ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.1 by benhoob, Sun Jun 24 15:06:07 2012 UTC vs.
Revision 1.20 by linacre, Thu Oct 18 21:21:58 2012 UTC

# Line 1 | Line 1
1 < \section{Systematics Uncertainties in the Background Prediction}
2 < \label{sec:systematics}
1 > %\section{Systematics Uncertainties on the Background Prediction}
2 > %\label{sec:systematics}
3  
4 < The methodology for determining the systematics on the background
5 < predictions has not changed with respect to the nominal analysis.
6 < Because the template method has not changed, the same
7 < systematic uncertainty is assessed on this prediction (32\%).
8 < The 50\% uncertainty on the WZ and ZZ background is also unchanged.
9 < The systematic uncertainty in the OF background prediction based on
10 < e$\mu$ events has changed, due to the different composition of this
11 < sample after vetoing events containing b-tagged jets.
12 <
13 < As in the nominal analysis, we do not require the e$\mu$ events
14 < to satisfy the dilepton mass requirement and apply a scaling factor K,
15 < extracted from MC, to account for the fraction of e$\mu$ events
16 < which satisfy the dilepton mass requirement. This procedure is used
17 < in order to improve the statistical precision of the OF background estimate.
18 <
19 < For the selection used in the nominal analysis,
20 < the e$\mu$ sample is completely dominated by $t\bar{t}$
21 < events, and we observe that K is statistically consistent with constant with
22 < respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
23 < background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
24 < backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
25 < At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
26 < and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
27 < Therefore, the sample composition changes
28 < as the \MET\ requirement is varied, and as a result K depends
29 < on the \MET\ requirement.
30 <
31 < We thus measure K in MC separately for each
32 < \MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
33 < %The systematic uncertainty on K is determined separately for each \MET\
34 < %requirement by comparing the relative difference in K in data vs. MC.
35 < The values of K used are the MC predictions
36 < %and the total systematic uncertainty on the OF prediction
37 < %as shown in
38 < (Table \ref{fig:kvmettable}).
39 < The contribution to the total OF prediction systematic uncertainty
40 < from K is assessed from the ratio of K in data and MC,
41 < shown in Fig.~\ref{fig:kvmet} (right).
42 < The ratio is consistent with unity to roughly 17\%,
43 < so we take this value as the systematic from K.
44 < 17\% added in quadrature with 7\% from
45 < the electron to muon efficieny ratio
46 < (as assessed in the inclusive analysis)
47 < yields a total systematic of $\sim$18\%
48 < which we round up to 20\%.
49 < For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
50 < so we take a systematic based on the statistical uncertainty
51 < of the MC prediction for K.
52 < This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
53 < %Although we cannot check the value of K in data for \MET\ $>$ 150
54 < %because we find no OF events inside the Z mass window for this \MET\
55 < %cut, the overall OF yields with no dilepton mass requirement
56 < %agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
57 <
58 <
59 < %Below Old
60 <
61 < %In reevaluating the systematics on the OF prediction, however,
62 < %we observed a different behavior of K as a function of \MET\
63 < %as was seen in the inclusive analysis.
64 <
65 < %Recall that K is the ratio of the number of \emu\ events
66 < %inside the Z window to the total number of \emu\ events.
67 < %In the inclusive analysis, it is taken from \ttbar\ MC
68 < %and used to scale the inclusive \emu\ yield in data.
69 < %The yield scaled by K is then corrected for
70 < %the $e$ vs $\mu$ efficiency difference to obtain the
71 < %final OF prediction.
72 <
73 < %Based on the plot in figure \ref{fig:kvmet},
74 < %we choose to use a different
75 < %K for each \MET\ cut and assess a systematic uncertainty
76 < %on the OF prediction based on the difference between
77 < %K in data and MC.
78 < %The variation of K as a function of \MET\ is caused
79 < %by a change in sample composition with increasing \MET.
80 < %At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
81 < %not negligible (as it was in the inclusive analysis)
82 < %because of the b veto. (See appendix \ref{app:kinemu}.)
83 < %At higher \MET, \ttbar\ and diboson backgrounds dominate.
4 > In this Section we discuss the systematic uncertainty on the BG
5 > prediction.  This prediction is assembled from the event
6 > counts in the peak region of the transverse mass distribution as
7 > well as Monte Carlo
8 > with a number of correction factors, as described previously.
9 > The
10 > final uncertainty on the prediction is built up from the uncertainties in these
11 > individual
12 > components.
13 > The calculation is done for each signal
14 > region,
15 > for electrons and muons separately.
16 >
17 > The choice to normalizing to the peak region of $M_T$ has the
18 > advantage that some uncertainties, e.g., luminosity, cancel.
19 > It does however introduce complications because it couples
20 > some of the uncertainties in non-trivial ways.  For example,
21 > the primary effect of an uncertainty on the rare MC cross-section
22 > is to introduce an uncertainty in the rare MC background estimate
23 > which comes entirely from MC.   But this uncertainty also affects,
24 > for example,
25 > the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 > $t\bar{t}$ normalization to the peak region (because some of the
27 > events in the peak region are from rare processes).  These effects
28 > are carefully accounted for.  
29 > %%%TO ADD BACK IN IF WE HAVE SYSTEMATICS TABLE.
30 > %The contribution to the overall
31 > %uncertainty from each BG source is tabulated in
32 > %Section~\ref{sec:bgunc-bottomline}.
33 > Here we discuss the uncertainties one-by-one and comment
34 > on their impact on the overall result, at least to first order.
35 > Second order effects, such as the one described, are also included.
36 >
37 > \subsection{Statistical uncertainties on the event counts in the $M_T$
38 > peak regions}
39 > These vary between 2\% and 20\%, depending on the signal region
40 > (different
41 > signal regions have different \met\ requirements, thus they also have
42 > different $M_T$ regions used as control.
43 > Since
44 > the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
45 > fractional uncertainty is pretty much carried through all the way to
46 > the end.  There is also an uncertainty from the finite MC event counts
47 > in the $M_T$ peak regions.  This is also included, but it is smaller.
48 >
49 > Normalizing to the $M_T$ peak has the distinct advantages that
50 > uncertainties on luminosity, cross-sections, trigger efficiency,
51 > lepton ID, cancel out.
52 > For the low statistics regions with high \met\ requirements, the
53 > price to pay in terms of event count is that statistical uncertainties start
54 > to become significant.  In the future we may consider a different
55 > normalization startegy in the low statistics regions.
56 >
57 > \subsection{Uncertainty from the choice of $M_T$ peak region}
58 >
59 > This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
60 > If the $M_T$ peak region is not well modelled, this would introduce an
61 > uncertainty.
62 >
63 > We have tested this possibility by recalculating the post veto scale factors for a different
64 > choice
65 > of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
66 > $50 < M_T < 80$ GeV.  This is shown in Table~\ref{tab:mtpeaksf2}.  
67 > The two results for the scale factors are very compatible.
68 > We do not take any systematic uncertainty for this possible effect.
69  
70 + \begin{table}[!h]
71 + \begin{center}
72 + {\footnotesize
73 + \begin{tabular}{l||c|c|c|c|c|c|c}
74 + \hline
75 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
76 + \hline
77 + \hline
78 + \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
79 + \hline
80 + $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
81 + $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
82 + \hline
83 + $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
84 + \hline
85 + \hline
86 + e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
87 + e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
88 + \hline
89 + e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
90 + \hline
91 + \hline
92 + \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
93 + \hline
94 + $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
95 + $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
96 + \hline
97 + $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
98 + \hline
99 + \hline
100 + e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
101 + e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
102 + \hline
103 + e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
104 + \hline
105 + \end{tabular}}
106 + \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
107 +  \ttdl\ sample, while the post-veto SFs are applied to the single
108 +  lepton samples. The veto SF is shown for comparison across channels.
109 +  The raw MC is used for backgrounds from rare processes.
110 +  The uncertainties are statistical only.
111 + \label{tab:mtpeaksf2}}
112 + \end{center}
113 + \end{table}
114  
115  
116 + \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
117 + These are taken as 50\%, uncorrelated.  
118 + The primary effect is to introduce a 50\%
119 + uncertainty
120 + on the $W +$ jets and rare BG
121 + background predictions, respectively.  However they also
122 + have an effect on the other BGs via the $M_T$ peak normalization
123 + in a way that tends to reduce the uncertainty.  This is easy
124 + to understand: if the $W$ cross-section is increased by 50\%, then
125 + the $W$ background goes up.  But the number of $M_T$ peak events
126 + attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
127 + scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
128 + BG goes down.  
129 +
130 + \subsection{Tail-to-peak ratios for lepton +
131 +  jets top and W events}
132 + The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
133 + The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
134 + Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its uncertainty is given in Table~\ref{tab:cr1yields}). This uncertainty affects both $R_{wjet}$ and $R_{top}$.
135 + The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
136 +
137 +
138 + \subsection{Uncertainty on extra jet radiation for dilepton
139 +  background}
140 + As discussed in Section~\ref{sec:jetmultiplicity}, the
141 + jet distribution in
142 + $t\bar{t} \to$
143 + dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
144 + it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
145 + comes from data/MC statistics.  This  
146 + result directly in a 3\% uncertainty on the dilepton background, which is by far
147 + the most important one.
148 +
149 + \subsection{Uncertainty from MC statistics}
150 + This affects mostly the \ttll\ background estimate, which is taken
151 + from
152 + Monte Carlo with appropriate correction factors.  This uncertainty
153 + is negligible in the low \met\ signal regions, and grows to about
154 + 15\% in SRG.
155 +
156 +
157 + \subsection{Uncertainty on the \ttll\ Acceptance}
158 +
159 + The \ttbar\ background prediction is obtained from MC, with corrections
160 + derived from control samples in data. The uncertainty associated with
161 + the theoretical modeling of the \ttbar\ production and decay is
162 + estimated by comparing the background predictions obtained using
163 + alternative MC samples. It should be noted that the full analysis is
164 + performed with the alternative samples under consideration,
165 + including the derivation of the various data-to-MC scale factors.
166 + The variations considered are
167 +
168 + \begin{itemize}
169 + \item Top mass: The alternative values for the top mass differ
170 +  from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
171 +  = 166.5~\GeV$.
172 + \item Jet-parton matching scale: This corresponds to variations in the
173 +  scale at which the Matrix Element partons from Madgraph are matched
174 +  to Parton Shower partons from Pythia. The nominal value is
175 +  $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
176 +  $x_q>40~\GeV$.
177 + \item Renormalization and factorization scale: The alternative samples
178 +  correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
179 +  value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
180 +  \sum_{\mathrm{jets}} \pt^2$.
181 + \item Alternative generators: Samples produced with different
182 +  generators, Powheg (our default) and Madgraph.
183 + \item Modeling of taus: The alternative sample does not include
184 +  Tauola and is otherwise identical to the Powheg sample.
185 +  This effect was studied earlier using 7~TeV samples and found to be negligible.
186 + \item The PDF uncertainty is estimated following the PDF4LHC
187 +  recommendations. The events are reweighted using alternative
188 +  PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
189 +  alternative eigenvector variations and the ``master equation''. In
190 +  addition, the NNPDF2.1 set with 100 replicas. The central value is
191 +  determined from the mean and the uncertainty is derived from the
192 +  $1\sigma$ range. The overall uncertainty is derived from the envelope of the
193 +  alternative predictions and their uncertainties.
194 +  This effect was studied earlier using 7~TeV samples and found to be negligible.
195 +  \end{itemize}
196  
197   \begin{figure}[hbt]
198    \begin{center}
199 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
200 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
199 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
200 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
201 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
202 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
203 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
204          \caption{
205 <          \label{fig:kvmet}\protect
206 <          The left plot shows
207 <          K as a function of \MET\ in MC (red) and data (black).
208 <          The bin low edge corresponds to the \MET\ cut, and the
209 <          bins are inclusive.
210 <          The MC used is a sum of all SM MC used in the yield table of
211 <          section \ref{sec:yields}.
212 <          The right plot is the ratio of K in data to MC.
213 <          The ratio is fit to a line whose slope is consistent with zero
214 <          (the fit parameters are
215 <          0.9 $\pm$  0.4 for the intercept and
216 <      0.001 $\pm$ 0.005 for the slope).
217 <        }
218 <  \end{center}
205 >          \label{fig:ttllsyst}\protect
206 >          Comparison of the \ttll\ central prediction with those using
207 >          alternative MC samples. The blue band corresponds to the
208 >          total statistical error for all data and MC samples. The
209 >          alternative sample predictions are indicated by the
210 >          datapoints. The uncertainties on the alternative predictions
211 >          correspond to the uncorrelated statistical uncertainty from
212 >          the size of the alternative sample only.  Note the
213 >          suppressed vertical scales.}
214 >      \end{center}
215 >    \end{figure}
216 >
217 >
218 > \begin{table}[!h]
219 > \begin{center}
220 > {\footnotesize
221 > \begin{tabular}{l||c|c|c|c|c|c|c}
222 > \hline
223 > $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
224 > Match Up & Match Down \\
225 > \hline
226 > \hline
227 > SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
228 > \hline
229 > SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
230 > \hline
231 > % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
232 > % \hline
233 > % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
234 > % \hline
235 > % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
236 > \hline
237 > \end{tabular}}
238 > \caption{ Relative difference in \ttdl\ predictions for alternative MC
239 >  samples in
240 > the higher statistics regions SRA and SRB.  These differences
241 > are based on the central values of the predictions.  For a fuller
242 > picture
243 > of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
244 > \label{tab:fracdiff}}
245 > \end{center}
246 > \end{table}
247 >
248 >
249 > In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
250 > for regions A through E.  We can make the following observations based
251 > on this Figure.
252 >
253 > \begin{itemize}
254 > \item In the tighter signal regions we are running out of
255 >  statistics.    
256 > \item Within the limited statistics, there is no evidence that the
257 >  situation changes as we go from signal region A to signal region E.
258 > Therefore, we assess a systematic based on the relatively high
259 > statistics
260 > test in signal region A, and apply the same systematic uncertainty
261 > to all other regions.
262 > \item In order to fully (as opposed as 1$\sigma$) cover the
263 > alternative MC variations in region A we would have to take a
264 > systematic
265 > uncertainty of $\approx 10\%$.  This would be driven by the
266 > scale up/scale down variations, see Table~\ref{tab:fracdiff}.
267 > \end{itemize}
268 >
269 > \begin{table}[!ht]
270 > \begin{center}
271 > \begin{tabular}{l|c|c}
272 > \hline
273 >            Sample
274 >            &                K3   & K4\\
275 > \hline
276 > \hline
277 > Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
278 > Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
279 > Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
280 > Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
281 > Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
282 > Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
283 > Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
284 > Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
285 > \hline
286 > \end{tabular}
287 > \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
288 >  fraction of events with additional hard jets from radiation in
289 >  \ttll\ events. \label{tab:njetskfactors_met100}}
290 > \end{center}
291 > \end{table}
292 >
293 >
294 > However, we have two pieces of information indicating that the
295 > scale up/scale down variations are inconsistent with the data.
296 > These are described below.
297 >
298 > The first piece of information is that the jet multiplicity in the scale
299 > up/scale down sample is the most inconsistent with the data.  This is shown
300 > in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
301 > $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
302 > different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
303 > distribution
304 > for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
305 > and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
306 > equivalent $N_{jets}$ plots for the default Powheg MC, see
307 > Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
308 >
309 > \begin{figure}[hbt]
310 >  \begin{center}
311 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
312 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
313 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
314 >        \caption{
315 >          \label{fig:dileptonnjets_scaleup}%\protect
316 >          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
317 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
318 >      \end{center}
319   \end{figure}
320  
321 + \begin{figure}[hbt]
322 +  \begin{center}
323 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
324 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
325 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
326 +        \caption{
327 +          \label{fig:dileptonnjets_scaledw}%\protect
328 +          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
329 +          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
330 +      \end{center}
331 + \end{figure}
332 +
333 +
334 + \clearpage
335 +
336 + The second piece of information is that we have performed closure
337 + tests in CR5 using the alternative MC samples.  These are exactly
338 + the same tests as the one performed in Section~\ref{sec:CR5} on the
339 + Powheg sample.  As we argued previously, this is a very powerful
340 + test of the background calculation.
341 + The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
342 + Concentrating on the relatively high statistics CR5A region, we see
343 + for all \ttbar\ MC samples except scale up/scale down we obtain
344 + closure within 1$\sigma$.  The scale up/scale down tests closes
345 + worse, only within 2$\sigma$.  This again is evidence that the
346 + scale up/scale down variations are in disagreement with the data.
347 +
348 + \input{hugeCR5Table.tex}
349 +
350 + Based on the two observations above, we argue that the MC
351 + scale up/scale down variations are too extreme.  We feel that
352 + a reasonable choice would be to take one-half of the scale up/scale
353 + down variations in our MC.  This factor of 1/2 would then bring
354 + the discrepancy in the closure test of
355 + Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
356 + from about 2$\sigma$ to about 1$\sigma$.
357 +
358 + Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
359 + up/scale
360 + down variations by a factor 2, we can see that a systematic
361 + uncertainty
362 + of 6\% would fully cover all of the variations from different MC
363 + samples in SRA and SRB.
364 + {\bf Thus, we take a 6\% systematic uncertainty,  constant as a
365 + function of signal region, as the systematic due to alternative MC
366 + models.}
367 + Note that this 6\% is also consistent with the level at which we are
368 + able
369 + to test the closure of the method in CR5 for the high statistics
370 + regions
371 + (Table~\ref{tab:hugecr5yields}).
372 +
373 +
374 +
375 +
376 +
377 +
378 + %\begin{table}[!h]
379 + %\begin{center}
380 + %{\footnotesize
381 + %\begin{tabular}{l||c||c|c|c|c|c|c|c}
382 + %\hline
383 + %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
384 + %Up & Scale Down &
385 + %Match Up & Match Down \\
386 + %\hline
387 + %\hline
388 + %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
389 + %\hline
390 + %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
391 + %\hline
392 + %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
393 + %\hline
394 + %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
395 + %\hline
396 + %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
397 + %\hline
398 + %\end{tabular}}
399 + %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
400 + %\label{tab:ttdlalt}}
401 + %\end{center}
402 + %\end{table}
403 +
404 +
405 +
406 +
407 + %\begin{table}[!h]
408 + %\begin{center}
409 + %{\footnotesize
410 + %\begin{tabular}{l||c|c|c|c|c|c|c}
411 + %\hline
412 + %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
413 + %Match Up & Match Down \\
414 + %\hline
415 + %\hline
416 + %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
417 + %\hline
418 + %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
419 + %\hline
420 + %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
421 + %\hline
422 + %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
423 + %\hline
424 + %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
425 + %\hline
426 + %\end{tabular}}
427 + %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
428 + %\label{tab:nsig}}
429 + %\end{center}
430 + %\end{table}
431 +
432 +
433 + %\begin{table}[!h]
434 + %\begin{center}
435 + %\begin{tabular}{l||c|c|c|c}
436 + %\hline
437 + %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
438 + %& $\Delta$ Match \\
439 + %\hline
440 + %\hline
441 + %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
442 + %\hline
443 + %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
444 + %\hline
445 + %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
446 + %\hline
447 + %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
448 + %\hline
449 + %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
450 + %\hline
451 + %\end{tabular}
452 + %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
453 + %\label{tab:devt}}
454 + %\end{center}
455 + %\end{table}
456 +
457 +
458 +
459 + \clearpage
460 +
461 + %
462 + %
463 + %The methodology for determining the systematics on the background
464 + %predictions has not changed with respect to the nominal analysis.
465 + %Because the template method has not changed, the same
466 + %systematic uncertainty is assessed on this prediction (32\%).
467 + %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
468 + %The systematic uncertainty in the OF background prediction based on
469 + %e$\mu$ events has changed, due to the different composition of this
470 + %sample after vetoing events containing b-tagged jets.
471 + %
472 + %As in the nominal analysis, we do not require the e$\mu$ events
473 + %to satisfy the dilepton mass requirement and apply a scaling factor K,
474 + %extracted from MC, to account for the fraction of e$\mu$ events
475 + %which satisfy the dilepton mass requirement. This procedure is used
476 + %in order to improve the statistical precision of the OF background estimate.
477 + %
478 + %For the selection used in the nominal analysis,
479 + %the e$\mu$ sample is completely dominated by $t\bar{t}$
480 + %events, and we observe that K is statistically consistent with constant with
481 + %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
482 + %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
483 + %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
484 + %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
485 + %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
486 + %Therefore, the sample composition changes
487 + %as the \MET\ requirement is varied, and as a result K depends
488 + %on the \MET\ requirement.
489 + %
490 + %We thus measure K in MC separately for each
491 + %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
492 + %%The systematic uncertainty on K is determined separately for each \MET\
493 + %%requirement by comparing the relative difference in K in data vs. MC.
494 + %The values of K used are the MC predictions
495 + %%and the total systematic uncertainty on the OF prediction
496 + %%as shown in
497 + %(Table \ref{fig:kvmettable}).
498 + %The contribution to the total OF prediction systematic uncertainty
499 + %from K is assessed from the ratio of K in data and MC,
500 + %shown in Fig.~\ref{fig:kvmet} (right).
501 + %The ratio is consistent with unity to roughly 17\%,
502 + %so we take this value as the systematic from K.
503 + %17\% added in quadrature with 7\% from
504 + %the electron to muon efficieny ratio
505 + %(as assessed in the inclusive analysis)
506 + %yields a total systematic of $\sim$18\%
507 + %which we round up to 20\%.
508 + %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
509 + %so we take a systematic based on the statistical uncertainty
510 + %of the MC prediction for K.
511 + %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
512 + %%Although we cannot check the value of K in data for \MET\ $>$ 150
513 + %%because we find no OF events inside the Z mass window for this \MET\
514 + %%cut, the overall OF yields with no dilepton mass requirement
515 + %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
516 + %
517 + %
518 + %%Below Old
519 + %
520 + %%In reevaluating the systematics on the OF prediction, however,
521 + %%we observed a different behavior of K as a function of \MET\
522 + %%as was seen in the inclusive analysis.
523 + %
524 + %%Recall that K is the ratio of the number of \emu\ events
525 + %%inside the Z window to the total number of \emu\ events.
526 + %%In the inclusive analysis, it is taken from \ttbar\ MC
527 + %%and used to scale the inclusive \emu\ yield in data.
528 + %%The yield scaled by K is then corrected for
529 + %%the $e$ vs $\mu$ efficiency difference to obtain the
530 + %%final OF prediction.
531 + %
532 + %%Based on the plot in figure \ref{fig:kvmet},
533 + %%we choose to use a different
534 + %%K for each \MET\ cut and assess a systematic uncertainty
535 + %%on the OF prediction based on the difference between
536 + %%K in data and MC.
537 + %%The variation of K as a function of \MET\ is caused
538 + %%by a change in sample composition with increasing \MET.
539 + %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
540 + %%not negligible (as it was in the inclusive analysis)
541 + %%because of the b veto. (See appendix \ref{app:kinemu}.)
542 + %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
543 + %
544 + %
545 + %
546 + %
547 + %\begin{figure}[hbt]
548 + %  \begin{center}
549 + %       \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
550 + %       \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
551 + %       \caption{
552 + %         \label{fig:kvmet}\protect
553 + %         The left plot shows
554 + %         K as a function of \MET\ in MC (red) and data (black).
555 + %         The bin low edge corresponds to the \MET\ cut, and the
556 + %         bins are inclusive.
557 + %         The MC used is a sum of all SM MC used in the yield table of
558 + %         section \ref{sec:yields}.
559 + %         The right plot is the ratio of K in data to MC.
560 + %         The ratio is fit to a line whose slope is consistent with zero
561 + %         (the fit parameters are
562 + %         0.9 $\pm$  0.4 for the intercept and
563 + %      0.001 $\pm$ 0.005 for the slope).
564 + %       }
565 + %  \end{center}
566 + %\end{figure}
567 + %
568 + %
569 + %
570 + %\begin{table}[htb]
571 + %\begin{center}
572 + %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
573 + %The uncertainties shown are the total relative systematic used for the OF prediction,
574 + %which is the systematic uncertainty from K added in quadrature with
575 + %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
576 + %inclusive analysis.
577 + %}
578 + %\begin{tabular}{lcc}
579 + %\hline
580 + %\MET\ Cut    &    K        &  Relative Systematic \\
581 + %\hline
582 + %%the met zero row is used only for normalization of the money plot.
583 + %%0    &  0.1   &        \\  
584 + %30   &  0.12  &  20\%  \\  
585 + %60   &  0.13  &  20\%  \\  
586 + %80   &  0.12  &  20\%  \\  
587 + %100  &  0.12  &  20\%  \\  
588 + %150  &  0.09  &  25\%  \\  
589 + %200  &  0.06  &  60\%  \\  
590 + %\hline
591 + %\end{tabular}
592 + %\end{center}
593 + %\end{table}
594 +
595 + \subsection{Uncertainty from the isolated track veto}
596 + This is the uncertainty associated with how well the isolated track
597 + veto performance is modeled by the Monte Carlo.  This uncertainty
598 + only applies to the fraction of dilepton BG events that have
599 + a second e/$\mu$ or a one prong $\tau \to h$, with
600 + $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
601 + Table~\ref{tab:trueisotrk}.
602 + The uncertainty for these events
603 + is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
604 +
605 + \begin{table}[!h]
606 + \begin{center}
607 + {\footnotesize
608 + \begin{tabular}{l||c|c|c|c|c|c|c}
609 + \hline
610 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
611 + \hline
612 + \hline
613 + $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
614 + \hline
615 + \hline
616 + e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
617 + \hline
618 + \end{tabular}}
619 + \caption{ Fraction of \ttdl\ events with a true isolated track.
620 + \label{tab:trueisotrk}}
621 + \end{center}
622 + \end{table}
623 +
624 + \subsubsection{Isolated Track Veto: Tag and Probe Studies}
625 + \label{sec:trkveto}
626  
627  
628 < \begin{table}[htb]
628 > In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
629 > with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
630 > to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
631 > we would need to apply a data-to-MC scale factor in order to correctly
632 > predict the \ttll\ background.
633 >
634 > This study
635 > addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
636 > second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
637 > in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
638 > procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
639 >
640 > Furthermore, we test the data and MC
641 > isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
642 > directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
643 > may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
644 > or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
645 > the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
646 > consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
647 > $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
648 > decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
649 > Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
650 > As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
651 > leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
652 > due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
653 >
654 > The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
655 > All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
656 > We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
657 > this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
658 > not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
659 > fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
660 > \met\ $<$ 30 GeV and 0 b-tagged events.
661 > The specific criteria for tags and probes for electrons and muons are:
662 >
663 > %We study the isolated track veto efficiency in bins of \njets.
664 > %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
665 > %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
666 >
667 >
668 > \begin{itemize}
669 >  \item{Electrons}
670 >
671 >    \begin{itemize}
672 >    \item{Tag criteria}
673 >
674 >      \begin{itemize}
675 >      \item Electron passes full analysis ID/iso selection
676 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
677 >      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
678 >      \end{itemize}
679 >
680 >    \item{Probe criteria}
681 >      \begin{itemize}
682 >      \item Electron passes full analysis ID selection
683 >      \item \pt\ $>$ 30 GeV
684 >      \end{itemize}
685 >      \end{itemize}
686 >  \item{Muons}
687 >    \begin{itemize}
688 >    \item{Tag criteria}
689 >      \begin{itemize}
690 >      \item Muon passes full analysis ID/iso selection
691 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
692 >      \item Matched to 1 of the 2 single muon triggers
693 >        \begin{itemize}
694 >        \item \verb=HLT_IsoMu30_v*=
695 >        \item \verb=HLT_IsoMu30_eta2p1_v*=
696 >        \end{itemize}
697 >      \end{itemize}
698 >    \item{Probe criteria}
699 >      \begin{itemize}
700 >      \item Muon passes full analysis ID selection
701 >      \item \pt\ $>$ 30 GeV
702 >      \end{itemize}
703 >    \end{itemize}
704 > \end{itemize}
705 >
706 > The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
707 > good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
708 > absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
709 > In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
710 > efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
711 > For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
712 > a data vs. MC discrepancy in the isolated track veto efficiency.
713 >
714 >
715 > %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
716 > %This requirement is chosen because most of the tracks rejected by the isolated
717 > %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
718 >
719 > \begin{figure}[hbt]
720 >  \begin{center}
721 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
722 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
723 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
724 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
725 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
726 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
727 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
728 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
729 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
730 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
731 >        \caption{
732 >          \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
733 > for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
734 > }  
735 >      \end{center}
736 > \end{figure}
737 >
738 > \clearpage
739 >
740 > \begin{table}[!ht]
741   \begin{center}
742 < \caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
743 < The uncertainties shown are the total relative systematic used for the OF prediction,
744 < which is the systematic uncertainty from K added in quadrature with
745 < a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
746 < inclusive analysis.
747 < }
748 < \begin{tabular}{lcc}
749 < \hline
750 < \MET\ Cut    &    K        &  Relative Systematic \\
751 < \hline
752 < %the met zero row is used only for normalization of the money plot.
753 < %0    &  0.1   &        \\  
754 < 30   &  0.12  &  20\%  \\  
755 < 60   &  0.13  &  20\%  \\  
756 < 80   &  0.12  &  20\%  \\  
757 < 100  &  0.12  &  20\%  \\  
758 < 150  &  0.09  &  25\%  \\  
759 < 200  &  0.06  &  60\%  \\  
742 > \begin{tabular}{l|c|c|c|c|c}
743 >
744 > %Electrons:
745 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
746 > %Total MC yields        : 2497277
747 > %Total DATA yields      : 2649453
748 > %Muons:
749 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
750 > %Total MC yields        : 3749863
751 > %Total DATA yields      : 4210022
752 > %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
753 > %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
754 >
755 > \hline
756 > \hline
757 > e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
758 > \hline
759 >      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
760 >        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
761 >   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
762 >
763 > \hline
764 > \hline
765 > $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
766 > \hline
767 >      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
768 >        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
769 >   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
770 >
771 > \hline
772 > \hline
773 > e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
774 > \hline
775 >      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
776 >        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
777 >   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
778 >
779 > \hline
780 > \hline
781 > $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
782 > \hline
783 >      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
784 >        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
785 >   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
786 >
787 > \hline
788   \hline
789 + e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
790 + \hline
791 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
792 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
793 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
794 +
795 + \hline
796 + \hline
797 + $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
798 + \hline
799 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
800 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
801 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
802 +
803 + \hline
804 + \hline
805 + e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
806 + \hline
807 +      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
808 +        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
809 +   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
810 +
811 + \hline
812 + \hline
813 + $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
814 + \hline
815 +      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
816 +        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
817 +   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
818 +
819 + \hline
820 + \hline
821 + e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
822 + \hline
823 +      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
824 +        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
825 +   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
826 +
827 + \hline
828 + \hline
829 + $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
830 + \hline
831 +      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
832 +        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
833 +   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
834 +
835 + \hline
836 + \hline
837 +
838   \end{tabular}
839 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
840 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
841 + jet multiplicity requirements.}
842   \end{center}
843   \end{table}
844 +
845 +
846 + %Figure.~\ref{fig:reliso} compares the relative track isolation
847 + %for events with a track with $\pt > 10~\GeV$ in addition to a selected
848 + %muon for $\Z+4$ jet events and various \ttll\ components. The
849 + %isolation distributions show significant differences, particularly
850 + %between the leptons from a \W\ or \Z\ decay and the tracks arising
851 + %from $\tau$ decays. As can also be seen in the figure, the \pt\
852 + %distribution for the various categories of tracks is different, where
853 + %the decay products from $\tau$s are significantly softer. Since the
854 + %\pt\ enters the denominator of the isolation definition and hence
855 + %alters the isolation variable...
856 +
857 + %\begin{figure}[hbt]
858 + %  \begin{center}
859 + %       \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
860 + %       \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
861 + %       \caption{
862 + %         \label{fig:reliso}%\protect
863 + %          Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
864 + %          Z+Jets and ttbar dilepton have similar isolation distributions
865 + %          ttbar with leptonic and single prong taus tend to be less
866 + %          isolated. The difference in the isolation can be attributed
867 + %          to the different \pt\ distribution of the samples, since
868 + %          $\tau$ decay products tend to be softer than leptons arising
869 + %          from \W\ or \Z\ decays.}  
870 + %      \end{center}
871 + %\end{figure}
872 +
873 + %       \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
874 +
875 +
876 + %BEGIN SECTION TO WRITE OUT
877 + %In detail, the procedure to correct the dilepton background is:
878 +
879 + %\begin{itemize}
880 + %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
881 + %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
882 + %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
883 + %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
884 + %the lepton \pt {\bf TODO: verify this in data and MC.}.
885 + %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
886 + %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
887 + %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
888 + %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
889 + %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
890 + %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
891 + %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
892 + %\end{itemize}
893 + %END SECTION TO WRITE OUT
894 +
895 +
896 + %{\bf fix me: What you have written in the next paragraph does not
897 + %explain how $\epsilon_{fake}$ is measured.
898 + %Why not measure $\epsilon_{fake}$ in the b-veto region?}
899 +
900 + %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
901 + %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
902 + %applying an additional scale factor for the single lepton background
903 + %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
904 + %veto and after subtracting the \ttll\ component, corrected for the
905 + %isolation efficiency derived previously.
906 + %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
907 + %isolated track in single lepton events is independent of \mt\, so the use of
908 + %an overall scale factor is justified to estimate the contribution in
909 + %the \mt\ tail.
910 + %
911 + %\begin{figure}[hbt]
912 + %  \begin{center}
913 + %       \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
914 + %       \caption{
915 + %         \label{fig:vetoeffcomp}%\protect
916 + %          Efficiency for selecting an isolated track comparing
917 + %          single lepton \ttlj\ and dilepton \ttll\ events in MC and
918 + %          data as a function of \mt. The
919 + %          efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
920 + %          \mt\, while the data ranges between the two. This behavior
921 + %          is expected since the low \mt\ region is predominantly \ttlj, while the
922 + %          high \mt\ region contains mostly \ttll\ events.}  
923 + %      \end{center}
924 + %\end{figure}
925 +
926 + % \subsection{Summary of uncertainties}
927 + % \label{sec:bgunc-bottomline}.
928 +
929 + % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines