ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.1 by benhoob, Sun Jun 24 15:06:07 2012 UTC vs.
Revision 1.25 by linacre, Sat Oct 20 21:54:54 2012 UTC

# Line 1 | Line 1
1 < \section{Systematics Uncertainties in the Background Prediction}
2 < \label{sec:systematics}
1 > %\section{Systematics Uncertainties on the Background Prediction}
2 > %\label{sec:systematics}
3  
4 < The methodology for determining the systematics on the background
5 < predictions has not changed with respect to the nominal analysis.
6 < Because the template method has not changed, the same
7 < systematic uncertainty is assessed on this prediction (32\%).
8 < The 50\% uncertainty on the WZ and ZZ background is also unchanged.
9 < The systematic uncertainty in the OF background prediction based on
10 < e$\mu$ events has changed, due to the different composition of this
11 < sample after vetoing events containing b-tagged jets.
12 <
13 < As in the nominal analysis, we do not require the e$\mu$ events
14 < to satisfy the dilepton mass requirement and apply a scaling factor K,
15 < extracted from MC, to account for the fraction of e$\mu$ events
16 < which satisfy the dilepton mass requirement. This procedure is used
17 < in order to improve the statistical precision of the OF background estimate.
18 <
19 < For the selection used in the nominal analysis,
20 < the e$\mu$ sample is completely dominated by $t\bar{t}$
21 < events, and we observe that K is statistically consistent with constant with
22 < respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
23 < background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
24 < backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
25 < At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
26 < and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
27 < Therefore, the sample composition changes
28 < as the \MET\ requirement is varied, and as a result K depends
29 < on the \MET\ requirement.
30 <
31 < We thus measure K in MC separately for each
32 < \MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
33 < %The systematic uncertainty on K is determined separately for each \MET\
34 < %requirement by comparing the relative difference in K in data vs. MC.
35 < The values of K used are the MC predictions
36 < %and the total systematic uncertainty on the OF prediction
37 < %as shown in
38 < (Table \ref{fig:kvmettable}).
39 < The contribution to the total OF prediction systematic uncertainty
40 < from K is assessed from the ratio of K in data and MC,
41 < shown in Fig.~\ref{fig:kvmet} (right).
42 < The ratio is consistent with unity to roughly 17\%,
43 < so we take this value as the systematic from K.
44 < 17\% added in quadrature with 7\% from
45 < the electron to muon efficieny ratio
46 < (as assessed in the inclusive analysis)
47 < yields a total systematic of $\sim$18\%
48 < which we round up to 20\%.
49 < For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
50 < so we take a systematic based on the statistical uncertainty
51 < of the MC prediction for K.
52 < This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
53 < %Although we cannot check the value of K in data for \MET\ $>$ 150
54 < %because we find no OF events inside the Z mass window for this \MET\
55 < %cut, the overall OF yields with no dilepton mass requirement
56 < %agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
57 <
58 <
59 < %Below Old
60 <
61 < %In reevaluating the systematics on the OF prediction, however,
62 < %we observed a different behavior of K as a function of \MET\
63 < %as was seen in the inclusive analysis.
64 <
65 < %Recall that K is the ratio of the number of \emu\ events
66 < %inside the Z window to the total number of \emu\ events.
67 < %In the inclusive analysis, it is taken from \ttbar\ MC
68 < %and used to scale the inclusive \emu\ yield in data.
69 < %The yield scaled by K is then corrected for
70 < %the $e$ vs $\mu$ efficiency difference to obtain the
71 < %final OF prediction.
72 <
73 < %Based on the plot in figure \ref{fig:kvmet},
74 < %we choose to use a different
75 < %K for each \MET\ cut and assess a systematic uncertainty
76 < %on the OF prediction based on the difference between
77 < %K in data and MC.
78 < %The variation of K as a function of \MET\ is caused
79 < %by a change in sample composition with increasing \MET.
80 < %At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
81 < %not negligible (as it was in the inclusive analysis)
82 < %because of the b veto. (See appendix \ref{app:kinemu}.)
83 < %At higher \MET, \ttbar\ and diboson backgrounds dominate.
4 > In this Section we discuss the systematic uncertainty on the BG
5 > prediction.  This prediction is assembled from the event
6 > counts in the peak region of the transverse mass distribution as
7 > well as Monte Carlo
8 > with a number of correction factors, as described previously.
9 > The
10 > final uncertainty on the prediction is built up from the uncertainties in these
11 > individual
12 > components.
13 > The calculation is done for each signal
14 > region,
15 > for electrons and muons separately.
16 >
17 > The choice to normalize to the peak region of $M_T$ has the
18 > advantage that some uncertainties, e.g., luminosity, cancel.
19 > It does however introduce complications because it couples
20 > some of the uncertainties in non-trivial ways.  For example,
21 > the primary effect of an uncertainty on the rare MC cross-section
22 > is to introduce an uncertainty in the rare MC background estimate
23 > which comes entirely from MC.   But this uncertainty also affects,
24 > for example,
25 > the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 > $t\bar{t}$ normalization to the peak region (because some of the
27 > events in the peak region are from rare processes).  These effects
28 > are carefully accounted for. The contribution to the overall
29 > uncertainty from each background source is tabulated in
30 > Section~\ref{sec:bgunc-bottomline}.
31 > Here we discuss the uncertainties one-by-one and comment
32 > on their impact on the overall result, at least to first order.
33 > Second order effects, such as the one described, are also included.
34 >
35 > \subsection{Statistical uncertainties on the event counts in the $M_T$
36 > peak regions}
37 > These vary between 2\% and 20\%, depending on the signal region
38 > (different
39 > signal regions have different \met\ requirements, thus they also have
40 > different $M_T$ regions used as control).
41 > Since
42 > the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
43 > fractional uncertainty is pretty much carried through all the way to
44 > the end.  There is also an uncertainty from the finite MC event counts
45 > in the $M_T$ peak regions.  This is also included, but it is smaller.
46 >
47 > Normalizing to the $M_T$ peak has the distinct advantages that
48 > uncertainties on luminosity, cross-sections, trigger efficiency,
49 > lepton ID, cancel out.
50 > For the low statistics regions with high \met\ requirements, the
51 > price to pay in terms of event count is that statistical uncertainties start
52 > to become significant.  In the future we may consider a different
53 > normalization startegy in the low statistics regions.
54 >
55 > \subsection{Uncertainty from the choice of $M_T$ peak region}
56 >
57 > This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
58 > If the $M_T$ peak region is not well modelled, this would introduce an
59 > uncertainty.
60 >
61 > We have tested this possibility by recalculating the post-veto scale factors for a different
62 > choice
63 > of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 > $50 < M_T < 80$ GeV).  This is shown in Table~\ref{tab:mtpeaksf2}.  
65 > The two results for the scale factors are very compatible.
66 > We do not take any systematic uncertainty for this possible effect.
67  
68 + \begin{table}[!h]
69 + \begin{center}
70 + {\footnotesize
71 + \begin{tabular}{l||c|c|c|c|c|c|c}
72 + \hline
73 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 + \hline
75 + \hline
76 + \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 + \hline
78 + $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 + $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 + \hline
81 + $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 + \hline
83 + \hline
84 + e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 + e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 + \hline
87 + e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 + \hline
89 + \hline
90 + \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 + \hline
92 + $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 + $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 + \hline
95 + $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 + \hline
97 + \hline
98 + e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 + e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 + \hline
101 + e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 + \hline
103 + \end{tabular}}
104 + \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 +  \ttdl\ sample, while the post-veto SFs are applied to the single
106 +  lepton samples. The veto SF is shown for comparison across channels.
107 +  The raw MC is used for backgrounds from rare processes.
108 +  The uncertainties are statistical only.
109 + \label{tab:mtpeaksf2}}
110 + \end{center}
111 + \end{table}
112 +
113 +
114 + \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
115 + These are taken as 50\%, uncorrelated.  
116 + The primary effect is to introduce a 50\%
117 + uncertainty
118 + on the $W +$ jets and rare BG
119 + background predictions, respectively.  However they also
120 + have an effect on the other BGs via the $M_T$ peak normalization
121 + in a way that tends to reduce the uncertainty.  This is easy
122 + to understand: if the $W$ cross-section is increased by 50\%, then
123 + the $W$ background goes up.  But the number of $M_T$ peak events
124 + attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125 + scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126 + BG goes down.  
127 +
128 + \subsection{Tail-to-peak ratios for lepton +
129 +  jets top and W events}
130 + The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131 + The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132 + Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its uncertainty is given in Table~\ref{tab:cr1yields}). This uncertainty affects both $R_{wjet}$ and $R_{top}$.
133 + The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
134 +
135 +
136 + \subsection{Uncertainty on extra jet radiation for dilepton
137 +  background}
138 + As discussed in Section~\ref{sec:jetmultiplicity}, the
139 + jet distribution in
140 + $t\bar{t} \to$
141 + dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
142 + it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
143 + comes from data/MC statistics.  This  
144 + results directly in a 3\% uncertainty on the dilepton background, which is by far
145 + the most important one.
146 +
147 + \subsection{Uncertainty from MC statistics}
148 + This affects mostly the \ttll\ background estimate, which is taken
149 + from
150 + Monte Carlo with appropriate correction factors.  This uncertainty
151 + is negligible in the low \met\ signal regions, and grows to about
152 + 15\% in SRG.
153 +
154 +
155 + \subsection{Uncertainty on the \ttll\ Background}
156 + \label{sec:ttdilbkgunc}
157 + The \ttbar\ background prediction is obtained from MC, with corrections
158 + derived from control samples in data. The uncertainty associated with
159 + the \ttbar\ background is derived from the level of closure of the
160 + background prediction in CR4 (Table~\ref{tab:cr4yields}) and
161 + CR5 (Table~\ref{tab:cr5yields}). The results from these control region
162 + checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned
163 + to the \ttdl\ background prediction based on these tests are
164 + 5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G).
165 +
166 + \begin{figure}[hbt]
167 +  \begin{center}
168 +        \includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf}
169 +        \caption{
170 +          \label{fig:ttdlunc}%\protect
171 +          Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after
172 +          applying SFs) to data for CR4 and CR5 for all the signal
173 +          region requirements considered (A-G). The bands indicate the
174 +          systematic uncertainties assigned based on these tests,
175 +          ranging from $5\%$ for SRA to $40\%$ for SRE-G.}
176 +      \end{center}
177 + \end{figure}
178  
179  
180 + \subsubsection{Check of the uncertainty on the \ttll\ Background}
181 +
182 + We check that the systematic uncertainty assigned to the \ttll\ background prediction
183 + covers the uncertainty associated with
184 + the theoretical modeling of the \ttbar\ production and decay
185 + by comparing the background predictions obtained using
186 + alternative MC samples. It should be noted that the full analysis is
187 + performed with the alternative samples under consideration,
188 + including the derivation of the various data-to-MC scale factors.
189 + The variations considered are
190 +
191 + \begin{itemize}
192 + \item Top mass: The alternative values for the top mass differ
193 +  from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
194 +  = 166.5~\GeV$.
195 + \item Jet-parton matching scale: This corresponds to variations in the
196 +  scale at which the Matrix Element partons from Madgraph are matched
197 +  to Parton Shower partons from Pythia. The nominal value is
198 +  $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
199 +  $x_q>40~\GeV$.
200 + \item Renormalization and factorization scale: The alternative samples
201 +  correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
202 +  value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
203 +  \sum_{\mathrm{jets}} \pt^2$.
204 + \item Alternative generators: Samples produced with different
205 +  generators, Powheg (our default) and Madgraph.
206 + \item Modeling of taus: The alternative sample does not include
207 +  Tauola and is otherwise identical to the Powheg sample.
208 +  This effect was studied earlier using 7~TeV samples and found to be negligible.
209 + \item The PDF uncertainty is estimated following the PDF4LHC
210 +  recommendations. The events are reweighted using alternative
211 +  PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
212 +  alternative eigenvector variations and the ``master equation''.
213 +  The NNPDF2.1 set with 100 replicas is also used. The central value is
214 +  determined from the mean and the uncertainty is derived from the
215 +  $1\sigma$ range. The overall uncertainty is derived from the envelope of the
216 +  alternative predictions and their uncertainties.
217 +  This effect was studied earlier using 7~TeV samples and found to be negligible.
218 +  \end{itemize}
219  
220   \begin{figure}[hbt]
221    \begin{center}
222 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
223 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
222 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
223 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
224 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
225 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
226 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
227          \caption{
228 <          \label{fig:kvmet}\protect
229 <          The left plot shows
230 <          K as a function of \MET\ in MC (red) and data (black).
231 <          The bin low edge corresponds to the \MET\ cut, and the
232 <          bins are inclusive.
233 <          The MC used is a sum of all SM MC used in the yield table of
234 <          section \ref{sec:yields}.
235 <          The right plot is the ratio of K in data to MC.
236 <          The ratio is fit to a line whose slope is consistent with zero
237 <          (the fit parameters are
238 <          0.9 $\pm$  0.4 for the intercept and
239 <      0.001 $\pm$ 0.005 for the slope).
240 <        }
241 <  \end{center}
228 >          \label{fig:ttllsyst}\protect
229 >          Comparison of the \ttll\ central prediction with those using
230 >          alternative MC samples. The blue band corresponds to the
231 >          total statistical error for all data and MC samples. The
232 >          alternative sample predictions are indicated by the
233 >          datapoints. The uncertainties on the alternative predictions
234 >          correspond to the uncorrelated statistical uncertainty from
235 >          the size of the alternative sample only.  Note the
236 >          suppressed vertical scales.}
237 >      \end{center}
238 >    \end{figure}
239 >
240 >
241 > \begin{table}[!h]
242 > \begin{center}
243 > {\footnotesize
244 > \begin{tabular}{l||c|c|c|c|c|c|c}
245 > \hline
246 > $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
247 > Match Up & Match Down \\
248 > \hline
249 > \hline
250 > SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
251 > \hline
252 > SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
253 > \hline
254 > % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
255 > % \hline
256 > % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
257 > % \hline
258 > % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
259 > \hline
260 > \end{tabular}}
261 > \caption{ Relative difference in \ttdl\ predictions for alternative MC
262 >  samples in
263 > the higher statistics regions SRA and SRB.  These differences
264 > are based on the central values of the predictions.  For a fuller
265 > picture
266 > of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
267 > \label{tab:fracdiff}}
268 > \end{center}
269 > \end{table}
270 >
271 >
272 > In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
273 > for regions A through E.  We can make the following observations based
274 > on this Figure.
275 >
276 > \begin{itemize}
277 > \item In the tighter signal regions we are running out of
278 >  statistics.    
279 > \item Within the limited statistics, there is no evidence that the
280 >  situation changes as we go from signal region A to signal region E.
281 > %Therefore, we assess a systematic based on the relatively high
282 > %statistics
283 > %test in signal region A, and apply the same systematic uncertainty
284 > %to all other regions.
285 > \item In signal regions B and above, the uncertainties assigned in Section~\ref{sec:ttdilbkgunc}
286 > fully cover the alternative MC variations.
287 > \item In order to fully (as opposed as 1$\sigma$) cover the
288 > alternative MC variations in region A we would have to take a
289 > systematic
290 > uncertainty of $\approx 10\%$ instead of $5\%$.  This would be driven by the
291 > scale up/scale down variations, see Table~\ref{tab:fracdiff}.
292 > \end{itemize}
293 >
294 > \begin{table}[!ht]
295 > \begin{center}
296 > \begin{tabular}{l|c|c}
297 > \hline
298 >            Sample
299 >            &                K3   & K4\\
300 > \hline
301 > \hline
302 > Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
303 > Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
304 > Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
305 > Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
306 > Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
307 > Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
308 > Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
309 > Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
310 > \hline
311 > \end{tabular}
312 > \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
313 >  fraction of events with additional hard jets from radiation in
314 >  \ttll\ events. \label{tab:njetskfactors_met100}}
315 > \end{center}
316 > \end{table}
317 >
318 >
319 > However, we have two pieces of information indicating that the
320 > scale up/scale down variations are inconsistent with the data.
321 > These are described below.
322 >
323 > The first piece of information is that the jet multiplicity in the scale
324 > up/scale down sample is the most inconsistent with the data.  This is shown
325 > in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
326 > $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
327 > different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
328 > distribution
329 > for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
330 > and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
331 > equivalent $N_{jets}$ plots for the default Powheg MC, see
332 > Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
333 >
334 > \begin{figure}[hbt]
335 >  \begin{center}
336 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
337 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
338 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
339 >        \caption{
340 >          \label{fig:dileptonnjets_scaleup}%\protect
341 >          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
342 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
343 >      \end{center}
344 > \end{figure}
345 >
346 > \begin{figure}[hbt]
347 >  \begin{center}
348 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
349 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
350 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
351 >        \caption{
352 >          \label{fig:dileptonnjets_scaledw}%\protect
353 >          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
354 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
355 >      \end{center}
356   \end{figure}
357  
358  
359 + \clearpage
360 +
361 + The second piece of information is that we have performed closure
362 + tests in CR5 using the alternative MC samples.  These are exactly
363 + the same tests as the one performed in Section~\ref{sec:CR5} on the
364 + Powheg sample.  As we argued previously, this is a very powerful
365 + test of the background calculation.
366 + The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
367 + Concentrating on the relatively high statistics CR5A region, we see
368 + for all \ttbar\ MC samples except scale up/scale down we obtain
369 + closure within 1$\sigma$.  The scale up/scale down tests closes
370 + worse, only within 2$\sigma$.  This again is evidence that the
371 + scale up/scale down variations are in disagreement with the data.
372 +
373 + \input{hugeCR5Table.tex}
374 +
375 + Based on the two observations above, we argue that the MC
376 + scale up/scale down variations are too extreme.  We feel that
377 + a reasonable choice would be to take one-half of the scale up/scale
378 + down variations in our MC.  This factor of 1/2 would then bring
379 + the discrepancy in the closure test of
380 + Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
381 + from about 2$\sigma$ to about 1$\sigma$.
382 +
383 + Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
384 + up/scale
385 + down variations by a factor 2, we can see that a systematic
386 + uncertainty
387 + of 5\% covers the range of reasonable variations from different MC
388 + models in SRA and SRB.
389 + %The alternative MC models indicate that a 6\% systematic uncertainty
390 + %covers the range of reasonable variations.
391 + Note that this 5\% is also consistent with the level at which we are
392 + able to test the closure of the method with alternative samples in CR5 for the high statistics
393 + regions (Table~\ref{tab:hugecr5yields}).
394 + The range of reasonable variations obtained with the alternative
395 + samples are consistent with the uncertainties assigned for
396 + the \ttll\ background based on the closure of the background
397 + predictions and data in CR4 and CR5.
398 +
399 +
400 +
401 +
402 +
403 + %\begin{table}[!h]
404 + %\begin{center}
405 + %{\footnotesize
406 + %\begin{tabular}{l||c||c|c|c|c|c|c|c}
407 + %\hline
408 + %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
409 + %Up & Scale Down &
410 + %Match Up & Match Down \\
411 + %\hline
412 + %\hline
413 + %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
414 + %\hline
415 + %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
416 + %\hline
417 + %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
418 + %\hline
419 + %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
420 + %\hline
421 + %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
422 + %\hline
423 + %\end{tabular}}
424 + %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
425 + %\label{tab:ttdlalt}}
426 + %\end{center}
427 + %\end{table}
428 +
429 +
430 +
431 +
432 + %\begin{table}[!h]
433 + %\begin{center}
434 + %{\footnotesize
435 + %\begin{tabular}{l||c|c|c|c|c|c|c}
436 + %\hline
437 + %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
438 + %Match Up & Match Down \\
439 + %\hline
440 + %\hline
441 + %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
442 + %\hline
443 + %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
444 + %\hline
445 + %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
446 + %\hline
447 + %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
448 + %\hline
449 + %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
450 + %\hline
451 + %\end{tabular}}
452 + %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
453 + %\label{tab:nsig}}
454 + %\end{center}
455 + %\end{table}
456 +
457 +
458 + %\begin{table}[!h]
459 + %\begin{center}
460 + %\begin{tabular}{l||c|c|c|c}
461 + %\hline
462 + %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
463 + %& $\Delta$ Match \\
464 + %\hline
465 + %\hline
466 + %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
467 + %\hline
468 + %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
469 + %\hline
470 + %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
471 + %\hline
472 + %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
473 + %\hline
474 + %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
475 + %\hline
476 + %\end{tabular}
477 + %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
478 + %\label{tab:devt}}
479 + %\end{center}
480 + %\end{table}
481 +
482 +
483 +
484 + \clearpage
485 +
486 + %
487 + %
488 + %The methodology for determining the systematics on the background
489 + %predictions has not changed with respect to the nominal analysis.
490 + %Because the template method has not changed, the same
491 + %systematic uncertainty is assessed on this prediction (32\%).
492 + %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
493 + %The systematic uncertainty in the OF background prediction based on
494 + %e$\mu$ events has changed, due to the different composition of this
495 + %sample after vetoing events containing b-tagged jets.
496 + %
497 + %As in the nominal analysis, we do not require the e$\mu$ events
498 + %to satisfy the dilepton mass requirement and apply a scaling factor K,
499 + %extracted from MC, to account for the fraction of e$\mu$ events
500 + %which satisfy the dilepton mass requirement. This procedure is used
501 + %in order to improve the statistical precision of the OF background estimate.
502 + %
503 + %For the selection used in the nominal analysis,
504 + %the e$\mu$ sample is completely dominated by $t\bar{t}$
505 + %events, and we observe that K is statistically consistent with constant with
506 + %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
507 + %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
508 + %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
509 + %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
510 + %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
511 + %Therefore, the sample composition changes
512 + %as the \MET\ requirement is varied, and as a result K depends
513 + %on the \MET\ requirement.
514 + %
515 + %We thus measure K in MC separately for each
516 + %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
517 + %%The systematic uncertainty on K is determined separately for each \MET\
518 + %%requirement by comparing the relative difference in K in data vs. MC.
519 + %The values of K used are the MC predictions
520 + %%and the total systematic uncertainty on the OF prediction
521 + %%as shown in
522 + %(Table \ref{fig:kvmettable}).
523 + %The contribution to the total OF prediction systematic uncertainty
524 + %from K is assessed from the ratio of K in data and MC,
525 + %shown in Fig.~\ref{fig:kvmet} (right).
526 + %The ratio is consistent with unity to roughly 17\%,
527 + %so we take this value as the systematic from K.
528 + %17\% added in quadrature with 7\% from
529 + %the electron to muon efficieny ratio
530 + %(as assessed in the inclusive analysis)
531 + %yields a total systematic of $\sim$18\%
532 + %which we round up to 20\%.
533 + %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
534 + %so we take a systematic based on the statistical uncertainty
535 + %of the MC prediction for K.
536 + %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
537 + %%Although we cannot check the value of K in data for \MET\ $>$ 150
538 + %%because we find no OF events inside the Z mass window for this \MET\
539 + %%cut, the overall OF yields with no dilepton mass requirement
540 + %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
541 + %
542 + %
543 + %%Below Old
544 + %
545 + %%In reevaluating the systematics on the OF prediction, however,
546 + %%we observed a different behavior of K as a function of \MET\
547 + %%as was seen in the inclusive analysis.
548 + %
549 + %%Recall that K is the ratio of the number of \emu\ events
550 + %%inside the Z window to the total number of \emu\ events.
551 + %%In the inclusive analysis, it is taken from \ttbar\ MC
552 + %%and used to scale the inclusive \emu\ yield in data.
553 + %%The yield scaled by K is then corrected for
554 + %%the $e$ vs $\mu$ efficiency difference to obtain the
555 + %%final OF prediction.
556 + %
557 + %%Based on the plot in figure \ref{fig:kvmet},
558 + %%we choose to use a different
559 + %%K for each \MET\ cut and assess a systematic uncertainty
560 + %%on the OF prediction based on the difference between
561 + %%K in data and MC.
562 + %%The variation of K as a function of \MET\ is caused
563 + %%by a change in sample composition with increasing \MET.
564 + %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
565 + %%not negligible (as it was in the inclusive analysis)
566 + %%because of the b veto. (See appendix \ref{app:kinemu}.)
567 + %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
568 + %
569 + %
570 + %
571 + %
572 + %\begin{figure}[hbt]
573 + %  \begin{center}
574 + %       \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
575 + %       \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
576 + %       \caption{
577 + %         \label{fig:kvmet}\protect
578 + %         The left plot shows
579 + %         K as a function of \MET\ in MC (red) and data (black).
580 + %         The bin low edge corresponds to the \MET\ cut, and the
581 + %         bins are inclusive.
582 + %         The MC used is a sum of all SM MC used in the yield table of
583 + %         section \ref{sec:yields}.
584 + %         The right plot is the ratio of K in data to MC.
585 + %         The ratio is fit to a line whose slope is consistent with zero
586 + %         (the fit parameters are
587 + %         0.9 $\pm$  0.4 for the intercept and
588 + %      0.001 $\pm$ 0.005 for the slope).
589 + %       }
590 + %  \end{center}
591 + %\end{figure}
592 + %
593 + %
594 + %
595 + %\begin{table}[htb]
596 + %\begin{center}
597 + %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
598 + %The uncertainties shown are the total relative systematic used for the OF prediction,
599 + %which is the systematic uncertainty from K added in quadrature with
600 + %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
601 + %inclusive analysis.
602 + %}
603 + %\begin{tabular}{lcc}
604 + %\hline
605 + %\MET\ Cut    &    K        &  Relative Systematic \\
606 + %\hline
607 + %%the met zero row is used only for normalization of the money plot.
608 + %%0    &  0.1   &        \\  
609 + %30   &  0.12  &  20\%  \\  
610 + %60   &  0.13  &  20\%  \\  
611 + %80   &  0.12  &  20\%  \\  
612 + %100  &  0.12  &  20\%  \\  
613 + %150  &  0.09  &  25\%  \\  
614 + %200  &  0.06  &  60\%  \\  
615 + %\hline
616 + %\end{tabular}
617 + %\end{center}
618 + %\end{table}
619 +
620 + \subsection{Uncertainty from the isolated track veto}
621 + This is the uncertainty associated with how well the isolated track
622 + veto performance is modeled by the Monte Carlo.  This uncertainty
623 + only applies to the fraction of dilepton BG events that have
624 + a second e/$\mu$ or a one prong $\tau \to h$, with
625 + $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
626 + Table~\ref{tab:trueisotrk}.
627 + The uncertainty for these events
628 + is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
629 +
630 + \begin{table}[!h]
631 + \begin{center}
632 + {\footnotesize
633 + \begin{tabular}{l||c|c|c|c|c|c|c}
634 + \hline
635 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
636 + \hline
637 + \hline
638 + $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
639 + \hline
640 + \hline
641 + e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
642 + \hline
643 + \end{tabular}}
644 + \caption{ Fraction of \ttdl\ events with a true isolated track.
645 + \label{tab:trueisotrk}}
646 + \end{center}
647 + \end{table}
648 +
649 + \subsubsection{Isolated Track Veto: Tag and Probe Studies}
650 + \label{sec:trkveto}
651 +
652  
653 < \begin{table}[htb]
653 > In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
654 > with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
655 > to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
656 > we would need to apply a data-to-MC scale factor in order to correctly
657 > predict the \ttll\ background.
658 >
659 > This study
660 > addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
661 > second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
662 > in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
663 > procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
664 >
665 > Furthermore, we test the data and MC
666 > isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
667 > directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
668 > may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
669 > or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
670 > the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
671 > consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
672 > $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
673 > decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
674 > Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
675 > As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
676 > leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
677 > due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
678 >
679 > The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
680 > All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
681 > We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
682 > this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
683 > not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
684 > fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
685 > \met\ $<$ 30 GeV and 0 b-tagged events.
686 > The specific criteria for tags and probes for electrons and muons are:
687 >
688 > %We study the isolated track veto efficiency in bins of \njets.
689 > %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
690 > %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
691 >
692 >
693 > \begin{itemize}
694 >  \item{Electrons}
695 >
696 >    \begin{itemize}
697 >    \item{Tag criteria}
698 >
699 >      \begin{itemize}
700 >      \item Electron passes full analysis ID/iso selection
701 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
702 >      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
703 >      \end{itemize}
704 >
705 >    \item{Probe criteria}
706 >      \begin{itemize}
707 >      \item Electron passes full analysis ID selection
708 >      \item \pt\ $>$ 30 GeV
709 >      \end{itemize}
710 >      \end{itemize}
711 >  \item{Muons}
712 >    \begin{itemize}
713 >    \item{Tag criteria}
714 >      \begin{itemize}
715 >      \item Muon passes full analysis ID/iso selection
716 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
717 >      \item Matched to 1 of the 2 single muon triggers
718 >        \begin{itemize}
719 >        \item \verb=HLT_IsoMu30_v*=
720 >        \item \verb=HLT_IsoMu30_eta2p1_v*=
721 >        \end{itemize}
722 >      \end{itemize}
723 >    \item{Probe criteria}
724 >      \begin{itemize}
725 >      \item Muon passes full analysis ID selection
726 >      \item \pt\ $>$ 30 GeV
727 >      \end{itemize}
728 >    \end{itemize}
729 > \end{itemize}
730 >
731 > The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
732 > good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
733 > absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
734 > In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
735 > efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
736 > For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
737 > a data vs. MC discrepancy in the isolated track veto efficiency.
738 >
739 >
740 > %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
741 > %This requirement is chosen because most of the tracks rejected by the isolated
742 > %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
743 >
744 > \begin{figure}[hbt]
745 >  \begin{center}
746 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
747 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
748 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
749 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
750 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
751 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
752 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
753 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
754 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
755 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
756 >        \caption{
757 >          \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
758 > for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
759 > }  
760 >      \end{center}
761 > \end{figure}
762 >
763 > \clearpage
764 >
765 > \begin{table}[!ht]
766   \begin{center}
767 < \caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
768 < The uncertainties shown are the total relative systematic used for the OF prediction,
769 < which is the systematic uncertainty from K added in quadrature with
770 < a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
771 < inclusive analysis.
772 < }
773 < \begin{tabular}{lcc}
774 < \hline
775 < \MET\ Cut    &    K        &  Relative Systematic \\
776 < \hline
777 < %the met zero row is used only for normalization of the money plot.
778 < %0    &  0.1   &        \\  
779 < 30   &  0.12  &  20\%  \\  
780 < 60   &  0.13  &  20\%  \\  
127 < 80   &  0.12  &  20\%  \\  
128 < 100  &  0.12  &  20\%  \\  
129 < 150  &  0.09  &  25\%  \\  
130 < 200  &  0.06  &  60\%  \\  
767 > \begin{tabular}{l|c|c|c|c|c}
768 >
769 > %Electrons:
770 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
771 > %Total MC yields        : 2497277
772 > %Total DATA yields      : 2649453
773 > %Muons:
774 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
775 > %Total MC yields        : 3749863
776 > %Total DATA yields      : 4210022
777 > %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
778 > %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
779 >
780 > \hline
781   \hline
782 + e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
783 + \hline
784 +      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
785 +        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
786 +   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
787 +
788 + \hline
789 + \hline
790 + $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
791 + \hline
792 +      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
793 +        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
794 +   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
795 +
796 + \hline
797 + \hline
798 + e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
799 + \hline
800 +      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
801 +        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
802 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
803 +
804 + \hline
805 + \hline
806 + $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
807 + \hline
808 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
809 +        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
810 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
811 +
812 + \hline
813 + \hline
814 + e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
815 + \hline
816 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
817 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
818 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
819 +
820 + \hline
821 + \hline
822 + $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
823 + \hline
824 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
825 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
826 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
827 +
828 + \hline
829 + \hline
830 + e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
831 + \hline
832 +      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
833 +        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
834 +   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
835 +
836 + \hline
837 + \hline
838 + $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
839 + \hline
840 +      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
841 +        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
842 +   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
843 +
844 + \hline
845 + \hline
846 + e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
847 + \hline
848 +      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
849 +        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
850 +   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
851 +
852 + \hline
853 + \hline
854 + $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
855 + \hline
856 +      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
857 +        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
858 +   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
859 +
860 + \hline
861 + \hline
862 +
863   \end{tabular}
864 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
865 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
866 + jet multiplicity requirements.}
867   \end{center}
868   \end{table}
869 +
870 + \clearpage
871 + \subsection{Summary of uncertainties}
872 + \label{sec:bgunc-bottomline}
873 +
874 + The contribution from each source to the total uncertainty on the background yield is given in Tables~\ref{tab:relativeuncertaintycomponents} and~\ref{tab:uncertaintycomponents} for the relative and absolute uncertainties, respectively. In the low-\met\ regions the dominant uncertainty comes from the top tail-to-peak ratio, $R_{top}$ (Section~\ref{sec:ttp}), while in the high-\met\ regions the \ttll\ systematic uncertainty dominates (Section~\ref{sec:ttdilbkgunc}).
875 +
876 + \input{uncertainties_table.tex}
877 +
878 +
879 +
880 +
881 +
882 + %Figure.~\ref{fig:reliso} compares the relative track isolation
883 + %for events with a track with $\pt > 10~\GeV$ in addition to a selected
884 + %muon for $\Z+4$ jet events and various \ttll\ components. The
885 + %isolation distributions show significant differences, particularly
886 + %between the leptons from a \W\ or \Z\ decay and the tracks arising
887 + %from $\tau$ decays. As can also be seen in the figure, the \pt\
888 + %distribution for the various categories of tracks is different, where
889 + %the decay products from $\tau$s are significantly softer. Since the
890 + %\pt\ enters the denominator of the isolation definition and hence
891 + %alters the isolation variable...
892 +
893 + %\begin{figure}[hbt]
894 + %  \begin{center}
895 + %       \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
896 + %       \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
897 + %       \caption{
898 + %         \label{fig:reliso}%\protect
899 + %          Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
900 + %          Z+Jets and ttbar dilepton have similar isolation distributions
901 + %          ttbar with leptonic and single prong taus tend to be less
902 + %          isolated. The difference in the isolation can be attributed
903 + %          to the different \pt\ distribution of the samples, since
904 + %          $\tau$ decay products tend to be softer than leptons arising
905 + %          from \W\ or \Z\ decays.}  
906 + %      \end{center}
907 + %\end{figure}
908 +
909 + %       \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
910 +
911 +
912 + %BEGIN SECTION TO WRITE OUT
913 + %In detail, the procedure to correct the dilepton background is:
914 +
915 + %\begin{itemize}
916 + %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
917 + %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
918 + %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
919 + %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
920 + %the lepton \pt {\bf TODO: verify this in data and MC.}.
921 + %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
922 + %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
923 + %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
924 + %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
925 + %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
926 + %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
927 + %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
928 + %\end{itemize}
929 + %END SECTION TO WRITE OUT
930 +
931 +
932 + %{\bf fix me: What you have written in the next paragraph does not
933 + %explain how $\epsilon_{fake}$ is measured.
934 + %Why not measure $\epsilon_{fake}$ in the b-veto region?}
935 +
936 + %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
937 + %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
938 + %applying an additional scale factor for the single lepton background
939 + %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
940 + %veto and after subtracting the \ttll\ component, corrected for the
941 + %isolation efficiency derived previously.
942 + %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
943 + %isolated track in single lepton events is independent of \mt\, so the use of
944 + %an overall scale factor is justified to estimate the contribution in
945 + %the \mt\ tail.
946 + %
947 + %\begin{figure}[hbt]
948 + %  \begin{center}
949 + %       \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
950 + %       \caption{
951 + %         \label{fig:vetoeffcomp}%\protect
952 + %          Efficiency for selecting an isolated track comparing
953 + %          single lepton \ttlj\ and dilepton \ttll\ events in MC and
954 + %          data as a function of \mt. The
955 + %          efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
956 + %          \mt\, while the data ranges between the two. This behavior
957 + %          is expected since the low \mt\ region is predominantly \ttlj, while the
958 + %          high \mt\ region contains mostly \ttll\ events.}  
959 + %      \end{center}
960 + %\end{figure}
961 +
962 +
963 +
964 + % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines