ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.1 by benhoob, Sun Jun 24 15:06:07 2012 UTC vs.
Revision 1.17 by claudioc, Fri Oct 12 02:41:46 2012 UTC

# Line 1 | Line 1
1 < \section{Systematics Uncertainties in the Background Prediction}
2 < \label{sec:systematics}
1 > %\section{Systematics Uncertainties on the Background Prediction}
2 > %\label{sec:systematics}
3  
4 < The methodology for determining the systematics on the background
5 < predictions has not changed with respect to the nominal analysis.
6 < Because the template method has not changed, the same
7 < systematic uncertainty is assessed on this prediction (32\%).
8 < The 50\% uncertainty on the WZ and ZZ background is also unchanged.
9 < The systematic uncertainty in the OF background prediction based on
10 < e$\mu$ events has changed, due to the different composition of this
11 < sample after vetoing events containing b-tagged jets.
12 <
13 < As in the nominal analysis, we do not require the e$\mu$ events
14 < to satisfy the dilepton mass requirement and apply a scaling factor K,
15 < extracted from MC, to account for the fraction of e$\mu$ events
16 < which satisfy the dilepton mass requirement. This procedure is used
17 < in order to improve the statistical precision of the OF background estimate.
18 <
19 < For the selection used in the nominal analysis,
20 < the e$\mu$ sample is completely dominated by $t\bar{t}$
21 < events, and we observe that K is statistically consistent with constant with
22 < respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
23 < background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
24 < backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
25 < At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
26 < and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
27 < Therefore, the sample composition changes
28 < as the \MET\ requirement is varied, and as a result K depends
29 < on the \MET\ requirement.
30 <
31 < We thus measure K in MC separately for each
32 < \MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
33 < %The systematic uncertainty on K is determined separately for each \MET\
34 < %requirement by comparing the relative difference in K in data vs. MC.
35 < The values of K used are the MC predictions
36 < %and the total systematic uncertainty on the OF prediction
37 < %as shown in
38 < (Table \ref{fig:kvmettable}).
39 < The contribution to the total OF prediction systematic uncertainty
40 < from K is assessed from the ratio of K in data and MC,
41 < shown in Fig.~\ref{fig:kvmet} (right).
42 < The ratio is consistent with unity to roughly 17\%,
43 < so we take this value as the systematic from K.
44 < 17\% added in quadrature with 7\% from
45 < the electron to muon efficieny ratio
46 < (as assessed in the inclusive analysis)
47 < yields a total systematic of $\sim$18\%
48 < which we round up to 20\%.
49 < For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
50 < so we take a systematic based on the statistical uncertainty
51 < of the MC prediction for K.
52 < This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
53 < %Although we cannot check the value of K in data for \MET\ $>$ 150
54 < %because we find no OF events inside the Z mass window for this \MET\
55 < %cut, the overall OF yields with no dilepton mass requirement
56 < %agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
57 <
58 <
59 < %Below Old
60 <
61 < %In reevaluating the systematics on the OF prediction, however,
62 < %we observed a different behavior of K as a function of \MET\
63 < %as was seen in the inclusive analysis.
64 <
65 < %Recall that K is the ratio of the number of \emu\ events
66 < %inside the Z window to the total number of \emu\ events.
67 < %In the inclusive analysis, it is taken from \ttbar\ MC
68 < %and used to scale the inclusive \emu\ yield in data.
69 < %The yield scaled by K is then corrected for
70 < %the $e$ vs $\mu$ efficiency difference to obtain the
71 < %final OF prediction.
72 <
73 < %Based on the plot in figure \ref{fig:kvmet},
74 < %we choose to use a different
75 < %K for each \MET\ cut and assess a systematic uncertainty
76 < %on the OF prediction based on the difference between
77 < %K in data and MC.
78 < %The variation of K as a function of \MET\ is caused
79 < %by a change in sample composition with increasing \MET.
80 < %At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
81 < %not negligible (as it was in the inclusive analysis)
82 < %because of the b veto. (See appendix \ref{app:kinemu}.)
83 < %At higher \MET, \ttbar\ and diboson backgrounds dominate.
4 > In this Section we discuss the systematic uncertainty on the BG
5 > prediction.  This prediction is assembled from the event
6 > counts in the peak region of the transverse mass distribution as
7 > well as Monte Carlo
8 > with a number of correction factors, as described previously.
9 > The
10 > final uncertainty on the prediction is built up from the uncertainties in these
11 > individual
12 > components.
13 > The calculation is done for each signal
14 > region,
15 > for electrons and muons separately.
16 >
17 > The choice to normalizing to the peak region of $M_T$ has the
18 > advantage that some uncertainties, e.g., luminosity, cancel.
19 > It does however introduce complications because it couples
20 > some of the uncertainties in non-trivial ways.  For example,
21 > the primary effect of an uncertainty on the rare MC cross-section
22 > is to introduce an uncertainty in the rare MC background estimate
23 > which comes entirely from MC.   But this uncertainty also affects,
24 > for example,
25 > the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 > $t\bar{t}$ normalization to the peak region (because some of the
27 > events in the peak region are from rare processes).  These effects
28 > are carefully accounted for.  The contribution to the overall
29 > uncertainty from each BG source is tabulated in
30 > Section~\ref{sec:bgunc-bottomline}.
31 > First, however, we discuss the uncertainties one-by-one and we comment
32 > on their impact on the overall result, at least to first order.
33 > Second order effects, such as the one described, are also included.
34 >
35 > \subsection{Statistical uncertainties on the event counts in the $M_T$
36 > peak regions}
37 > These vary between 2\% and 20\%, depending on the signal region
38 > (different
39 > signal regions have different \met\ requirements, thus they also have
40 > different $M_T$ regions used as control.
41 > Since
42 > the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
43 > fractional uncertainty is pretty much carried through all the way to
44 > the end.  There is also an uncertainty from the finite MC event counts
45 > in the $M_T$ peak regions.  This is also included, but it is smaller.
46 >
47 > Normalizing to the $M_T$ peak has the distinct advantages that
48 > uncertainties on luminosity, cross-sections, trigger efficiency,
49 > lepton ID, cancel out.
50 > For the low statistics regions with high \met requirements, the
51 > price to pay in terms of event count statistical uncertainties starts
52 > to become significant.  In the future we may consider a different
53 > normalization startegy in the low statistics regions.
54 >
55 > \subsection{Uncertainty from the choice of $M_T$ peak region}
56 >
57 > This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
58 > If the $M_T$ peak region is not well modelled, this would introduce an
59 > uncertainty.
60 >
61 > We have tested this possibility by recalculating the post veto scale factors for a different
62 > choice
63 > of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 > $50 < M_T < 80$ GeV.  This is shown in Table~\ref{tab:mtpeaksf2}.  
65 > The two results for the scale factors are very compatible.
66 > We do not take any systematic uncertainty for this possible effect.
67  
68 + \begin{table}[!h]
69 + \begin{center}
70 + {\footnotesize
71 + \begin{tabular}{l||c|c|c|c|c|c|c}
72 + \hline
73 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 + \hline
75 + \hline
76 + \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 + \hline
78 + $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 + $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 + \hline
81 + $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 + \hline
83 + \hline
84 + e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 + e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 + \hline
87 + e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 + \hline
89 + \hline
90 + \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 + \hline
92 + $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 + $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 + \hline
95 + $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 + \hline
97 + \hline
98 + e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 + e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 + \hline
101 + e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 + \hline
103 + \end{tabular}}
104 + \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 +  \ttdl\ sample, while the post-veto SFs are applied to the single
106 +  lepton samples. The veto SF is shown for comparison across channels.
107 +  The raw MC is used for backgrounds from rare processes.
108 +  The uncertainties are statistical only.
109 + \label{tab:mtpeaksf2}}
110 + \end{center}
111 + \end{table}
112  
113  
114 + \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
115 + These are taken as 50\%, uncorrelated.  
116 + The primary effect is to introduce a 50\%
117 + uncertainty
118 + on the $W +$ jets and rare BG
119 + background predictions, respectively.  However they also
120 + have an effect on the other BGs via the $M_T$ peak normalization
121 + in a way that tends to reduce the uncertainty.  This is easy
122 + to understand: if the $W$ cross-section is increased by 50\%, then
123 + the $W$ background goes up.  But the number of $M_T$ peak events
124 + attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125 + scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126 + BG goes down.  
127 +
128 + \subsection{Scale factors for the tail-to-peak ratios for lepton +
129 +  jets top and W events}
130 + These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
131 + They are studied in CR1 and CR2.  The studies are described
132 + in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
133 + we also give the uncertainty on the scale factors.  See
134 + Tables~\ref{tab:cr1yields}
135 + and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top})$.
136 +
137 + \subsection{Uncertainty on extra jet radiation for dilepton
138 +  background}
139 + As discussed in Section~\ref{sec:jetmultiplicity}, the
140 + jet distribution in
141 + $t\bar{t} \to$
142 + dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
143 + it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
144 + comes from data/MC statistics.  This  
145 + result directly in a 3\% uncertainty on the dilepton BG, which is by far
146 + the most important one.
147 +
148 +
149 + \subsection{Uncertainty on the \ttll\ Acceptance}
150 +
151 + The \ttbar\ background prediction is obtained from MC, with corrections
152 + derived from control samples in data. The uncertainty associated with
153 + the theoretical modeling of the \ttbar\ production and decay is
154 + estimated by comparing the background predictions obtained using
155 + alternative MC samples. It should be noted that the full analysis is
156 + performed with the alternative samples under consideration,
157 + including the derivation of the various data-to-MC scale factors.
158 + The variations considered are
159 +
160 + \begin{itemize}
161 + \item Top mass: The alternative values for the top mass differ
162 +  from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
163 +  = 166.5~\GeV$.
164 + \item Jet-parton matching scale: This corresponds to variations in the
165 +  scale at which the Matrix Element partons from Madgraph are matched
166 +  to Parton Shower partons from Pythia. The nominal value is
167 +  $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
168 +  $x_q>40~\GeV$.
169 + \item Renormalization and factorization scale: The alternative samples
170 +  correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
171 +  value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
172 +  \sum_{\mathrm{jets}} \pt^2$.
173 + \item Alternative generators: Samples produced with different
174 +  generators, Powheg (our default) and Madgraph.
175 + \item Modeling of taus: The alternative sample does not include
176 +  Tauola and is otherwise identical to the Powheg sample.
177 +  This effect was studied earlier using 7~TeV samples and found to be negligible.
178 + \item The PDF uncertainty is estimated following the PDF4LHC
179 +  recommendations[CITE]. The events are reweighted using alternative
180 +  PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
181 +  alternative eigenvector variations and the ``master equation''. In
182 +  addition, the NNPDF2.1 set with 100 replicas. The central value is
183 +  determined from the mean and the uncertainty is derived from the
184 +  $1\sigma$ range. The overall uncertainty is derived from the envelope of the
185 +  alternative predictions and their uncertainties.
186 +  This effect was studied earlier using 7~TeV samples and found to be negligible.
187 +  \end{itemize}
188  
189   \begin{figure}[hbt]
190    \begin{center}
191 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
192 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
191 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
192 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
193 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
194 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
195 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
196          \caption{
197 <          \label{fig:kvmet}\protect
198 <          The left plot shows
199 <          K as a function of \MET\ in MC (red) and data (black).
200 <          The bin low edge corresponds to the \MET\ cut, and the
201 <          bins are inclusive.
202 <          The MC used is a sum of all SM MC used in the yield table of
203 <          section \ref{sec:yields}.
204 <          The right plot is the ratio of K in data to MC.
205 <          The ratio is fit to a line whose slope is consistent with zero
206 <          (the fit parameters are
207 <          0.9 $\pm$  0.4 for the intercept and
208 <      0.001 $\pm$ 0.005 for the slope).
209 <        }
210 <  \end{center}
197 >          \label{fig:ttllsyst}\protect
198 >          Comparison of the \ttll\ central prediction with those using
199 >          alternative MC samples. The blue band corresponds to the
200 >          total statistical error for all data and MC samples. The
201 >          alternative sample predictions are indicated by the
202 >          datapoints. The uncertainties on the alternative predictions
203 >          correspond to the uncorrelated statistical uncertainty from
204 >          the size of the alternative sample only.  Note the
205 >          suppressed vertical scales.}
206 >      \end{center}
207 >    \end{figure}
208 >
209 >
210 > \begin{table}[!h]
211 > \begin{center}
212 > {\footnotesize
213 > \begin{tabular}{l||c|c|c|c|c|c|c}
214 > \hline
215 > $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
216 > Match Up & Match Down \\
217 > \hline
218 > \hline
219 > SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
220 > \hline
221 > SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
222 > \hline
223 > % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
224 > % \hline
225 > % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
226 > % \hline
227 > % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
228 > \hline
229 > \end{tabular}}
230 > \caption{ Relative difference in \ttdl\ predictions for alternative MC
231 >  samples in
232 > the higher statistics regions SRA and SRB.  These differences
233 > are based on the central values of the predictions.  For a fuller
234 > picture
235 > of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
236 > \label{tab:fracdiff}}
237 > \end{center}
238 > \end{table}
239 >
240 >
241 > In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
242 > for regions A through E.  We can make the following observations based
243 > on this Figure.
244 >
245 > \begin{itemize}
246 > \item In the tighter signal regions we are running out of
247 >  statistics.    
248 > \item Within the limited statistics, there is no evidence that the
249 >  situation changes as we go from signal region A to signal region E.
250 > Therefore, we assess a systematic based on the relatively high
251 > statistics
252 > test in signal region A, and apply the same systematic uncertainty
253 > to all other regions.
254 > \item In order to fully (as opposed as 1$\sigma$) cover the
255 > alternative MC variations in region A we would have to take a
256 > systematic
257 > uncertainty of $\approx 10\%$.  This would be driven by the
258 > scale up/scale down variations, see Table~\ref{tab:fracdiff}.
259 > \end{itemize}
260 >
261 > \begin{table}[!ht]
262 > \begin{center}
263 > \begin{tabular}{l|c|c}
264 > \hline
265 >            Sample
266 >            &                K3   & K4\\
267 > \hline
268 > \hline
269 > Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
270 > Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
271 > Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
272 > Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
273 > Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
274 > Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
275 > Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
276 > Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
277 > \hline
278 > \end{tabular}
279 > \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
280 >  fraction of events with additional hard jets from radiation in
281 >  \ttll\ events. \label{tab:njetskfactors_met100}}
282 > \end{center}
283 > \end{table}
284 >
285 >
286 > However, we have two pieces of information indicating that the
287 > scale up/scale down variations are inconsistent with the data.
288 > These are described below.
289 >
290 > The first piece of information is that the jet multiplicity in the scale
291 > up/scale down sample is the most inconsistent with the data.  This can be shown
292 > in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
293 > $K_3$ and $K_4$ factors of Section~\ref{tab:njetskfactors_met100} for
294 > different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
295 > distribution
296 > for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
297 > and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
298 > equivalent $N_{jets}$ plots for the default Powheg MC, see
299 > Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
300 >
301 > \begin{figure}[hbt]
302 >  \begin{center}
303 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
304 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
305 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
306 >        \caption{
307 >          \label{fig:dileptonnjets_scaleup}%\protect
308 >          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
309 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
310 >      \end{center}
311   \end{figure}
312  
313 + \begin{figure}[hbt]
314 +  \begin{center}
315 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
316 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
317 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
318 +        \caption{
319 +          \label{fig:dileptonnjets_scaledw}%\protect
320 +          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
321 +          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
322 +      \end{center}
323 + \end{figure}
324  
325  
326 < \begin{table}[htb]
326 > \clearpage
327 >
328 > The second piece of information is that we have performed closure
329 > tests in CR5 using the alternative MC samples.  These are exactly
330 > the same tests as the one performed in Section~\ref{sec:CR5} on the
331 > Powheg sample.  As we argued previously, this is a very powerful
332 > test of the background calculation.
333 > The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
334 > Concentrating on the relatively high statistics CR5A region, we see
335 > for all \ttbar\ MC samples except scale up/scale down we obtain
336 > closure within 1$\sigma$.  The scale up/scale down tests closes
337 > worse, only within 2$\sigma$.  This again is evidence that the
338 > scale up/scale down variations are in disagreement with the data.
339 >
340 > \input{hugeCR5Table.tex}
341 >
342 > Based on the two observations above, we argue that the MC
343 > scale up/scale down variations are too extreme.  We feel that
344 > a reasonable choice would be to take one-half of the scale up/scale
345 > down variations in our MC.  This factor of 1/2 would then bring
346 > the discrepancy in the closure test of
347 > Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
348 > from about 2$\sigma$ to about 1$\sigma$.
349 >
350 > Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
351 > up/scale
352 > down variations by a factor 2, we can see that a systematic
353 > uncertainty
354 > of 6\% would fully cover all of the variations from different MC
355 > samples in SRA and SRB.
356 > {\bf Thus, we take a 6\% systematic uncertainty,  constant as a
357 > function of signal region, as the systematic due to alternative MC
358 > models.}.
359 > Note that this 6\% is also consistent with the level at which we are
360 > able
361 > to test the closure of the method in CR5 for the high statistics
362 > regions
363 > (Table~\ref{tab:hugecr5yields}).
364 >
365 >
366 >
367 >
368 >
369 >
370 > %\begin{table}[!h]
371 > %\begin{center}
372 > %{\footnotesize
373 > %\begin{tabular}{l||c||c|c|c|c|c|c|c}
374 > %\hline
375 > %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
376 > %Up & Scale Down &
377 > %Match Up & Match Down \\
378 > %\hline
379 > %\hline
380 > %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
381 > %\hline
382 > %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
383 > %\hline
384 > %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
385 > %\hline
386 > %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
387 > %\hline
388 > %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
389 > %\hline
390 > %\end{tabular}}
391 > %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
392 > %\label{tab:ttdlalt}}
393 > %\end{center}
394 > %\end{table}
395 >
396 >
397 >
398 >
399 > %\begin{table}[!h]
400 > %\begin{center}
401 > %{\footnotesize
402 > %\begin{tabular}{l||c|c|c|c|c|c|c}
403 > %\hline
404 > %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
405 > %Match Up & Match Down \\
406 > %\hline
407 > %\hline
408 > %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
409 > %\hline
410 > %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
411 > %\hline
412 > %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
413 > %\hline
414 > %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
415 > %\hline
416 > %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
417 > %\hline
418 > %\end{tabular}}
419 > %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
420 > %\label{tab:nsig}}
421 > %\end{center}
422 > %\end{table}
423 >
424 >
425 > %\begin{table}[!h]
426 > %\begin{center}
427 > %\begin{tabular}{l||c|c|c|c}
428 > %\hline
429 > %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
430 > %& $\Delta$ Match \\
431 > %\hline
432 > %\hline
433 > %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
434 > %\hline
435 > %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
436 > %\hline
437 > %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
438 > %\hline
439 > %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
440 > %\hline
441 > %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
442 > %\hline
443 > %\end{tabular}
444 > %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
445 > %\label{tab:devt}}
446 > %\end{center}
447 > %\end{table}
448 >
449 >
450 >
451 > \clearpage
452 >
453 > %
454 > %
455 > %The methodology for determining the systematics on the background
456 > %predictions has not changed with respect to the nominal analysis.
457 > %Because the template method has not changed, the same
458 > %systematic uncertainty is assessed on this prediction (32\%).
459 > %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
460 > %The systematic uncertainty in the OF background prediction based on
461 > %e$\mu$ events has changed, due to the different composition of this
462 > %sample after vetoing events containing b-tagged jets.
463 > %
464 > %As in the nominal analysis, we do not require the e$\mu$ events
465 > %to satisfy the dilepton mass requirement and apply a scaling factor K,
466 > %extracted from MC, to account for the fraction of e$\mu$ events
467 > %which satisfy the dilepton mass requirement. This procedure is used
468 > %in order to improve the statistical precision of the OF background estimate.
469 > %
470 > %For the selection used in the nominal analysis,
471 > %the e$\mu$ sample is completely dominated by $t\bar{t}$
472 > %events, and we observe that K is statistically consistent with constant with
473 > %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
474 > %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
475 > %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
476 > %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
477 > %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
478 > %Therefore, the sample composition changes
479 > %as the \MET\ requirement is varied, and as a result K depends
480 > %on the \MET\ requirement.
481 > %
482 > %We thus measure K in MC separately for each
483 > %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
484 > %%The systematic uncertainty on K is determined separately for each \MET\
485 > %%requirement by comparing the relative difference in K in data vs. MC.
486 > %The values of K used are the MC predictions
487 > %%and the total systematic uncertainty on the OF prediction
488 > %%as shown in
489 > %(Table \ref{fig:kvmettable}).
490 > %The contribution to the total OF prediction systematic uncertainty
491 > %from K is assessed from the ratio of K in data and MC,
492 > %shown in Fig.~\ref{fig:kvmet} (right).
493 > %The ratio is consistent with unity to roughly 17\%,
494 > %so we take this value as the systematic from K.
495 > %17\% added in quadrature with 7\% from
496 > %the electron to muon efficieny ratio
497 > %(as assessed in the inclusive analysis)
498 > %yields a total systematic of $\sim$18\%
499 > %which we round up to 20\%.
500 > %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
501 > %so we take a systematic based on the statistical uncertainty
502 > %of the MC prediction for K.
503 > %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
504 > %%Although we cannot check the value of K in data for \MET\ $>$ 150
505 > %%because we find no OF events inside the Z mass window for this \MET\
506 > %%cut, the overall OF yields with no dilepton mass requirement
507 > %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
508 > %
509 > %
510 > %%Below Old
511 > %
512 > %%In reevaluating the systematics on the OF prediction, however,
513 > %%we observed a different behavior of K as a function of \MET\
514 > %%as was seen in the inclusive analysis.
515 > %
516 > %%Recall that K is the ratio of the number of \emu\ events
517 > %%inside the Z window to the total number of \emu\ events.
518 > %%In the inclusive analysis, it is taken from \ttbar\ MC
519 > %%and used to scale the inclusive \emu\ yield in data.
520 > %%The yield scaled by K is then corrected for
521 > %%the $e$ vs $\mu$ efficiency difference to obtain the
522 > %%final OF prediction.
523 > %
524 > %%Based on the plot in figure \ref{fig:kvmet},
525 > %%we choose to use a different
526 > %%K for each \MET\ cut and assess a systematic uncertainty
527 > %%on the OF prediction based on the difference between
528 > %%K in data and MC.
529 > %%The variation of K as a function of \MET\ is caused
530 > %%by a change in sample composition with increasing \MET.
531 > %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
532 > %%not negligible (as it was in the inclusive analysis)
533 > %%because of the b veto. (See appendix \ref{app:kinemu}.)
534 > %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
535 > %
536 > %
537 > %
538 > %
539 > %\begin{figure}[hbt]
540 > %  \begin{center}
541 > %       \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
542 > %       \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
543 > %       \caption{
544 > %         \label{fig:kvmet}\protect
545 > %         The left plot shows
546 > %         K as a function of \MET\ in MC (red) and data (black).
547 > %         The bin low edge corresponds to the \MET\ cut, and the
548 > %         bins are inclusive.
549 > %         The MC used is a sum of all SM MC used in the yield table of
550 > %         section \ref{sec:yields}.
551 > %         The right plot is the ratio of K in data to MC.
552 > %         The ratio is fit to a line whose slope is consistent with zero
553 > %         (the fit parameters are
554 > %         0.9 $\pm$  0.4 for the intercept and
555 > %      0.001 $\pm$ 0.005 for the slope).
556 > %       }
557 > %  \end{center}
558 > %\end{figure}
559 > %
560 > %
561 > %
562 > %\begin{table}[htb]
563 > %\begin{center}
564 > %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
565 > %The uncertainties shown are the total relative systematic used for the OF prediction,
566 > %which is the systematic uncertainty from K added in quadrature with
567 > %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
568 > %inclusive analysis.
569 > %}
570 > %\begin{tabular}{lcc}
571 > %\hline
572 > %\MET\ Cut    &    K        &  Relative Systematic \\
573 > %\hline
574 > %%the met zero row is used only for normalization of the money plot.
575 > %%0    &  0.1   &        \\  
576 > %30   &  0.12  &  20\%  \\  
577 > %60   &  0.13  &  20\%  \\  
578 > %80   &  0.12  &  20\%  \\  
579 > %100  &  0.12  &  20\%  \\  
580 > %150  &  0.09  &  25\%  \\  
581 > %200  &  0.06  &  60\%  \\  
582 > %\hline
583 > %\end{tabular}
584 > %\end{center}
585 > %\end{table}
586 >
587 > \subsection{Uncertainty from the isolated track veto}
588 > This is the uncertainty associated with how well the isolated track
589 > veto performance is modeled by the Monte Carlo.  This uncertainty
590 > only applies to the fraction of dilepton BG events that have
591 > a second e/$\mu$ or a one prong $\tau \to h$, with
592 > $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
593 > Table~\ref{tab:trueisotrk}.
594 > The uncertainty for these events
595 > is 6\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
596 >
597 > \begin{table}[!h]
598   \begin{center}
599 < \caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
600 < The uncertainties shown are the total relative systematic used for the OF prediction,
601 < which is the systematic uncertainty from K added in quadrature with
602 < a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
117 < inclusive analysis.
118 < }
119 < \begin{tabular}{lcc}
120 < \hline
121 < \MET\ Cut    &    K        &  Relative Systematic \\
122 < \hline
123 < %the met zero row is used only for normalization of the money plot.
124 < %0    &  0.1   &        \\  
125 < 30   &  0.12  &  20\%  \\  
126 < 60   &  0.13  &  20\%  \\  
127 < 80   &  0.12  &  20\%  \\  
128 < 100  &  0.12  &  20\%  \\  
129 < 150  &  0.09  &  25\%  \\  
130 < 200  &  0.06  &  60\%  \\  
599 > {\footnotesize
600 > \begin{tabular}{l||c|c|c|c|c|c|c}
601 > \hline
602 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
603   \hline
604 + \hline
605 + $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
606 + \hline
607 + \hline
608 + e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
609 + \hline
610 + \end{tabular}}
611 + \caption{ Fraction of \ttdl\ events with a true isolated track.
612 + \label{tab:trueisotrk}}
613 + \end{center}
614 + \end{table}
615 +
616 + \subsubsection{Isolated Track Veto: Tag and Probe Studies}
617 + \label{sec:trkveto}
618 +
619 +
620 + In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
621 + with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
622 + to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
623 + we would need to apply a data-to-MC scale factor in order to correctly
624 + predict the \ttll\ background.
625 +
626 + This study
627 + addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
628 + second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
629 + in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
630 + procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
631 +
632 + Furthermore, we test the data and MC
633 + isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
634 + directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
635 + may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
636 + or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
637 + the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
638 + consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
639 + $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
640 + decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
641 + Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
642 + As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
643 + leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
644 + due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
645 +
646 + The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
647 + All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
648 + We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
649 + this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
650 + not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
651 + fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
652 + \met\ $<$ 30 GeV and 0 b-tagged events.
653 + The specific criteria for tags and probes for electrons and muons are:
654 +
655 + %We study the isolated track veto efficiency in bins of \njets.
656 + %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
657 + %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
658 +
659 +
660 + \begin{itemize}
661 +  \item{Electrons}
662 +
663 +    \begin{itemize}
664 +    \item{Tag criteria}
665 +
666 +      \begin{itemize}
667 +      \item Electron passes full analysis ID/iso selection
668 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
669 +      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
670 +      \end{itemize}
671 +
672 +    \item{Probe criteria}
673 +      \begin{itemize}
674 +      \item Electron passes full analysis ID selection
675 +      \item \pt\ $>$ 30 GeV
676 +      \end{itemize}
677 +      \end{itemize}
678 +  \item{Muons}
679 +    \begin{itemize}
680 +    \item{Tag criteria}
681 +      \begin{itemize}
682 +      \item Muon passes full analysis ID/iso selection
683 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
684 +      \item Matched to 1 of the 2 single muon triggers
685 +        \begin{itemize}
686 +        \item \verb=HLT_IsoMu30_v*=
687 +        \item \verb=HLT_IsoMu30_eta2p1_v*=
688 +        \end{itemize}
689 +      \end{itemize}
690 +    \item{Probe criteria}
691 +      \begin{itemize}
692 +      \item Muon passes full analysis ID selection
693 +      \item \pt\ $>$ 30 GeV
694 +      \end{itemize}
695 +    \end{itemize}
696 + \end{itemize}
697 +
698 + The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
699 + good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
700 + absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
701 + In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
702 + efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
703 + For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
704 + a data vs. MC discrepancy in the isolated track veto efficiency.
705 +
706 +
707 + %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
708 + %This requirement is chosen because most of the tracks rejected by the isolated
709 + %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
710 +
711 + \begin{figure}[hbt]
712 +  \begin{center}
713 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
714 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
715 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
716 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
717 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
718 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
719 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
720 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
721 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
722 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
723 +        \caption{
724 +          \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
725 + for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
726 + }  
727 +      \end{center}
728 + \end{figure}
729 +
730 + \clearpage
731 +
732 + \begin{table}[!ht]
733 + \begin{center}
734 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
735 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
736 + jet multiplicity requirements.}
737 + \begin{tabular}{l|c|c|c|c|c}
738 +
739 + %Electrons:
740 + %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
741 + %Total MC yields        : 2497277
742 + %Total DATA yields      : 2649453
743 + %Muons:
744 + %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
745 + %Total MC yields        : 3749863
746 + %Total DATA yields      : 4210022
747 + %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
748 + %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
749 +
750 + \hline
751 + \hline
752 + e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
753 + \hline
754 +      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
755 +        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
756 +   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
757 +
758 + \hline
759 + \hline
760 + $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
761 + \hline
762 +      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
763 +        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
764 +   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
765 +
766 + \hline
767 + \hline
768 + e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
769 + \hline
770 +      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
771 +        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
772 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
773 +
774 + \hline
775 + \hline
776 + $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
777 + \hline
778 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
779 +        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
780 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
781 +
782 + \hline
783 + \hline
784 + e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
785 + \hline
786 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
787 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
788 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
789 +
790 + \hline
791 + \hline
792 + $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
793 + \hline
794 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
795 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
796 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
797 +
798 + \hline
799 + \hline
800 + e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
801 + \hline
802 +      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
803 +        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
804 +   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
805 +
806 + \hline
807 + \hline
808 + $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
809 + \hline
810 +      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
811 +        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
812 +   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
813 +
814 + \hline
815 + \hline
816 + e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
817 + \hline
818 +      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
819 +        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
820 +   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
821 +
822 + \hline
823 + \hline
824 + $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
825 + \hline
826 +      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
827 +        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
828 +   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
829 +
830 + \hline
831 + \hline
832 +
833   \end{tabular}
834   \end{center}
835   \end{table}
836 +
837 +
838 + %Figure.~\ref{fig:reliso} compares the relative track isolation
839 + %for events with a track with $\pt > 10~\GeV$ in addition to a selected
840 + %muon for $\Z+4$ jet events and various \ttll\ components. The
841 + %isolation distributions show significant differences, particularly
842 + %between the leptons from a \W\ or \Z\ decay and the tracks arising
843 + %from $\tau$ decays. As can also be seen in the figure, the \pt\
844 + %distribution for the various categories of tracks is different, where
845 + %the decay products from $\tau$s are significantly softer. Since the
846 + %\pt\ enters the denominator of the isolation definition and hence
847 + %alters the isolation variable...
848 +
849 + %\begin{figure}[hbt]
850 + %  \begin{center}
851 + %       \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
852 + %       \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
853 + %       \caption{
854 + %         \label{fig:reliso}%\protect
855 + %          Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
856 + %          Z+Jets and ttbar dilepton have similar isolation distributions
857 + %          ttbar with leptonic and single prong taus tend to be less
858 + %          isolated. The difference in the isolation can be attributed
859 + %          to the different \pt\ distribution of the samples, since
860 + %          $\tau$ decay products tend to be softer than leptons arising
861 + %          from \W\ or \Z\ decays.}  
862 + %      \end{center}
863 + %\end{figure}
864 +
865 + %       \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
866 +
867 +
868 + %BEGIN SECTION TO WRITE OUT
869 + %In detail, the procedure to correct the dilepton background is:
870 +
871 + %\begin{itemize}
872 + %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
873 + %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
874 + %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
875 + %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
876 + %the lepton \pt {\bf TODO: verify this in data and MC.}.
877 + %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
878 + %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
879 + %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
880 + %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
881 + %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
882 + %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
883 + %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
884 + %\end{itemize}
885 + %END SECTION TO WRITE OUT
886 +
887 +
888 + %{\bf fix me: What you have written in the next paragraph does not
889 + %explain how $\epsilon_{fake}$ is measured.
890 + %Why not measure $\epsilon_{fake}$ in the b-veto region?}
891 +
892 + %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
893 + %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
894 + %applying an additional scale factor for the single lepton background
895 + %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
896 + %veto and after subtracting the \ttll\ component, corrected for the
897 + %isolation efficiency derived previously.
898 + %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
899 + %isolated track in single lepton events is independent of \mt\, so the use of
900 + %an overall scale factor is justified to estimate the contribution in
901 + %the \mt\ tail.
902 + %
903 + %\begin{figure}[hbt]
904 + %  \begin{center}
905 + %       \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
906 + %       \caption{
907 + %         \label{fig:vetoeffcomp}%\protect
908 + %          Efficiency for selecting an isolated track comparing
909 + %          single lepton \ttlj\ and dilepton \ttll\ events in MC and
910 + %          data as a function of \mt. The
911 + %          efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
912 + %          \mt\, while the data ranges between the two. This behavior
913 + %          is expected since the low \mt\ region is predominantly \ttlj, while the
914 + %          high \mt\ region contains mostly \ttll\ events.}  
915 + %      \end{center}
916 + %\end{figure}
917 +
918 + % \subsection{Summary of uncertainties}
919 + % \label{sec:bgunc-bottomline}.
920 +
921 + % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines