 1.22 able to test the closure of the method with alternative samples in CR5 for the high statistics
500     regions (Table~\ref{tab:hugecr5yields}).
501     The range of reasonable variations obtained with the alternative
502     samples are consistent with the uncertainties assigned for
503     the \ttll\ background based on the closure of the background
504     predictions and data in CR4 and CR5.
505 claudioc 1.16
506    
507    
508    
509    
510     %\begin{table}[!h]
511     %\begin{center}
512     %{\footnotesize
513     %\begin{tabular}{l||c||c|c|c|c|c|c|c}
514     %\hline
515     %Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale
516     %Up & Scale Down &
517     %Match Up & Match Down \\
518     %\hline
519     %\hline
520     %SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\
521     %\hline
522     %SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\
523     %\hline
524     %SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\
525     %\hline
526     %SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\
527     %\hline
528     %SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\
529     %\hline
530     %\end{tabular}}
531     %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
532     %\label{tab:ttdlalt}}
533     %\end{center}
534     %\end{table}
535    
536    
537    
538    
539     %\begin{table}[!h]
540     %\begin{center}
541     %{\footnotesize
542     %\begin{tabular}{l||c|c|c|c|c|c|c}
543     %\hline
544     %$N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
545     %Match Up & Match Down \\
546     %\hline
547     %\hline
548     %SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\
549     %\hline
550     %SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\
551     %\hline
552     %SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\
553     %\hline
554     %SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\
555     %\hline
556     %SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\
557     %\hline
558     %\end{tabular}}
559     %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
560     %\label{tab:nsig}}
561     %\end{center}
562     %\end{table}
563    
564    
565     %\begin{table}[!h]
566     %\begin{center}
567     %\begin{tabular}{l||c|c|c|c}
568     %\hline
569     %Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
570     %& $\Delta$ Match \\
571     %\hline
572     %\hline
573     %SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\
574     %\hline
575     %SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\
576     %\hline
577     %SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\
578     %\hline
579     %SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\
580     %\hline
581     %SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\
582     %\hline
583     %\end{tabular}
584     %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
585     %\label{tab:devt}}
586     %\end{center}
587     %\end{table}
588    
589    
590 vimartin 1.2
591 claudioc 1.7 \clearpage
592 vimartin 1.2
593     %
594     %
595     %The methodology for determining the systematics on the background
596     %predictions has not changed with respect to the nominal analysis.
597     %Because the template method has not changed, the same
598     %systematic uncertainty is assessed on this prediction (32\%).
599     %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
600     %The systematic uncertainty in the OF background prediction based on
601     %e$\mu$ events has changed, due to the different composition of this
602     %sample after vetoing events containing b-tagged jets.
603     %
604     %As in the nominal analysis, we do not require the e$\mu$ events
605     %to satisfy the dilepton mass requirement and apply a scaling factor K,
606     %extracted from MC, to account for the fraction of e$\mu$ events
607     %which satisfy the dilepton mass requirement. This procedure is used
608     %in order to improve the statistical precision of the OF background estimate.
609     %
610     %For the selection used in the nominal analysis,
611     %the e$\mu$ sample is completely dominated by $t\bar{t}$
612     %events, and we observe that K is statistically consistent with constant with
613     %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
614     %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
615     %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
616     %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
617     %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
618     %Therefore, the sample composition changes
619     %as the \MET\ requirement is varied, and as a result K depends
620     %on the \MET\ requirement.
621     %
622     %We thus measure K in MC separately for each
623     %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
624     %%The systematic uncertainty on K is determined separately for each \MET\
625     %%requirement by comparing the relative difference in K in data vs. MC.
626     %The values of K used are the MC predictions
627     %%and the total systematic uncertainty on the OF prediction
628     %%as shown in
629     %(Table \ref{fig:kvmettable}).
630     %The contribution to the total OF prediction systematic uncertainty
631     %from K is assessed from the ratio of K in data and MC,
632     %shown in Fig.~\ref{fig:kvmet} (right).
633     %The ratio is consistent with unity to roughly 17\%,
634     %so we take this value as the systematic from K.
635     %17\% added in quadrature with 7\% from
636     %the electron to muon efficieny ratio
637     %(as assessed in the inclusive analysis)
638     %yields a total systematic of $\sim$18\%
639     %which we round up to 20\%.
640     %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
641     %so we take a systematic based on the statistical uncertainty
642     %of the MC prediction for K.
643     %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
644     %%Although we cannot check the value of K in data for \MET\ $>$ 150
645     %%because we find no OF events inside the Z mass window for this \MET\
646     %%cut, the overall OF yields with no dilepton mass requirement
647     %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
648     %
649     %
650     %%Below Old
651     %
652     %%In reevaluating the systematics on the OF prediction, however,
653     %%we observed a different behavior of K as a function of \MET\
654     %%as was seen in the inclusive analysis.
655     %
656     %%Recall that K is the ratio of the number of \emu\ events
657     %%inside the Z window to the total number of \emu\ events.
658     %%In the inclusive analysis, it is taken from \ttbar\ MC
659     %%and used to scale the inclusive \emu\ yield in data.
660     %%The yield scaled by K is then corrected for
661     %%the $e$ vs $\mu$ efficiency difference to obtain the
662     %%final OF prediction.
663     %
664     %%Based on the plot in figure \ref{fig:kvmet},
665     %%we choose to use a different
666     %%K for each \MET\ cut and assess a systematic uncertainty
667     %%on the OF prediction based on the difference between
668     %%K in data and MC.
669     %%The variation of K as a function of \MET\ is caused
670     %%by a change in sample composition with increasing \MET.
671     %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
672     %%not negligible (as it was in the inclusive analysis)
673     %%because of the b veto. (See appendix \ref{app:kinemu}.)
674     %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
675     %
676     %
677     %
678     %
679     %\begin{figure}[hbt]
680     % \begin{center}
681     % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
682     % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
683     % \caption{
684     % \label{fig:kvmet}\protect
685     % The left plot shows
686     % K as a function of \MET\ in MC (red) and data (black).
687     % The bin low edge corresponds to the \MET\ cut, and the
688     % bins are inclusive.
689     % The MC used is a sum of all SM MC used in the yield table of
690     % section \ref{sec:yields}.
691     % The right plot is the ratio of K in data to MC.
692     % The ratio is fit to a line whose slope is consistent with zero
693     % (the fit parameters are
694     % 0.9 $\pm$ 0.4 for the intercept and
695     % 0.001 $\pm$ 0.005 for the slope).
696     % }
697     % \end{center}
698     %\end{figure}
699     %
700     %
701     %
702     %\begin{table}[htb]
703     %\begin{center}
704     %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
705     %The uncertainties shown are the total relative systematic used for the OF prediction,
706     %which is the systematic uncertainty from K added in quadrature with
707     %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
708     %inclusive analysis.
709     %}
710     %\begin{tabular}{lcc}
711     %\hline
712     %\MET\ Cut & K & Relative Systematic \\
713     %\hline
714     %%the met zero row is used only for normalization of the money plot.
715     %%0 & 0.1 & \\
716     %30 & 0.12 & 20\% \\
717     %60 & 0.13 & 20\% \\
718     %80 & 0.12 & 20\% \\
719     %100 & 0.12 & 20\% \\
720     %150 & 0.09 & 25\% \\
721     %200 & 0.06 & 60\% \\
722     %\hline
723     %\end{tabular}
724     %\end{center}
725     %\end{table}
726 vimartin 1.4
727 claudioc 1.7 \subsection{Uncertainty from the isolated track veto}
728     This is the uncertainty associated with how well the isolated track
729     veto performance is modeled by the Monte Carlo. This uncertainty
730     only applies to the fraction of dilepton BG events that have
731     a second e/$\mu$ or a one prong $\tau \to h$, with
732 claudioc 1.15 $P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see
733     Table~\ref{tab:trueisotrk}.
734     The uncertainty for these events
735 vimartin 1.19 is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
736 vimartin 1.4
737 vimartin 1.13 \begin{table}[!h]
738     \begin{center}
739     {\footnotesize
740 vimartin 1.14 \begin{tabular}{l||c|c|c|c|c|c|c}
741 vimartin 1.13 \hline
742 vimartin 1.14 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
743 vimartin 1.13 \hline
744     \hline
745 vimartin 1.14 $\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\
746 vimartin 1.13 \hline
747     \hline
748 vimartin 1.14 e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\
749 vimartin 1.13 \hline
750     \end{tabular}}
751     \caption{ Fraction of \ttdl\ events with a true isolated track.
752     \label{tab:trueisotrk}}
753     \end{center}
754     \end{table}
755    
756 claudioc 1.15 \subsubsection{Isolated Track Veto: Tag and Probe Studies}
757     \label{sec:trkveto}
758    
759 vimartin 1.13
760 vimartin 1.4 In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
761     with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
762     to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
763 claudioc 1.15 we would need to apply a data-to-MC scale factor in order to correctly
764     predict the \ttll\ background.
765    
766     This study
767 vimartin 1.4 addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
768     second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
769     in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
770     procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
771 claudioc 1.15
772 vimartin 1.4 Furthermore, we test the data and MC
773     isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
774     directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
775     may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
776     or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
777     the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
778     consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
779     $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
780     decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
781     Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
782     As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
783     leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
784 vimartin 1.19 due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
785 vimartin 1.4
786 claudioc 1.15 The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
787 vimartin 1.4 All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
788     We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
789     this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
790     not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
791     fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
792     \met\ $<$ 30 GeV and 0 b-tagged events.
793     The specific criteria for tags and probes for electrons and muons are:
794    
795     %We study the isolated track veto efficiency in bins of \njets.
796     %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
797     %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
798    
799    
800     \begin{itemize}
801     \item{Electrons}
802    
803     \begin{itemize}
804     \item{Tag criteria}
805    
806     \begin{itemize}
807     \item Electron passes full analysis ID/iso selection
808 benhoob 1.12 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
809     \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
810 vimartin 1.4 \end{itemize}
811    
812     \item{Probe criteria}
813     \begin{itemize}
814     \item Electron passes full analysis ID selection
815     \item \pt\ $>$ 30 GeV
816     \end{itemize}
817     \end{itemize}
818     \item{Muons}
819     \begin{itemize}
820     \item{Tag criteria}
821     \begin{itemize}
822     \item Muon passes full analysis ID/iso selection
823     \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
824 benhoob 1.12 \item Matched to 1 of the 2 single muon triggers
825 vimartin 1.4 \begin{itemize}
826     \item \verb=HLT_IsoMu30_v*=
827     \item \verb=HLT_IsoMu30_eta2p1_v*=
828     \end{itemize}
829     \end{itemize}
830     \item{Probe criteria}
831     \begin{itemize}
832     \item Muon passes full analysis ID selection
833     \item \pt\ $>$ 30 GeV
834     \end{itemize}
835     \end{itemize}
836     \end{itemize}
837    
838     The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
839     good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
840     absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
841 vimartin 1.19 In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
842 benhoob 1.12 efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
843 vimartin 1.4 For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
844     a data vs. MC discrepancy in the isolated track veto efficiency.
845    
846    
847     %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
848     %This requirement is chosen because most of the tracks rejected by the isolated
849     %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
850    
851     \begin{figure}[hbt]
852     \begin{center}
853 benhoob 1.12 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
854     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
855     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
856     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
857     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
858     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
859     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
860     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
861     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
862     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
863 vimartin 1.4 \caption{
864     \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
865     for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
866     }
867     \end{center}
868     \end{figure}
869    
870     \clearpage
871    
872     \begin{table}[!ht]
873     \begin{center}
874 benhoob 1.10 \begin{tabular}{l|c|c|c|c|c}
875 benhoob 1.11
876     %Electrons:
877 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
878     %Total MC yields : 2497277
879     %Total DATA yields : 2649453
880 benhoob 1.11 %Muons:
881 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
882     %Total MC yields : 3749863
883 benhoob 1.11 %Total DATA yields : 4210022
884 benhoob 1.12 %Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
885     %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
886 benhoob 1.11
887 vimartin 1.4 \hline
888     \hline
889 benhoob 1.11 e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
890 vimartin 1.4 \hline
891 benhoob 1.12 data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\
892     mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\
893     data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
894 benhoob 1.11
895 vimartin 1.4 \hline
896     \hline
897 benhoob 1.11 $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
898 vimartin 1.4 \hline
899 benhoob 1.9 data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
900 benhoob 1.12 mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
901     data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
902 benhoob 1.11
903 vimartin 1.4 \hline
904     \hline
905 benhoob 1.11 e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
906 vimartin 1.4 \hline
907 benhoob 1.12 data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\
908     mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
909     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
910 benhoob 1.11
911 vimartin 1.4 \hline
912     \hline
913 benhoob 1.11 $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
914 vimartin 1.4 \hline
915 benhoob 1.9 data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\
916 benhoob 1.12 mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
917     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\
918 benhoob 1.11
919 vimartin 1.4 \hline
920     \hline
921 benhoob 1.11 e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
922 vimartin 1.4 \hline
923 benhoob 1.12 data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\
924     mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\
925     data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\
926 benhoob 1.11
927 vimartin 1.4 \hline
928     \hline
929 benhoob 1.11 $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
930 vimartin 1.4 \hline
931 benhoob 1.9 data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\
932 benhoob 1.12 mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\
933     data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\
934 benhoob 1.11
935 vimartin 1.4 \hline
936     \hline
937 benhoob 1.11 e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
938 vimartin 1.4 \hline
939 benhoob 1.12 data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\
940     mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\
941     data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\
942 benhoob 1.11
943 vimartin 1.4 \hline
944     \hline
945 benhoob 1.11 $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
946 vimartin 1.4 \hline
947 benhoob 1.9 data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\
948 benhoob 1.12 mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\
949     data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\
950 benhoob 1.11
951 vimartin 1.4 \hline
952     \hline
953 benhoob 1.11 e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
954 vimartin 1.4 \hline
955 benhoob 1.12 data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\
956     mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\
957     data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\
958 benhoob 1.11
959 vimartin 1.4 \hline
960     \hline
961 benhoob 1.11 $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
962 vimartin 1.4 \hline
963 benhoob 1.9 data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\
964 benhoob 1.12 mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\
965     data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\
966    
967 vimartin 1.4 \hline
968 benhoob 1.11 \hline
969 benhoob 1.9
970 vimartin 1.4 \end{tabular}
971 vimartin 1.19 \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
972     on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
973     jet multiplicity requirements.}
974 vimartin 1.4 \end{center}
975     \end{table}
976    
977 vimartin 1.22 \clearpage
978     \subsection{Summary of uncertainties}
979 linacre 1.24 \label{sec:bgunc-bottomline}
980    
981 linacre 1.25 The contribution from each source to the total uncertainty on the background yield is given in Tables~\ref{tab:relativeuncertaintycomponents} and~\ref{tab:uncertaintycomponents} for the relative and absolute uncertainties, respectively. In the low-\met\ regions the dominant uncertainty comes from the top tail-to-peak ratio, $R_{top}$ (Section~\ref{sec:ttp}), while in the high-\met\ regions the \ttll\ systematic uncertainty dominates (Section~\ref{sec:ttdilbkgunc}).
982 linacre 1.24
983 vimartin 1.22 \input{uncertainties_table.tex}
984 vimartin 1.4
985 linacre 1.24
986    
987    
988    
989 vimartin 1.4 %Figure.~\ref{fig:reliso} compares the relative track isolation
990     %for events with a track with $\pt > 10~\GeV$ in addition to a selected
991     %muon for $\Z+4$ jet events and various \ttll\ components. The
992     %isolation distributions show significant differences, particularly
993     %between the leptons from a \W\ or \Z\ decay and the tracks arising
994     %from $\tau$ decays. As can also be seen in the figure, the \pt\
995     %distribution for the various categories of tracks is different, where
996     %the decay products from $\tau$s are significantly softer. Since the
997     %\pt\ enters the denominator of the isolation definition and hence
998     %alters the isolation variable...
999    
1000     %\begin{figure}[hbt]
1001     % \begin{center}
1002     % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
1003     % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
1004     % \caption{
1005     % \label{fig:reliso}%\protect
1006     % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
1007     % Z+Jets and ttbar dilepton have similar isolation distributions
1008     % ttbar with leptonic and single prong taus tend to be less
1009     % isolated. The difference in the isolation can be attributed
1010     % to the different \pt\ distribution of the samples, since
1011     % $\tau$ decay products tend to be softer than leptons arising
1012     % from \W\ or \Z\ decays.}
1013     % \end{center}
1014     %\end{figure}
1015    
1016     % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
1017    
1018    
1019     %BEGIN SECTION TO WRITE OUT
1020     %In detail, the procedure to correct the dilepton background is:
1021    
1022     %\begin{itemize}
1023     %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
1024     %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
1025     %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
1026     %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
1027     %the lepton \pt {\bf TODO: verify this in data and MC.}.
1028     %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
1029     %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
1030     %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
1031     %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
1032     %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
1033     %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
1034     %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
1035     %\end{itemize}
1036     %END SECTION TO WRITE OUT
1037    
1038    
1039 claudioc 1.15 %{\bf fix me: What you have written in the next paragraph does not
1040     %explain how $\epsilon_{fake}$ is measured.
1041     %Why not measure $\epsilon_{fake}$ in the b-veto region?}
1042 vimartin 1.4
1043 vimartin 1.5 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
1044     %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
1045     %applying an additional scale factor for the single lepton background
1046     %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
1047     %veto and after subtracting the \ttll\ component, corrected for the
1048     %isolation efficiency derived previously.
1049     %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
1050     %isolated track in single lepton events is independent of \mt\, so the use of
1051     %an overall scale factor is justified to estimate the contribution in
1052     %the \mt\ tail.
1053     %
1054     %\begin{figure}[hbt]
1055     % \begin{center}
1056     % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
1057     % \caption{
1058     % \label{fig:vetoeffcomp}%\protect
1059     % Efficiency for selecting an isolated track comparing
1060     % single lepton \ttlj\ and dilepton \ttll\ events in MC and
1061     % data as a function of \mt. The
1062     % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
1063     % \mt\, while the data ranges between the two. This behavior
1064     % is expected since the low \mt\ region is predominantly \ttlj, while the
1065     % high \mt\ region contains mostly \ttll\ events.}
1066     % \end{center}
1067     %\end{figure}
1068 vimartin 1.4
1069 vimartin 1.22
1070 claudioc 1.7
1071 claudioc 1.17 % THIS NEEDS TO BE WRITTEN