ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.1 by benhoob, Sun Jun 24 15:06:07 2012 UTC vs.
Revision 1.19 by vimartin, Fri Oct 12 20:09:46 2012 UTC

# Line 1 | Line 1
1 < \section{Systematics Uncertainties in the Background Prediction}
2 < \label{sec:systematics}
1 > %\section{Systematics Uncertainties on the Background Prediction}
2 > %\label{sec:systematics}
3  
4 < The methodology for determining the systematics on the background
5 < predictions has not changed with respect to the nominal analysis.
6 < Because the template method has not changed, the same
7 < systematic uncertainty is assessed on this prediction (32\%).
8 < The 50\% uncertainty on the WZ and ZZ background is also unchanged.
9 < The systematic uncertainty in the OF background prediction based on
10 < e$\mu$ events has changed, due to the different composition of this
11 < sample after vetoing events containing b-tagged jets.
12 <
13 < As in the nominal analysis, we do not require the e$\mu$ events
14 < to satisfy the dilepton mass requirement and apply a scaling factor K,
15 < extracted from MC, to account for the fraction of e$\mu$ events
16 < which satisfy the dilepton mass requirement. This procedure is used
17 < in order to improve the statistical precision of the OF background estimate.
18 <
19 < For the selection used in the nominal analysis,
20 < the e$\mu$ sample is completely dominated by $t\bar{t}$
21 < events, and we observe that K is statistically consistent with constant with
22 < respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
23 < background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
24 < backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
25 < At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
26 < and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
27 < Therefore, the sample composition changes
28 < as the \MET\ requirement is varied, and as a result K depends
29 < on the \MET\ requirement.
30 <
31 < We thus measure K in MC separately for each
32 < \MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
33 < %The systematic uncertainty on K is determined separately for each \MET\
34 < %requirement by comparing the relative difference in K in data vs. MC.
35 < The values of K used are the MC predictions
36 < %and the total systematic uncertainty on the OF prediction
37 < %as shown in
38 < (Table \ref{fig:kvmettable}).
39 < The contribution to the total OF prediction systematic uncertainty
40 < from K is assessed from the ratio of K in data and MC,
41 < shown in Fig.~\ref{fig:kvmet} (right).
42 < The ratio is consistent with unity to roughly 17\%,
43 < so we take this value as the systematic from K.
44 < 17\% added in quadrature with 7\% from
45 < the electron to muon efficieny ratio
46 < (as assessed in the inclusive analysis)
47 < yields a total systematic of $\sim$18\%
48 < which we round up to 20\%.
49 < For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
50 < so we take a systematic based on the statistical uncertainty
51 < of the MC prediction for K.
52 < This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
53 < %Although we cannot check the value of K in data for \MET\ $>$ 150
54 < %because we find no OF events inside the Z mass window for this \MET\
55 < %cut, the overall OF yields with no dilepton mass requirement
56 < %agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
57 <
58 <
59 < %Below Old
60 <
61 < %In reevaluating the systematics on the OF prediction, however,
62 < %we observed a different behavior of K as a function of \MET\
63 < %as was seen in the inclusive analysis.
64 <
65 < %Recall that K is the ratio of the number of \emu\ events
66 < %inside the Z window to the total number of \emu\ events.
67 < %In the inclusive analysis, it is taken from \ttbar\ MC
68 < %and used to scale the inclusive \emu\ yield in data.
69 < %The yield scaled by K is then corrected for
70 < %the $e$ vs $\mu$ efficiency difference to obtain the
71 < %final OF prediction.
72 <
73 < %Based on the plot in figure \ref{fig:kvmet},
74 < %we choose to use a different
75 < %K for each \MET\ cut and assess a systematic uncertainty
76 < %on the OF prediction based on the difference between
77 < %K in data and MC.
78 < %The variation of K as a function of \MET\ is caused
79 < %by a change in sample composition with increasing \MET.
80 < %At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
81 < %not negligible (as it was in the inclusive analysis)
82 < %because of the b veto. (See appendix \ref{app:kinemu}.)
83 < %At higher \MET, \ttbar\ and diboson backgrounds dominate.
4 > In this Section we discuss the systematic uncertainty on the BG
5 > prediction.  This prediction is assembled from the event
6 > counts in the peak region of the transverse mass distribution as
7 > well as Monte Carlo
8 > with a number of correction factors, as described previously.
9 > The
10 > final uncertainty on the prediction is built up from the uncertainties in these
11 > individual
12 > components.
13 > The calculation is done for each signal
14 > region,
15 > for electrons and muons separately.
16 >
17 > The choice to normalizing to the peak region of $M_T$ has the
18 > advantage that some uncertainties, e.g., luminosity, cancel.
19 > It does however introduce complications because it couples
20 > some of the uncertainties in non-trivial ways.  For example,
21 > the primary effect of an uncertainty on the rare MC cross-section
22 > is to introduce an uncertainty in the rare MC background estimate
23 > which comes entirely from MC.   But this uncertainty also affects,
24 > for example,
25 > the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 > $t\bar{t}$ normalization to the peak region (because some of the
27 > events in the peak region are from rare processes).  These effects
28 > are carefully accounted for.  
29 > %%%TO ADD BACK IN IF WE HAVE SYSTEMATICS TABLE.
30 > %The contribution to the overall
31 > %uncertainty from each BG source is tabulated in
32 > %Section~\ref{sec:bgunc-bottomline}.
33 > Here we discuss the uncertainties one-by-one and comment
34 > on their impact on the overall result, at least to first order.
35 > Second order effects, such as the one described, are also included.
36 >
37 > \subsection{Statistical uncertainties on the event counts in the $M_T$
38 > peak regions}
39 > These vary between 2\% and 20\%, depending on the signal region
40 > (different
41 > signal regions have different \met\ requirements, thus they also have
42 > different $M_T$ regions used as control.
43 > Since
44 > the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
45 > fractional uncertainty is pretty much carried through all the way to
46 > the end.  There is also an uncertainty from the finite MC event counts
47 > in the $M_T$ peak regions.  This is also included, but it is smaller.
48 >
49 > Normalizing to the $M_T$ peak has the distinct advantages that
50 > uncertainties on luminosity, cross-sections, trigger efficiency,
51 > lepton ID, cancel out.
52 > For the low statistics regions with high \met\ requirements, the
53 > price to pay in terms of event count is that statistical uncertainties start
54 > to become significant.  In the future we may consider a different
55 > normalization startegy in the low statistics regions.
56 >
57 > \subsection{Uncertainty from the choice of $M_T$ peak region}
58 >
59 > This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
60 > If the $M_T$ peak region is not well modelled, this would introduce an
61 > uncertainty.
62 >
63 > We have tested this possibility by recalculating the post veto scale factors for a different
64 > choice
65 > of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
66 > $50 < M_T < 80$ GeV.  This is shown in Table~\ref{tab:mtpeaksf2}.  
67 > The two results for the scale factors are very compatible.
68 > We do not take any systematic uncertainty for this possible effect.
69  
70 + \begin{table}[!h]
71 + \begin{center}
72 + {\footnotesize
73 + \begin{tabular}{l||c|c|c|c|c|c|c}
74 + \hline
75 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
76 + \hline
77 + \hline
78 + \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
79 + \hline
80 + $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
81 + $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
82 + \hline
83 + $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
84 + \hline
85 + \hline
86 + e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
87 + e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
88 + \hline
89 + e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
90 + \hline
91 + \hline
92 + \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
93 + \hline
94 + $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
95 + $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
96 + \hline
97 + $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
98 + \hline
99 + \hline
100 + e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
101 + e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
102 + \hline
103 + e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
104 + \hline
105 + \end{tabular}}
106 + \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
107 +  \ttdl\ sample, while the post-veto SFs are applied to the single
108 +  lepton samples. The veto SF is shown for comparison across channels.
109 +  The raw MC is used for backgrounds from rare processes.
110 +  The uncertainties are statistical only.
111 + \label{tab:mtpeaksf2}}
112 + \end{center}
113 + \end{table}
114  
115  
116 + \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
117 + These are taken as 50\%, uncorrelated.  
118 + The primary effect is to introduce a 50\%
119 + uncertainty
120 + on the $W +$ jets and rare BG
121 + background predictions, respectively.  However they also
122 + have an effect on the other BGs via the $M_T$ peak normalization
123 + in a way that tends to reduce the uncertainty.  This is easy
124 + to understand: if the $W$ cross-section is increased by 50\%, then
125 + the $W$ background goes up.  But the number of $M_T$ peak events
126 + attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
127 + scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
128 + BG goes down.  
129 +
130 + \subsection{Scale factors for the tail-to-peak ratios for lepton +
131 +  jets top and W events}
132 + These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
133 + They are studied in CR1 and CR2.  The studies are described
134 + in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
135 + we also give the uncertainty on the scale factors (see
136 + Tables~\ref{tab:cr1yields}
137 + and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top}$).
138 +
139 + \subsection{Uncertainty on extra jet radiation for dilepton
140 +  background}
141 + As discussed in Section~\ref{sec:jetmultiplicity}, the
142 + jet distribution in
143 + $t\bar{t} \to$
144 + dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
145 + it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
146 + comes from data/MC statistics.  This  
147 + result directly in a 3\% uncertainty on the dilepton background, which is by far
148 + the most important one.
149 +
150 + \subsection{Uncertainty from MC statistics}
151 + This affects mostly the \ttll\ background estimate, which is taken
152 + from
153 + Monte Carlo with appropriate correction factors.  This uncertainty
154 + is negligible in the low \met\ signal regions, and grows to about
155 + 15\% in SRG.
156 +
157 +
158 + \subsection{Uncertainty on the \ttll\ Acceptance}
159 +
160 + The \ttbar\ background prediction is obtained from MC, with corrections
161 + derived from control samples in data. The uncertainty associated with
162 + the theoretical modeling of the \ttbar\ production and decay is
163 + estimated by comparing the background predictions obtained using
164 + alternative MC samples. It should be noted that the full analysis is
165 + performed with the alternative samples under consideration,
166 + including the derivation of the various data-to-MC scale factors.
167 + The variations considered are
168 +
169 + \begin{itemize}
170 + \item Top mass: The alternative values for the top mass differ
171 +  from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
172 +  = 166.5~\GeV$.
173 + \item Jet-parton matching scale: This corresponds to variations in the
174 +  scale at which the Matrix Element partons from Madgraph are matched
175 +  to Parton Shower partons from Pythia. The nominal value is
176 +  $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
177 +  $x_q>40~\GeV$.
178 + \item Renormalization and factorization scale: The alternative samples
179 +  correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
180 +  value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
181 +  \sum_{\mathrm{jets}} \pt^2$.
182 + \item Alternative generators: Samples produced with different
183 +  generators, Powheg (our default) and Madgraph.
184 + \item Modeling of taus: The alternative sample does not include
185 +  Tauola and is otherwise identical to the Powheg sample.
186 +  This effect was studied earlier using 7~TeV samples and found to be negligible.
187 + \item The PDF uncertainty is estimated following the PDF4LHC
188 +  recommendations. The events are reweighted using alternative
189 +  PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
190 +  alternative eigenvector variations and the ``master equation''. In
191 +  addition, the NNPDF2.1 set with 100 replicas. The central value is
192 +  determined from the mean and the uncertainty is derived from the
193 +  $1\sigma$ range. The overall uncertainty is derived from the envelope of the
194 +  alternative predictions and their uncertainties.
195 +  This effect was studied earlier using 7~TeV samples and found to be negligible.
196 +  \end{itemize}
197  
198   \begin{figure}[hbt]
199    \begin{center}
200 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
201 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
200 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
201 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
202 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
203 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
204 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
205          \caption{
206 <          \label{fig:kvmet}\protect
207 <          The left plot shows
208 <          K as a function of \MET\ in MC (red) and data (black).
209 <          The bin low edge corresponds to the \MET\ cut, and the
210 <          bins are inclusive.
211 <          The MC used is a sum of all SM MC used in the yield table of
212 <          section \ref{sec:yields}.
213 <          The right plot is the ratio of K in data to MC.
214 <          The ratio is fit to a line whose slope is consistent with zero
215 <          (the fit parameters are
216 <          0.9 $\pm$  0.4 for the intercept and
217 <      0.001 $\pm$ 0.005 for the slope).
218 <        }
219 <  \end{center}
206 >          \label{fig:ttllsyst}\protect
207 >          Comparison of the \ttll\ central prediction with those using
208 >          alternative MC samples. The blue band corresponds to the
209 >          total statistical error for all data and MC samples. The
210 >          alternative sample predictions are indicated by the
211 >          datapoints. The uncertainties on the alternative predictions
212 >          correspond to the uncorrelated statistical uncertainty from
213 >          the size of the alternative sample only.  Note the
214 >          suppressed vertical scales.}
215 >      \end{center}
216 >    \end{figure}
217 >
218 >
219 > \begin{table}[!h]
220 > \begin{center}
221 > {\footnotesize
222 > \begin{tabular}{l||c|c|c|c|c|c|c}
223 > \hline
224 > $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
225 > Match Up & Match Down \\
226 > \hline
227 > \hline
228 > SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
229 > \hline
230 > SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
231 > \hline
232 > % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
233 > % \hline
234 > % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
235 > % \hline
236 > % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
237 > \hline
238 > \end{tabular}}
239 > \caption{ Relative difference in \ttdl\ predictions for alternative MC
240 >  samples in
241 > the higher statistics regions SRA and SRB.  These differences
242 > are based on the central values of the predictions.  For a fuller
243 > picture
244 > of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
245 > \label{tab:fracdiff}}
246 > \end{center}
247 > \end{table}
248 >
249 >
250 > In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
251 > for regions A through E.  We can make the following observations based
252 > on this Figure.
253 >
254 > \begin{itemize}
255 > \item In the tighter signal regions we are running out of
256 >  statistics.    
257 > \item Within the limited statistics, there is no evidence that the
258 >  situation changes as we go from signal region A to signal region E.
259 > Therefore, we assess a systematic based on the relatively high
260 > statistics
261 > test in signal region A, and apply the same systematic uncertainty
262 > to all other regions.
263 > \item In order to fully (as opposed as 1$\sigma$) cover the
264 > alternative MC variations in region A we would have to take a
265 > systematic
266 > uncertainty of $\approx 10\%$.  This would be driven by the
267 > scale up/scale down variations, see Table~\ref{tab:fracdiff}.
268 > \end{itemize}
269 >
270 > \begin{table}[!ht]
271 > \begin{center}
272 > \begin{tabular}{l|c|c}
273 > \hline
274 >            Sample
275 >            &                K3   & K4\\
276 > \hline
277 > \hline
278 > Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
279 > Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
280 > Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
281 > Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
282 > Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
283 > Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
284 > Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
285 > Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
286 > \hline
287 > \end{tabular}
288 > \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
289 >  fraction of events with additional hard jets from radiation in
290 >  \ttll\ events. \label{tab:njetskfactors_met100}}
291 > \end{center}
292 > \end{table}
293 >
294 >
295 > However, we have two pieces of information indicating that the
296 > scale up/scale down variations are inconsistent with the data.
297 > These are described below.
298 >
299 > The first piece of information is that the jet multiplicity in the scale
300 > up/scale down sample is the most inconsistent with the data.  This is shown
301 > in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
302 > $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
303 > different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
304 > distribution
305 > for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
306 > and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
307 > equivalent $N_{jets}$ plots for the default Powheg MC, see
308 > Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
309 >
310 > \begin{figure}[hbt]
311 >  \begin{center}
312 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
313 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
314 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
315 >        \caption{
316 >          \label{fig:dileptonnjets_scaleup}%\protect
317 >          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
318 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
319 >      \end{center}
320   \end{figure}
321  
322 + \begin{figure}[hbt]
323 +  \begin{center}
324 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
325 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
326 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
327 +        \caption{
328 +          \label{fig:dileptonnjets_scaledw}%\protect
329 +          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
330 +          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
331 +      \end{center}
332 + \end{figure}
333 +
334 +
335 + \clearpage
336 +
337 + The second piece of information is that we have performed closure
338 + tests in CR5 using the alternative MC samples.  These are exactly
339 + the same tests as the one performed in Section~\ref{sec:CR5} on the
340 + Powheg sample.  As we argued previously, this is a very powerful
341 + test of the background calculation.
342 + The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
343 + Concentrating on the relatively high statistics CR5A region, we see
344 + for all \ttbar\ MC samples except scale up/scale down we obtain
345 + closure within 1$\sigma$.  The scale up/scale down tests closes
346 + worse, only within 2$\sigma$.  This again is evidence that the
347 + scale up/scale down variations are in disagreement with the data.
348 +
349 + \input{hugeCR5Table.tex}
350 +
351 + Based on the two observations above, we argue that the MC
352 + scale up/scale down variations are too extreme.  We feel that
353 + a reasonable choice would be to take one-half of the scale up/scale
354 + down variations in our MC.  This factor of 1/2 would then bring
355 + the discrepancy in the closure test of
356 + Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
357 + from about 2$\sigma$ to about 1$\sigma$.
358 +
359 + Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
360 + up/scale
361 + down variations by a factor 2, we can see that a systematic
362 + uncertainty
363 + of 6\% would fully cover all of the variations from different MC
364 + samples in SRA and SRB.
365 + {\bf Thus, we take a 6\% systematic uncertainty,  constant as a
366 + function of signal region, as the systematic due to alternative MC
367 + models.}
368 + Note that this 6\% is also consistent with the level at which we are
369 + able
370 + to test the closure of the method in CR5 for the high statistics
371 + regions
372 + (Table~\ref{tab:hugecr5yields}).
373 +
374 +
375 +
376 +
377 +
378 +
379 + %\begin{table}[!h]
380 + %\begin{center}
381 + %{\footnotesize
382 + %\begin{tabular}{l||c||c|c|c|c|c|c|c}
383 + %\hline
384 + %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
385 + %Up & Scale Down &
386 + %Match Up & Match Down \\
387 + %\hline
388 + %\hline
389 + %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
390 + %\hline
391 + %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
392 + %\hline
393 + %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
394 + %\hline
395 + %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
396 + %\hline
397 + %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
398 + %\hline
399 + %\end{tabular}}
400 + %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
401 + %\label{tab:ttdlalt}}
402 + %\end{center}
403 + %\end{table}
404 +
405 +
406 +
407 +
408 + %\begin{table}[!h]
409 + %\begin{center}
410 + %{\footnotesize
411 + %\begin{tabular}{l||c|c|c|c|c|c|c}
412 + %\hline
413 + %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
414 + %Match Up & Match Down \\
415 + %\hline
416 + %\hline
417 + %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
418 + %\hline
419 + %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
420 + %\hline
421 + %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
422 + %\hline
423 + %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
424 + %\hline
425 + %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
426 + %\hline
427 + %\end{tabular}}
428 + %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
429 + %\label{tab:nsig}}
430 + %\end{center}
431 + %\end{table}
432 +
433 +
434 + %\begin{table}[!h]
435 + %\begin{center}
436 + %\begin{tabular}{l||c|c|c|c}
437 + %\hline
438 + %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
439 + %& $\Delta$ Match \\
440 + %\hline
441 + %\hline
442 + %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
443 + %\hline
444 + %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
445 + %\hline
446 + %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
447 + %\hline
448 + %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
449 + %\hline
450 + %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
451 + %\hline
452 + %\end{tabular}
453 + %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
454 + %\label{tab:devt}}
455 + %\end{center}
456 + %\end{table}
457 +
458 +
459 +
460 + \clearpage
461 +
462 + %
463 + %
464 + %The methodology for determining the systematics on the background
465 + %predictions has not changed with respect to the nominal analysis.
466 + %Because the template method has not changed, the same
467 + %systematic uncertainty is assessed on this prediction (32\%).
468 + %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
469 + %The systematic uncertainty in the OF background prediction based on
470 + %e$\mu$ events has changed, due to the different composition of this
471 + %sample after vetoing events containing b-tagged jets.
472 + %
473 + %As in the nominal analysis, we do not require the e$\mu$ events
474 + %to satisfy the dilepton mass requirement and apply a scaling factor K,
475 + %extracted from MC, to account for the fraction of e$\mu$ events
476 + %which satisfy the dilepton mass requirement. This procedure is used
477 + %in order to improve the statistical precision of the OF background estimate.
478 + %
479 + %For the selection used in the nominal analysis,
480 + %the e$\mu$ sample is completely dominated by $t\bar{t}$
481 + %events, and we observe that K is statistically consistent with constant with
482 + %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
483 + %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
484 + %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
485 + %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
486 + %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
487 + %Therefore, the sample composition changes
488 + %as the \MET\ requirement is varied, and as a result K depends
489 + %on the \MET\ requirement.
490 + %
491 + %We thus measure K in MC separately for each
492 + %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
493 + %%The systematic uncertainty on K is determined separately for each \MET\
494 + %%requirement by comparing the relative difference in K in data vs. MC.
495 + %The values of K used are the MC predictions
496 + %%and the total systematic uncertainty on the OF prediction
497 + %%as shown in
498 + %(Table \ref{fig:kvmettable}).
499 + %The contribution to the total OF prediction systematic uncertainty
500 + %from K is assessed from the ratio of K in data and MC,
501 + %shown in Fig.~\ref{fig:kvmet} (right).
502 + %The ratio is consistent with unity to roughly 17\%,
503 + %so we take this value as the systematic from K.
504 + %17\% added in quadrature with 7\% from
505 + %the electron to muon efficieny ratio
506 + %(as assessed in the inclusive analysis)
507 + %yields a total systematic of $\sim$18\%
508 + %which we round up to 20\%.
509 + %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
510 + %so we take a systematic based on the statistical uncertainty
511 + %of the MC prediction for K.
512 + %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
513 + %%Although we cannot check the value of K in data for \MET\ $>$ 150
514 + %%because we find no OF events inside the Z mass window for this \MET\
515 + %%cut, the overall OF yields with no dilepton mass requirement
516 + %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
517 + %
518 + %
519 + %%Below Old
520 + %
521 + %%In reevaluating the systematics on the OF prediction, however,
522 + %%we observed a different behavior of K as a function of \MET\
523 + %%as was seen in the inclusive analysis.
524 + %
525 + %%Recall that K is the ratio of the number of \emu\ events
526 + %%inside the Z window to the total number of \emu\ events.
527 + %%In the inclusive analysis, it is taken from \ttbar\ MC
528 + %%and used to scale the inclusive \emu\ yield in data.
529 + %%The yield scaled by K is then corrected for
530 + %%the $e$ vs $\mu$ efficiency difference to obtain the
531 + %%final OF prediction.
532 + %
533 + %%Based on the plot in figure \ref{fig:kvmet},
534 + %%we choose to use a different
535 + %%K for each \MET\ cut and assess a systematic uncertainty
536 + %%on the OF prediction based on the difference between
537 + %%K in data and MC.
538 + %%The variation of K as a function of \MET\ is caused
539 + %%by a change in sample composition with increasing \MET.
540 + %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
541 + %%not negligible (as it was in the inclusive analysis)
542 + %%because of the b veto. (See appendix \ref{app:kinemu}.)
543 + %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
544 + %
545 + %
546 + %
547 + %
548 + %\begin{figure}[hbt]
549 + %  \begin{center}
550 + %       \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
551 + %       \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
552 + %       \caption{
553 + %         \label{fig:kvmet}\protect
554 + %         The left plot shows
555 + %         K as a function of \MET\ in MC (red) and data (black).
556 + %         The bin low edge corresponds to the \MET\ cut, and the
557 + %         bins are inclusive.
558 + %         The MC used is a sum of all SM MC used in the yield table of
559 + %         section \ref{sec:yields}.
560 + %         The right plot is the ratio of K in data to MC.
561 + %         The ratio is fit to a line whose slope is consistent with zero
562 + %         (the fit parameters are
563 + %         0.9 $\pm$  0.4 for the intercept and
564 + %      0.001 $\pm$ 0.005 for the slope).
565 + %       }
566 + %  \end{center}
567 + %\end{figure}
568 + %
569 + %
570 + %
571 + %\begin{table}[htb]
572 + %\begin{center}
573 + %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
574 + %The uncertainties shown are the total relative systematic used for the OF prediction,
575 + %which is the systematic uncertainty from K added in quadrature with
576 + %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
577 + %inclusive analysis.
578 + %}
579 + %\begin{tabular}{lcc}
580 + %\hline
581 + %\MET\ Cut    &    K        &  Relative Systematic \\
582 + %\hline
583 + %%the met zero row is used only for normalization of the money plot.
584 + %%0    &  0.1   &        \\  
585 + %30   &  0.12  &  20\%  \\  
586 + %60   &  0.13  &  20\%  \\  
587 + %80   &  0.12  &  20\%  \\  
588 + %100  &  0.12  &  20\%  \\  
589 + %150  &  0.09  &  25\%  \\  
590 + %200  &  0.06  &  60\%  \\  
591 + %\hline
592 + %\end{tabular}
593 + %\end{center}
594 + %\end{table}
595 +
596 + \subsection{Uncertainty from the isolated track veto}
597 + This is the uncertainty associated with how well the isolated track
598 + veto performance is modeled by the Monte Carlo.  This uncertainty
599 + only applies to the fraction of dilepton BG events that have
600 + a second e/$\mu$ or a one prong $\tau \to h$, with
601 + $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
602 + Table~\ref{tab:trueisotrk}.
603 + The uncertainty for these events
604 + is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
605 +
606 + \begin{table}[!h]
607 + \begin{center}
608 + {\footnotesize
609 + \begin{tabular}{l||c|c|c|c|c|c|c}
610 + \hline
611 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
612 + \hline
613 + \hline
614 + $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
615 + \hline
616 + \hline
617 + e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
618 + \hline
619 + \end{tabular}}
620 + \caption{ Fraction of \ttdl\ events with a true isolated track.
621 + \label{tab:trueisotrk}}
622 + \end{center}
623 + \end{table}
624 +
625 + \subsubsection{Isolated Track Veto: Tag and Probe Studies}
626 + \label{sec:trkveto}
627  
628  
629 < \begin{table}[htb]
629 > In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
630 > with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
631 > to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
632 > we would need to apply a data-to-MC scale factor in order to correctly
633 > predict the \ttll\ background.
634 >
635 > This study
636 > addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
637 > second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
638 > in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
639 > procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
640 >
641 > Furthermore, we test the data and MC
642 > isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
643 > directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
644 > may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
645 > or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
646 > the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
647 > consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
648 > $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
649 > decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
650 > Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
651 > As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
652 > leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
653 > due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
654 >
655 > The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
656 > All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
657 > We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
658 > this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
659 > not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
660 > fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
661 > \met\ $<$ 30 GeV and 0 b-tagged events.
662 > The specific criteria for tags and probes for electrons and muons are:
663 >
664 > %We study the isolated track veto efficiency in bins of \njets.
665 > %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
666 > %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
667 >
668 >
669 > \begin{itemize}
670 >  \item{Electrons}
671 >
672 >    \begin{itemize}
673 >    \item{Tag criteria}
674 >
675 >      \begin{itemize}
676 >      \item Electron passes full analysis ID/iso selection
677 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
678 >      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
679 >      \end{itemize}
680 >
681 >    \item{Probe criteria}
682 >      \begin{itemize}
683 >      \item Electron passes full analysis ID selection
684 >      \item \pt\ $>$ 30 GeV
685 >      \end{itemize}
686 >      \end{itemize}
687 >  \item{Muons}
688 >    \begin{itemize}
689 >    \item{Tag criteria}
690 >      \begin{itemize}
691 >      \item Muon passes full analysis ID/iso selection
692 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
693 >      \item Matched to 1 of the 2 single muon triggers
694 >        \begin{itemize}
695 >        \item \verb=HLT_IsoMu30_v*=
696 >        \item \verb=HLT_IsoMu30_eta2p1_v*=
697 >        \end{itemize}
698 >      \end{itemize}
699 >    \item{Probe criteria}
700 >      \begin{itemize}
701 >      \item Muon passes full analysis ID selection
702 >      \item \pt\ $>$ 30 GeV
703 >      \end{itemize}
704 >    \end{itemize}
705 > \end{itemize}
706 >
707 > The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
708 > good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
709 > absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
710 > In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
711 > efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
712 > For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
713 > a data vs. MC discrepancy in the isolated track veto efficiency.
714 >
715 >
716 > %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
717 > %This requirement is chosen because most of the tracks rejected by the isolated
718 > %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
719 >
720 > \begin{figure}[hbt]
721 >  \begin{center}
722 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
723 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
724 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
725 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
726 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
727 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
728 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
729 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
730 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
731 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
732 >        \caption{
733 >          \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
734 > for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
735 > }  
736 >      \end{center}
737 > \end{figure}
738 >
739 > \clearpage
740 >
741 > \begin{table}[!ht]
742   \begin{center}
743 < \caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
744 < The uncertainties shown are the total relative systematic used for the OF prediction,
745 < which is the systematic uncertainty from K added in quadrature with
746 < a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
747 < inclusive analysis.
748 < }
749 < \begin{tabular}{lcc}
750 < \hline
751 < \MET\ Cut    &    K        &  Relative Systematic \\
752 < \hline
753 < %the met zero row is used only for normalization of the money plot.
754 < %0    &  0.1   &        \\  
755 < 30   &  0.12  &  20\%  \\  
756 < 60   &  0.13  &  20\%  \\  
757 < 80   &  0.12  &  20\%  \\  
758 < 100  &  0.12  &  20\%  \\  
759 < 150  &  0.09  &  25\%  \\  
760 < 200  &  0.06  &  60\%  \\  
743 > \begin{tabular}{l|c|c|c|c|c}
744 >
745 > %Electrons:
746 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
747 > %Total MC yields        : 2497277
748 > %Total DATA yields      : 2649453
749 > %Muons:
750 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
751 > %Total MC yields        : 3749863
752 > %Total DATA yields      : 4210022
753 > %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
754 > %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
755 >
756 > \hline
757 > \hline
758 > e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
759 > \hline
760 >      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
761 >        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
762 >   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
763 >
764 > \hline
765 > \hline
766 > $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
767 > \hline
768 >      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
769 >        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
770 >   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
771 >
772 > \hline
773 > \hline
774 > e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
775 > \hline
776 >      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
777 >        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
778 >   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
779 >
780 > \hline
781 > \hline
782 > $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
783 > \hline
784 >      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
785 >        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
786 >   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
787 >
788 > \hline
789   \hline
790 + e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
791 + \hline
792 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
793 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
794 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
795 +
796 + \hline
797 + \hline
798 + $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
799 + \hline
800 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
801 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
802 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
803 +
804 + \hline
805 + \hline
806 + e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
807 + \hline
808 +      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
809 +        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
810 +   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
811 +
812 + \hline
813 + \hline
814 + $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
815 + \hline
816 +      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
817 +        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
818 +   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
819 +
820 + \hline
821 + \hline
822 + e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
823 + \hline
824 +      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
825 +        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
826 +   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
827 +
828 + \hline
829 + \hline
830 + $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
831 + \hline
832 +      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
833 +        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
834 +   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
835 +
836 + \hline
837 + \hline
838 +
839   \end{tabular}
840 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
841 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
842 + jet multiplicity requirements.}
843   \end{center}
844   \end{table}
845 +
846 +
847 + %Figure.~\ref{fig:reliso} compares the relative track isolation
848 + %for events with a track with $\pt > 10~\GeV$ in addition to a selected
849 + %muon for $\Z+4$ jet events and various \ttll\ components. The
850 + %isolation distributions show significant differences, particularly
851 + %between the leptons from a \W\ or \Z\ decay and the tracks arising
852 + %from $\tau$ decays. As can also be seen in the figure, the \pt\
853 + %distribution for the various categories of tracks is different, where
854 + %the decay products from $\tau$s are significantly softer. Since the
855 + %\pt\ enters the denominator of the isolation definition and hence
856 + %alters the isolation variable...
857 +
858 + %\begin{figure}[hbt]
859 + %  \begin{center}
860 + %       \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
861 + %       \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
862 + %       \caption{
863 + %         \label{fig:reliso}%\protect
864 + %          Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
865 + %          Z+Jets and ttbar dilepton have similar isolation distributions
866 + %          ttbar with leptonic and single prong taus tend to be less
867 + %          isolated. The difference in the isolation can be attributed
868 + %          to the different \pt\ distribution of the samples, since
869 + %          $\tau$ decay products tend to be softer than leptons arising
870 + %          from \W\ or \Z\ decays.}  
871 + %      \end{center}
872 + %\end{figure}
873 +
874 + %       \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
875 +
876 +
877 + %BEGIN SECTION TO WRITE OUT
878 + %In detail, the procedure to correct the dilepton background is:
879 +
880 + %\begin{itemize}
881 + %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
882 + %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
883 + %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
884 + %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
885 + %the lepton \pt {\bf TODO: verify this in data and MC.}.
886 + %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
887 + %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
888 + %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
889 + %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
890 + %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
891 + %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
892 + %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
893 + %\end{itemize}
894 + %END SECTION TO WRITE OUT
895 +
896 +
897 + %{\bf fix me: What you have written in the next paragraph does not
898 + %explain how $\epsilon_{fake}$ is measured.
899 + %Why not measure $\epsilon_{fake}$ in the b-veto region?}
900 +
901 + %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
902 + %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
903 + %applying an additional scale factor for the single lepton background
904 + %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
905 + %veto and after subtracting the \ttll\ component, corrected for the
906 + %isolation efficiency derived previously.
907 + %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
908 + %isolated track in single lepton events is independent of \mt\, so the use of
909 + %an overall scale factor is justified to estimate the contribution in
910 + %the \mt\ tail.
911 + %
912 + %\begin{figure}[hbt]
913 + %  \begin{center}
914 + %       \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
915 + %       \caption{
916 + %         \label{fig:vetoeffcomp}%\protect
917 + %          Efficiency for selecting an isolated track comparing
918 + %          single lepton \ttlj\ and dilepton \ttll\ events in MC and
919 + %          data as a function of \mt. The
920 + %          efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
921 + %          \mt\, while the data ranges between the two. This behavior
922 + %          is expected since the low \mt\ region is predominantly \ttlj, while the
923 + %          high \mt\ region contains mostly \ttll\ events.}  
924 + %      \end{center}
925 + %\end{figure}
926 +
927 + % \subsection{Summary of uncertainties}
928 + % \label{sec:bgunc-bottomline}.
929 +
930 + % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines