ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.1 by benhoob, Sun Jun 24 15:06:07 2012 UTC vs.
Revision 1.27 by vimartin, Wed Oct 31 17:13:29 2012 UTC

# Line 1 | Line 1
1 < \section{Systematics Uncertainties in the Background Prediction}
2 < \label{sec:systematics}
1 > %\section{Systematics Uncertainties on the Background Prediction}
2 > %\label{sec:systematics}
3  
4 < The methodology for determining the systematics on the background
5 < predictions has not changed with respect to the nominal analysis.
6 < Because the template method has not changed, the same
7 < systematic uncertainty is assessed on this prediction (32\%).
8 < The 50\% uncertainty on the WZ and ZZ background is also unchanged.
9 < The systematic uncertainty in the OF background prediction based on
10 < e$\mu$ events has changed, due to the different composition of this
11 < sample after vetoing events containing b-tagged jets.
12 <
13 < As in the nominal analysis, we do not require the e$\mu$ events
14 < to satisfy the dilepton mass requirement and apply a scaling factor K,
15 < extracted from MC, to account for the fraction of e$\mu$ events
16 < which satisfy the dilepton mass requirement. This procedure is used
17 < in order to improve the statistical precision of the OF background estimate.
18 <
19 < For the selection used in the nominal analysis,
20 < the e$\mu$ sample is completely dominated by $t\bar{t}$
21 < events, and we observe that K is statistically consistent with constant with
22 < respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
23 < background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
24 < backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
25 < At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
26 < and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
27 < Therefore, the sample composition changes
28 < as the \MET\ requirement is varied, and as a result K depends
29 < on the \MET\ requirement.
30 <
31 < We thus measure K in MC separately for each
32 < \MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
33 < %The systematic uncertainty on K is determined separately for each \MET\
34 < %requirement by comparing the relative difference in K in data vs. MC.
35 < The values of K used are the MC predictions
36 < %and the total systematic uncertainty on the OF prediction
37 < %as shown in
38 < (Table \ref{fig:kvmettable}).
39 < The contribution to the total OF prediction systematic uncertainty
40 < from K is assessed from the ratio of K in data and MC,
41 < shown in Fig.~\ref{fig:kvmet} (right).
42 < The ratio is consistent with unity to roughly 17\%,
43 < so we take this value as the systematic from K.
44 < 17\% added in quadrature with 7\% from
45 < the electron to muon efficieny ratio
46 < (as assessed in the inclusive analysis)
47 < yields a total systematic of $\sim$18\%
48 < which we round up to 20\%.
49 < For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
50 < so we take a systematic based on the statistical uncertainty
51 < of the MC prediction for K.
52 < This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
53 < %Although we cannot check the value of K in data for \MET\ $>$ 150
54 < %because we find no OF events inside the Z mass window for this \MET\
55 < %cut, the overall OF yields with no dilepton mass requirement
56 < %agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
57 <
58 <
59 < %Below Old
60 <
61 < %In reevaluating the systematics on the OF prediction, however,
62 < %we observed a different behavior of K as a function of \MET\
63 < %as was seen in the inclusive analysis.
64 <
65 < %Recall that K is the ratio of the number of \emu\ events
66 < %inside the Z window to the total number of \emu\ events.
67 < %In the inclusive analysis, it is taken from \ttbar\ MC
68 < %and used to scale the inclusive \emu\ yield in data.
69 < %The yield scaled by K is then corrected for
70 < %the $e$ vs $\mu$ efficiency difference to obtain the
71 < %final OF prediction.
72 <
73 < %Based on the plot in figure \ref{fig:kvmet},
74 < %we choose to use a different
75 < %K for each \MET\ cut and assess a systematic uncertainty
76 < %on the OF prediction based on the difference between
77 < %K in data and MC.
78 < %The variation of K as a function of \MET\ is caused
79 < %by a change in sample composition with increasing \MET.
80 < %At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
81 < %not negligible (as it was in the inclusive analysis)
82 < %because of the b veto. (See appendix \ref{app:kinemu}.)
83 < %At higher \MET, \ttbar\ and diboson backgrounds dominate.
4 > In this Section we discuss the systematic uncertainty on the BG
5 > prediction.  This prediction is assembled from the event
6 > counts in the peak region of the transverse mass distribution as
7 > well as Monte Carlo
8 > with a number of correction factors, as described previously.
9 > The
10 > final uncertainty on the prediction is built up from the uncertainties in these
11 > individual
12 > components.
13 > The calculation is done for each signal
14 > region,
15 > for electrons and muons separately.
16  
17 + The choice to normalize to the peak region of $M_T$ has the
18 + advantage that some uncertainties, e.g., luminosity, cancel.
19 + It does however introduce complications because it couples
20 + some of the uncertainties in non-trivial ways.  For example,
21 + the primary effect of an uncertainty on the rare MC cross-section
22 + is to introduce an uncertainty in the rare MC background estimate
23 + which comes entirely from MC.   But this uncertainty also affects,
24 + for example,
25 + the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 + $t\bar{t}$ normalization to the peak region (because some of the
27 + events in the peak region are from rare processes).  These effects
28 + are carefully accounted for. The contribution to the overall
29 + uncertainty from each background source is tabulated in
30 + Section~\ref{sec:bgunc-bottomline}.
31 + Here we discuss the uncertainties one-by-one and comment
32 + on their impact on the overall result, at least to first order.
33 + Second order effects, such as the one described, are also included.
34  
35 + \subsection{Statistical uncertainties on the event counts in the $M_T$
36 + peak regions}
37 + These vary between 2\% and 20\%, depending on the signal region
38 + (different
39 + signal regions have different \met\ requirements, thus they also have
40 + different $M_T$ regions used as control).
41 + Since
42 + the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
43 + fractional uncertainty is pretty much carried through all the way to
44 + the end.  There is also an uncertainty from the finite MC event counts
45 + in the $M_T$ peak regions.  This is also included, but it is smaller.
46  
47 + Normalizing to the $M_T$ peak has the distinct advantages that
48 + uncertainties on luminosity, cross-sections, trigger efficiency,
49 + lepton ID, cancel out.
50 + For the low statistics regions with high \met\ requirements, the
51 + price to pay in terms of event count is that statistical uncertainties start
52 + to become significant.  In the future we may consider a different
53 + normalization startegy in the low statistics regions.
54 +
55 + \subsection{Uncertainty from the choice of $M_T$ peak region}
56 +
57 + This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
58 + If the $M_T$ peak region is not well modelled, this would introduce an
59 + uncertainty.
60 +
61 + We have tested this possibility by recalculating the post-veto scale factors for a different
62 + choice
63 + of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 + $50 < M_T < 80$ GeV).  This is shown in Table~\ref{tab:mtpeaksf2}.  
65 + The two results for the scale factors are very compatible.
66 + We do not take any systematic uncertainty for this possible effect.
67 +
68 + \begin{table}[!h]
69 + \begin{center}
70 + {\footnotesize
71 + \begin{tabular}{l||c|c|c|c|c|c|c}
72 + \hline
73 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 + \hline
75 + \hline
76 + \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 + \hline
78 + $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 + $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 + \hline
81 + $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 + \hline
83 + \hline
84 + e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 + e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 + \hline
87 + e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 + \hline
89 + \hline
90 + \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 + \hline
92 + $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 + $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 + \hline
95 + $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 + \hline
97 + \hline
98 + e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 + e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 + \hline
101 + e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 + \hline
103 + \end{tabular}}
104 + \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 +  \ttdl\ sample, while the post-veto SFs are applied to the single
106 +  lepton samples. The veto SF is shown for comparison across channels.
107 +  The raw MC is used for backgrounds from rare processes.
108 +  The uncertainties are statistical only.
109 + \label{tab:mtpeaksf2}}
110 + \end{center}
111 + \end{table}
112 +
113 +
114 + \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
115 + These are taken as 50\%, uncorrelated.  
116 + The primary effect is to introduce a 50\%
117 + uncertainty
118 + on the $W +$ jets and rare BG
119 + background predictions, respectively.  However they also
120 + have an effect on the other BGs via the $M_T$ peak normalization
121 + in a way that tends to reduce the uncertainty.  This is easy
122 + to understand: if the $W$ cross-section is increased by 50\%, then
123 + the $W$ background goes up.  But the number of $M_T$ peak events
124 + attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125 + scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126 + BG goes down.  
127 +
128 + \subsection{Tail-to-peak ratios for lepton +
129 +  jets top and W events}
130 + The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131 + The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132 + Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its
133 + uncertainty is given in Table~\ref{tab:cr1yields}.
134 + This uncertainty affects both $R_{wjet}$ and $R_{top}$.
135 + The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
136 +
137 +
138 + \subsection{Uncertainty on extra jet radiation for dilepton
139 +  background}
140 + As discussed in Section~\ref{sec:jetmultiplicity}, the
141 + jet distribution in
142 + $t\bar{t} \to$
143 + dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
144 + it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
145 + comes from data/MC statistics.  This  
146 + results directly in a 3\% uncertainty on the dilepton background, which is by far
147 + the most important one.
148 +
149 + \subsection{Uncertainty from MC statistics}
150 + This affects mostly the \ttll\ background estimate, which is taken
151 + from
152 + Monte Carlo with appropriate correction factors.  This uncertainty
153 + is negligible in the low \met\ signal regions, and grows to about
154 + 15\% in SRG.
155 +
156 +
157 + \subsection{Uncertainty on the \ttll\ Background}
158 + \label{sec:ttdilbkgunc}
159 + The \ttbar\ background prediction is obtained from MC, with corrections
160 + derived from control samples in data. The uncertainty associated with
161 + the \ttbar\ background is derived from the level of closure of the
162 + background prediction in CR4 (Table~\ref{tab:cr4yields}) and
163 + CR5 (Table~\ref{tab:cr5yields}). The results from these control region
164 + checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned
165 + to the \ttdl\ background prediction based on these tests are
166 + 5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G).
167 +
168 + \begin{figure}[hbt]
169 +  \begin{center}
170 +        \includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf}
171 +        \caption{
172 +          \label{fig:ttdlunc}%\protect
173 +          Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after
174 +          applying SFs) to data for CR4 and CR5 for all the signal
175 +          region requirements considered (A-G). The bands indicate the
176 +          systematic uncertainties assigned based on these tests,
177 +          ranging from $5\%$ for SRA to $40\%$ for SRE-G.}
178 +      \end{center}
179 + \end{figure}
180 +
181 + \clearpage
182 + \subsubsection{Check of the impact of Signal Contamination}
183 +
184 + We examine the contribution of possible signal events in the \ttll\
185 + control regions (CR4 and CR5). It should be emphasized that these
186 + regions are not used to apply data/MC SFs. They are used to quantify
187 + the level of data/MC agreement and assign a corresponding uncertainty.
188 +
189 + To illustrate how much signal is expected to populate these control
190 + regions, we examine signal points near the edge of the analysis'
191 + sensitivity (m(stop) = 450 m($\chi^0$) = 0 for T2tt, m(stop) = 450
192 + m($\chi^0$) = 0 for T2bw with x=0.75 and m(stop) = 350
193 + m($\chi^0$) = 0 for T2bw with x=0.5).
194 + Table~\ref{tab:signalcontamination} compares the expected signal
195 + yields and the raw total MC background prediction in the control
196 + regions with the \met\ and \mt\ requirements corresponding to SRB, SRC
197 + and SRD (these are the signal regions that dominate the
198 + sensitivity). The signal contamination is smaller than the uncertainty
199 + on the dilepton background and smaller than the signal/background in
200 + the signal regions, with the exception of the T2bw scenario with x=0.5.
201 + However, based on the fact that the CR4 and CR5 are not used to extract
202 + data/MC SFs and that CR4 shows a slight deficit of data compared to
203 + the MC prediction, indicating that we do not observe evidence of
204 + signal contamination, we do not assign an additional uncertainty.
205 +
206 + \begin{table}[!h]
207 + \begin{center}
208 + {\small
209 + \begin{tabular}{l l||c|c|c}
210 + \hline
211 + \multicolumn{2}{c||}{Sample}              & CR B & CR C & CR D \\
212 + \hline
213 + \hline
214 + \multirow{4}{*}{CR4} & Raw MC            & $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$ \\
215 + %\hline
216 + & T2tt m(stop) = 450 m($\chi^0$) = 0  & $2.6 \pm 0.3$ $(2\%)$ & $2.0 \pm 0.2$ $(4\%)$ & $1.4 \pm 0.2$ $(7\%)$ \\
217 + & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $10.5 \pm 0.4$ $(6\%)$ &$6.1 \pm 0.3$ $(12\%)$ & $3.1 \pm 0.2$ $(16\%)$ \\
218 + & T2bw x=0.5  m(stop) = 350 m($\chi^0$) = 0     & $32.1 \pm 1.5$ $(19\%)$ & $14.7 \pm 1.0$ $(29\%)$ & $5.5 \pm 0.6$ $(28\%)$ \\
219 + \hline
220 + \hline
221 + \multirow{4}{*}{CR5} & Raw MC            & $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$ \\
222 + %\hline
223 + & T2tt m(stop) = 450 m($\chi^0$) = 0  & $10.6 \pm 0.6$ $(3\%)$ & $7.8 \pm 0.5$ $(8\%)$ & $5.4 \pm 0.4$ $(14\%)$ \\
224 + & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $17.3 \pm 0.5$ $(6\%)$ &$11.3 \pm 0.4$ $(11\%)$ & $6.2 \pm 0.3$ $(16\%)$\\
225 + & T2bw x=0.5  m(stop) = 350 m($\chi^0$) = 0     & $33.0 \pm 1.5$ $(11\%)$& $14.4 \pm 1.0$ $(14\%)$& $5.7 \pm 0.6$ $(15\%)$ \\
226 + \hline
227 + \hline
228 + \hline
229 + \multirow{4}{*}{SIGNAL} & Raw MC                 & $486.3 \pm 7.8$& $164.3 \pm 4.5$& $61.5 \pm 2.8$ \\
230 + & T2tt m(stop) = 450 m($\chi^0$) = 0    & $65.3 \pm 1.4$ $(13\%)$& $48.8 \pm 1.2$ $(30\%)$& $32.9 \pm 1.0$ $(53\%)$ \\
231 + & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0     & $69.3 \pm 1.0$ $(14\%)$& $47.3 \pm 0.8$ $(29\%)$& $27.3 \pm 0.6$ $(44\%)$ \\
232 + & T2bw x=0.5  m(stop) = 350 m($\chi^0$) = 0     & $105.5 \pm 2.8$ $(22\%)$& $44.6 \pm 1.8$ $(27\%)$& $15.9 \pm 1.1$ $(26\%)$ \\
233 + \hline
234 + \end{tabular}}
235 + \caption{ Yields in \mt\ tail comparing the raw SM MC prediction to the
236 +  yields for a few signal points on the edge of our sensitivity in the \ttll\
237 +  control regions CR4, CR5 and in the corresponding signal region.
238 +  The numbers in parenthesis are the expected signal yield divided by
239 +  the total background. The uncertainties are statistical only.
240 + \label{tab:signalcontamination}}
241 + \end{center}
242 + \end{table}
243 +
244 + %CR5 DUMP
245 + %Total           & $880.3 \pm 10.4$& $560.0 \pm 8.3$& $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$& $16.4 \pm 1.4$& $8.2 \pm 1.0$& $4.6 \pm 0.8$ \\
246 + %\hline
247 + %\hline
248 + %Data            & $941$& $559$& $287$& $95$& $26$& $8$& $5$& $3$ \\
249 + %\hline
250 + %T2tt m(stop) = 250 m($\chi^0$) = 0     & $84.3 \pm 9.2$& $61.9 \pm 7.9$& $35.7 \pm 6.0$& $5.9 \pm 2.4$& $1.0 \pm 1.0$& $1.0 \pm 1.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
251 + %\hline
252 + %T2tt m(stop) = 300 m($\chi^0$) = 50    & $61.4 \pm 4.7$& $53.6 \pm 4.4$& $42.0 \pm 3.9$& $14.3 \pm 2.3$& $7.2 \pm 1.6$& $1.8 \pm 0.8$& $0.7 \pm 0.5$& $0.0 \pm 0.0$ \\
253 + %\hline
254 + %T2tt m(stop) = 300 m($\chi^0$) = 100   & $33.3 \pm 3.5$& $28.6 \pm 3.2$& $19.2 \pm 2.6$& $6.1 \pm 1.5$& $1.8 \pm 0.8$& $0.4 \pm 0.4$& $0.4 \pm 0.4$& $0.4 \pm 0.4$ \\
255 + %\hline
256 + %T2tt m(stop) = 350 m($\chi^0$) = 0     & $33.4 \pm 2.2$& $29.8 \pm 2.1$& $27.3 \pm 2.0$& $15.3 \pm 1.5$& $5.6 \pm 0.9$& $1.9 \pm 0.5$& $0.3 \pm 0.2$& $0.0 \pm 0.0$ \\
257 + %\hline
258 + %T2tt m(stop) = 450 m($\chi^0$) = 0     & $12.0 \pm 0.6$& $11.3 \pm 0.6$& $10.6 \pm 0.6$& $7.8 \pm 0.5$& $5.4 \pm 0.4$& $3.1 \pm 0.3$& $1.8 \pm 0.2$& $0.6 \pm 0.1$ \\
259 + %\hline
260 + %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0       & $48.5 \pm 1.9$& $40.2 \pm 1.7$& $33.0 \pm 1.5$& $14.4 \pm 1.0$& $5.7 \pm 0.6$& $2.7 \pm 0.4$& $1.3 \pm 0.3$& $0.5 \pm 0.2$ \\
261 + %\hline
262 + %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0      & $22.3 \pm 0.6$& $20.2 \pm 0.6$& $17.3 \pm 0.5$& $11.3 \pm 0.4$& $6.2 \pm 0.3$& $3.1 \pm 0.2$& $1.3 \pm 0.1$& $0.7 \pm 0.1$ \\
263 + %\hline
264 +
265 + %CR4 DUMP
266 + %\hline
267 + %Total           & $510.1 \pm 8.0$& $324.2 \pm 6.3$& $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$& $7.8 \pm 1.0$& $2.6 \pm 0.6$& $1.1 \pm 0.3$ \\
268 + %\hline
269 + %\hline
270 + %Data            & $462$& $289$& $169$& $45$& $10$& $7$& $5$& $3$ \\
271 + %\hline
272 + %T2tt m(stop) = 250 m($\chi^0$) = 0     & $37.7 \pm 6.1$& $30.9 \pm 5.5$& $18.0 \pm 4.2$& $6.0 \pm 2.5$& $2.0 \pm 1.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
273 + %\hline
274 + %T2tt m(stop) = 300 m($\chi^0$) = 50    & $16.6 \pm 2.4$& $14.4 \pm 2.3$& $11.3 \pm 2.0$& $5.6 \pm 1.4$& $3.2 \pm 1.1$& $1.8 \pm 0.8$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
275 + %\hline
276 + %T2tt m(stop) = 300 m($\chi^0$) = 100   & $9.6 \pm 1.8$& $6.4 \pm 1.5$& $4.6 \pm 1.3$& $0.7 \pm 0.5$& $0.4 \pm 0.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
277 + %\hline
278 + %T2tt m(stop) = 350 m($\chi^0$) = 0     & $8.2 \pm 1.1$& $7.6 \pm 1.0$& $5.7 \pm 0.9$& $3.4 \pm 0.7$& $1.9 \pm 0.5$& $0.6 \pm 0.3$& $0.3 \pm 0.2$& $0.1 \pm 0.1$ \\
279 + %\hline
280 + %T2tt m(stop) = 450 m($\chi^0$) = 0     & $3.1 \pm 0.3$& $2.9 \pm 0.3$& $2.6 \pm 0.3$& $2.0 \pm 0.2$& $1.4 \pm 0.2$& $1.0 \pm 0.2$& $0.4 \pm 0.1$& $0.2 \pm 0.1$ \\
281 + %\hline
282 + %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0       & $52.6 \pm 1.9$& $42.6 \pm 1.7$& $32.1 \pm 1.5$& $14.7 \pm 1.0$& $5.5 \pm 0.6$& $1.9 \pm 0.4$& $0.6 \pm 0.2$& $0.3 \pm 0.1$ \\
283 + %\hline
284 + %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0      & $16.9 \pm 0.5$& $14.9 \pm 0.5$& $10.5 \pm 0.4$& $6.1 \pm 0.3$& $3.1 \pm 0.2$& $1.5 \pm 0.1$& $0.6 \pm 0.1$& $0.3 \pm 0.1$ \\
285 + %\hline
286 +
287 +
288 + \subsubsection{Check of the uncertainty on the \ttll\ Background}
289 +
290 + We check that the systematic uncertainty assigned to the \ttll\ background prediction
291 + covers the uncertainty associated with
292 + the theoretical modeling of the \ttbar\ production and decay
293 + by comparing the background predictions obtained using
294 + alternative MC samples. It should be noted that the full analysis is
295 + performed with the alternative samples under consideration,
296 + including the derivation of the various data-to-MC scale factors.
297 + The variations considered are
298 +
299 + \begin{itemize}
300 + \item Top mass: The alternative values for the top mass differ
301 +  from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
302 +  = 166.5~\GeV$.
303 + \item Jet-parton matching scale: This corresponds to variations in the
304 +  scale at which the Matrix Element partons from Madgraph are matched
305 +  to Parton Shower partons from Pythia. The nominal value is
306 +  $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
307 +  $x_q>40~\GeV$.
308 + \item Renormalization and factorization scale: The alternative samples
309 +  correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
310 +  value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
311 +  \sum_{\mathrm{jets}} \pt^2$.
312 + \item Alternative generators: Samples produced with different
313 +  generators, Powheg (our default) and Madgraph.
314 + \item Modeling of taus: The alternative sample does not include
315 +  Tauola and is otherwise identical to the Powheg sample.
316 +  This effect was studied earlier using 7~TeV samples and found to be negligible.
317 + \item The PDF uncertainty is estimated following the PDF4LHC
318 +  recommendations. The events are reweighted using alternative
319 +  PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
320 +  alternative eigenvector variations and the ``master equation''.
321 +  The NNPDF2.1 set with 100 replicas is also used. The central value is
322 +  determined from the mean and the uncertainty is derived from the
323 +  $1\sigma$ range. The overall uncertainty is derived from the envelope of the
324 +  alternative predictions and their uncertainties.
325 +  This effect was studied earlier using 7~TeV samples and found to be negligible.
326 +  \end{itemize}
327  
328   \begin{figure}[hbt]
329    \begin{center}
330 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
331 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
330 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
331 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
332 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
333 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
334 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
335          \caption{
336 <          \label{fig:kvmet}\protect
337 <          The left plot shows
338 <          K as a function of \MET\ in MC (red) and data (black).
339 <          The bin low edge corresponds to the \MET\ cut, and the
340 <          bins are inclusive.
341 <          The MC used is a sum of all SM MC used in the yield table of
342 <          section \ref{sec:yields}.
343 <          The right plot is the ratio of K in data to MC.
344 <          The ratio is fit to a line whose slope is consistent with zero
345 <          (the fit parameters are
346 <          0.9 $\pm$  0.4 for the intercept and
347 <      0.001 $\pm$ 0.005 for the slope).
348 <        }
349 <  \end{center}
336 >          \label{fig:ttllsyst}\protect
337 >          Comparison of the \ttll\ central prediction with those using
338 >          alternative MC samples. The blue band corresponds to the
339 >          total statistical error for all data and MC samples. The
340 >          alternative sample predictions are indicated by the
341 >          datapoints. The uncertainties on the alternative predictions
342 >          correspond to the uncorrelated statistical uncertainty from
343 >          the size of the alternative sample only.  Note the
344 >          suppressed vertical scales.}
345 >      \end{center}
346 >    \end{figure}
347 >
348 >
349 > \begin{table}[!h]
350 > \begin{center}
351 > {\footnotesize
352 > \begin{tabular}{l||c|c|c|c|c|c|c}
353 > \hline
354 > $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
355 > Match Up & Match Down \\
356 > \hline
357 > \hline
358 > SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
359 > \hline
360 > SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
361 > \hline
362 > % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
363 > % \hline
364 > % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
365 > % \hline
366 > % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
367 > \hline
368 > \end{tabular}}
369 > \caption{ Relative difference in \ttdl\ predictions for alternative MC
370 >  samples in
371 > the higher statistics regions SRA and SRB.  These differences
372 > are based on the central values of the predictions.  For a fuller
373 > picture
374 > of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
375 > \label{tab:fracdiff}}
376 > \end{center}
377 > \end{table}
378 >
379 >
380 > In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
381 > for regions A through E.  We can make the following observations based
382 > on this Figure.
383 >
384 > \begin{itemize}
385 > \item In the tighter signal regions we are running out of
386 >  statistics.    
387 > \item Within the limited statistics, there is no evidence that the
388 >  situation changes as we go from signal region A to signal region E.
389 > %Therefore, we assess a systematic based on the relatively high
390 > %statistics
391 > %test in signal region A, and apply the same systematic uncertainty
392 > %to all other regions.
393 > \item In signal regions B and above, the uncertainties assigned in Section~\ref{sec:ttdilbkgunc}
394 > fully cover the alternative MC variations.
395 > \item In order to fully (as opposed as 1$\sigma$) cover the
396 > alternative MC variations in region A we would have to take a
397 > systematic
398 > uncertainty of $\approx 10\%$ instead of $5\%$.  This would be driven by the
399 > scale up/scale down variations, see Table~\ref{tab:fracdiff}.
400 > \end{itemize}
401 >
402 > \begin{table}[!ht]
403 > \begin{center}
404 > \begin{tabular}{l|c|c}
405 > \hline
406 >            Sample
407 >            &                K3   & K4\\
408 > \hline
409 > \hline
410 > Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
411 > Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
412 > Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
413 > Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
414 > Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
415 > Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
416 > Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
417 > Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
418 > \hline
419 > \end{tabular}
420 > \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
421 >  fraction of events with additional hard jets from radiation in
422 >  \ttll\ events. \label{tab:njetskfactors_met100}}
423 > \end{center}
424 > \end{table}
425 >
426 >
427 > However, we have two pieces of information indicating that the
428 > scale up/scale down variations are inconsistent with the data.
429 > These are described below.
430 >
431 > The first piece of information is that the jet multiplicity in the scale
432 > up/scale down sample is the most inconsistent with the data.  This is shown
433 > in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
434 > $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
435 > different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
436 > distribution
437 > for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
438 > and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
439 > equivalent $N_{jets}$ plots for the default Powheg MC, see
440 > Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
441 >
442 > \begin{figure}[hbt]
443 >  \begin{center}
444 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
445 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
446 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
447 >        \caption{
448 >          \label{fig:dileptonnjets_scaleup}%\protect
449 >          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
450 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
451 >      \end{center}
452 > \end{figure}
453 >
454 > \begin{figure}[hbt]
455 >  \begin{center}
456 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
457 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
458 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
459 >        \caption{
460 >          \label{fig:dileptonnjets_scaledw}%\protect
461 >          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
462 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
463 >      \end{center}
464   \end{figure}
465  
466  
467 + \clearpage
468 +
469 + The second piece of information is that we have performed closure
470 + tests in CR5 using the alternative MC samples.  These are exactly
471 + the same tests as the one performed in Section~\ref{sec:CR5} on the
472 + Powheg sample.  As we argued previously, this is a very powerful
473 + test of the background calculation.
474 + The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
475 + Concentrating on the relatively high statistics CR5A region, we see
476 + for all \ttbar\ MC samples except scale up/scale down we obtain
477 + closure within 1$\sigma$.  The scale up/scale down tests closes
478 + worse, only within 2$\sigma$.  This again is evidence that the
479 + scale up/scale down variations are in disagreement with the data.
480 +
481 + \input{hugeCR5Table.tex}
482 +
483 + Based on the two observations above, we argue that the MC
484 + scale up/scale down variations are too extreme.  We feel that
485 + a reasonable choice would be to take one-half of the scale up/scale
486 + down variations in our MC.  This factor of 1/2 would then bring
487 + the discrepancy in the closure test of
488 + Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
489 + from about 2$\sigma$ to about 1$\sigma$.
490 +
491 + Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
492 + up/scale
493 + down variations by a factor 2, we can see that a systematic
494 + uncertainty
495 + of 5\% covers the range of reasonable variations from different MC
496 + models in SRA and SRB.
497 + %The alternative MC models indicate that a 6\% systematic uncertainty
498 + %covers the range of reasonable variations.
499 + Note that this 5\% is also consistent with the level at which we are
500 + able to test the closure of the method with alternative samples in CR5 for the high statistics
501 + regions (Table~\ref{tab:hugecr5yields}).
502 + The range of reasonable variations obtained with the alternative
503 + samples are consistent with the uncertainties assigned for
504 + the \ttll\ background based on the closure of the background
505 + predictions and data in CR4 and CR5.
506 +
507 +
508 +
509 +
510 +
511 + %\begin{table}[!h]
512 + %\begin{center}
513 + %{\footnotesize
514 + %\begin{tabular}{l||c||c|c|c|c|c|c|c}
515 + %\hline
516 + %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
517 + %Up & Scale Down &
518 + %Match Up & Match Down \\
519 + %\hline
520 + %\hline
521 + %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
522 + %\hline
523 + %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
524 + %\hline
525 + %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
526 + %\hline
527 + %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
528 + %\hline
529 + %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
530 + %\hline
531 + %\end{tabular}}
532 + %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
533 + %\label{tab:ttdlalt}}
534 + %\end{center}
535 + %\end{table}
536 +
537 +
538 +
539  
540 < \begin{table}[htb]
540 > %\begin{table}[!h]
541 > %\begin{center}
542 > %{\footnotesize
543 > %\begin{tabular}{l||c|c|c|c|c|c|c}
544 > %\hline
545 > %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
546 > %Match Up & Match Down \\
547 > %\hline
548 > %\hline
549 > %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
550 > %\hline
551 > %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
552 > %\hline
553 > %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
554 > %\hline
555 > %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
556 > %\hline
557 > %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
558 > %\hline
559 > %\end{tabular}}
560 > %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
561 > %\label{tab:nsig}}
562 > %\end{center}
563 > %\end{table}
564 >
565 >
566 > %\begin{table}[!h]
567 > %\begin{center}
568 > %\begin{tabular}{l||c|c|c|c}
569 > %\hline
570 > %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
571 > %& $\Delta$ Match \\
572 > %\hline
573 > %\hline
574 > %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
575 > %\hline
576 > %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
577 > %\hline
578 > %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
579 > %\hline
580 > %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
581 > %\hline
582 > %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
583 > %\hline
584 > %\end{tabular}
585 > %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
586 > %\label{tab:devt}}
587 > %\end{center}
588 > %\end{table}
589 >
590 >
591 >
592 > \clearpage
593 >
594 > %
595 > %
596 > %The methodology for determining the systematics on the background
597 > %predictions has not changed with respect to the nominal analysis.
598 > %Because the template method has not changed, the same
599 > %systematic uncertainty is assessed on this prediction (32\%).
600 > %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
601 > %The systematic uncertainty in the OF background prediction based on
602 > %e$\mu$ events has changed, due to the different composition of this
603 > %sample after vetoing events containing b-tagged jets.
604 > %
605 > %As in the nominal analysis, we do not require the e$\mu$ events
606 > %to satisfy the dilepton mass requirement and apply a scaling factor K,
607 > %extracted from MC, to account for the fraction of e$\mu$ events
608 > %which satisfy the dilepton mass requirement. This procedure is used
609 > %in order to improve the statistical precision of the OF background estimate.
610 > %
611 > %For the selection used in the nominal analysis,
612 > %the e$\mu$ sample is completely dominated by $t\bar{t}$
613 > %events, and we observe that K is statistically consistent with constant with
614 > %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
615 > %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
616 > %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
617 > %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
618 > %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
619 > %Therefore, the sample composition changes
620 > %as the \MET\ requirement is varied, and as a result K depends
621 > %on the \MET\ requirement.
622 > %
623 > %We thus measure K in MC separately for each
624 > %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
625 > %%The systematic uncertainty on K is determined separately for each \MET\
626 > %%requirement by comparing the relative difference in K in data vs. MC.
627 > %The values of K used are the MC predictions
628 > %%and the total systematic uncertainty on the OF prediction
629 > %%as shown in
630 > %(Table \ref{fig:kvmettable}).
631 > %The contribution to the total OF prediction systematic uncertainty
632 > %from K is assessed from the ratio of K in data and MC,
633 > %shown in Fig.~\ref{fig:kvmet} (right).
634 > %The ratio is consistent with unity to roughly 17\%,
635 > %so we take this value as the systematic from K.
636 > %17\% added in quadrature with 7\% from
637 > %the electron to muon efficieny ratio
638 > %(as assessed in the inclusive analysis)
639 > %yields a total systematic of $\sim$18\%
640 > %which we round up to 20\%.
641 > %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
642 > %so we take a systematic based on the statistical uncertainty
643 > %of the MC prediction for K.
644 > %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
645 > %%Although we cannot check the value of K in data for \MET\ $>$ 150
646 > %%because we find no OF events inside the Z mass window for this \MET\
647 > %%cut, the overall OF yields with no dilepton mass requirement
648 > %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
649 > %
650 > %
651 > %%Below Old
652 > %
653 > %%In reevaluating the systematics on the OF prediction, however,
654 > %%we observed a different behavior of K as a function of \MET\
655 > %%as was seen in the inclusive analysis.
656 > %
657 > %%Recall that K is the ratio of the number of \emu\ events
658 > %%inside the Z window to the total number of \emu\ events.
659 > %%In the inclusive analysis, it is taken from \ttbar\ MC
660 > %%and used to scale the inclusive \emu\ yield in data.
661 > %%The yield scaled by K is then corrected for
662 > %%the $e$ vs $\mu$ efficiency difference to obtain the
663 > %%final OF prediction.
664 > %
665 > %%Based on the plot in figure \ref{fig:kvmet},
666 > %%we choose to use a different
667 > %%K for each \MET\ cut and assess a systematic uncertainty
668 > %%on the OF prediction based on the difference between
669 > %%K in data and MC.
670 > %%The variation of K as a function of \MET\ is caused
671 > %%by a change in sample composition with increasing \MET.
672 > %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
673 > %%not negligible (as it was in the inclusive analysis)
674 > %%because of the b veto. (See appendix \ref{app:kinemu}.)
675 > %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
676 > %
677 > %
678 > %
679 > %
680 > %\begin{figure}[hbt]
681 > %  \begin{center}
682 > %       \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
683 > %       \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
684 > %       \caption{
685 > %         \label{fig:kvmet}\protect
686 > %         The left plot shows
687 > %         K as a function of \MET\ in MC (red) and data (black).
688 > %         The bin low edge corresponds to the \MET\ cut, and the
689 > %         bins are inclusive.
690 > %         The MC used is a sum of all SM MC used in the yield table of
691 > %         section \ref{sec:yields}.
692 > %         The right plot is the ratio of K in data to MC.
693 > %         The ratio is fit to a line whose slope is consistent with zero
694 > %         (the fit parameters are
695 > %         0.9 $\pm$  0.4 for the intercept and
696 > %      0.001 $\pm$ 0.005 for the slope).
697 > %       }
698 > %  \end{center}
699 > %\end{figure}
700 > %
701 > %
702 > %
703 > %\begin{table}[htb]
704 > %\begin{center}
705 > %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
706 > %The uncertainties shown are the total relative systematic used for the OF prediction,
707 > %which is the systematic uncertainty from K added in quadrature with
708 > %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
709 > %inclusive analysis.
710 > %}
711 > %\begin{tabular}{lcc}
712 > %\hline
713 > %\MET\ Cut    &    K        &  Relative Systematic \\
714 > %\hline
715 > %%the met zero row is used only for normalization of the money plot.
716 > %%0    &  0.1   &        \\  
717 > %30   &  0.12  &  20\%  \\  
718 > %60   &  0.13  &  20\%  \\  
719 > %80   &  0.12  &  20\%  \\  
720 > %100  &  0.12  &  20\%  \\  
721 > %150  &  0.09  &  25\%  \\  
722 > %200  &  0.06  &  60\%  \\  
723 > %\hline
724 > %\end{tabular}
725 > %\end{center}
726 > %\end{table}
727 >
728 > \subsection{Uncertainty from the isolated track veto}
729 > This is the uncertainty associated with how well the isolated track
730 > veto performance is modeled by the Monte Carlo.  This uncertainty
731 > only applies to the fraction of dilepton BG events that have
732 > a second e/$\mu$ or a one prong $\tau \to h$, with
733 > $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
734 > Table~\ref{tab:trueisotrk}.
735 > The uncertainty for these events
736 > is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
737 >
738 > \begin{table}[!h]
739   \begin{center}
740 < \caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
741 < The uncertainties shown are the total relative systematic used for the OF prediction,
742 < which is the systematic uncertainty from K added in quadrature with
743 < a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
744 < inclusive analysis.
745 < }
746 < \begin{tabular}{lcc}
747 < \hline
748 < \MET\ Cut    &    K        &  Relative Systematic \\
749 < \hline
750 < %the met zero row is used only for normalization of the money plot.
751 < %0    &  0.1   &        \\  
752 < 30   &  0.12  &  20\%  \\  
753 < 60   &  0.13  &  20\%  \\  
754 < 80   &  0.12  &  20\%  \\  
755 < 100  &  0.12  &  20\%  \\  
756 < 150  &  0.09  &  25\%  \\  
757 < 200  &  0.06  &  60\%  \\  
740 > {\footnotesize
741 > \begin{tabular}{l||c|c|c|c|c|c|c}
742 > \hline
743 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
744 > \hline
745 > \hline
746 > $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
747 > \hline
748 > \hline
749 > e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
750 > \hline
751 > \end{tabular}}
752 > \caption{ Fraction of \ttdl\ events with a true isolated track.
753 > \label{tab:trueisotrk}}
754 > \end{center}
755 > \end{table}
756 >
757 > \subsubsection{Isolated Track Veto: Tag and Probe Studies}
758 > \label{sec:trkveto}
759 >
760 >
761 > In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
762 > with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
763 > to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
764 > we would need to apply a data-to-MC scale factor in order to correctly
765 > predict the \ttll\ background.
766 >
767 > This study
768 > addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
769 > second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
770 > in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
771 > procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
772 >
773 > Furthermore, we test the data and MC
774 > isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
775 > directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
776 > may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
777 > or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
778 > the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
779 > consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
780 > $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
781 > decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
782 > Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
783 > As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
784 > leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
785 > due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
786 >
787 > The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
788 > All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
789 > We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
790 > this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
791 > not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
792 > fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
793 > \met\ $<$ 30 GeV and 0 b-tagged events.
794 > The specific criteria for tags and probes for electrons and muons are:
795 >
796 > %We study the isolated track veto efficiency in bins of \njets.
797 > %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
798 > %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
799 >
800 >
801 > \begin{itemize}
802 >  \item{Electrons}
803 >
804 >    \begin{itemize}
805 >    \item{Tag criteria}
806 >
807 >      \begin{itemize}
808 >      \item Electron passes full analysis ID/iso selection
809 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
810 >      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
811 >      \end{itemize}
812 >
813 >    \item{Probe criteria}
814 >      \begin{itemize}
815 >      \item Electron passes full analysis ID selection
816 >      \item \pt\ $>$ 30 GeV
817 >      \end{itemize}
818 >      \end{itemize}
819 >  \item{Muons}
820 >    \begin{itemize}
821 >    \item{Tag criteria}
822 >      \begin{itemize}
823 >      \item Muon passes full analysis ID/iso selection
824 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
825 >      \item Matched to 1 of the 2 single muon triggers
826 >        \begin{itemize}
827 >        \item \verb=HLT_IsoMu30_v*=
828 >        \item \verb=HLT_IsoMu30_eta2p1_v*=
829 >        \end{itemize}
830 >      \end{itemize}
831 >    \item{Probe criteria}
832 >      \begin{itemize}
833 >      \item Muon passes full analysis ID selection
834 >      \item \pt\ $>$ 30 GeV
835 >      \end{itemize}
836 >    \end{itemize}
837 > \end{itemize}
838 >
839 > The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
840 > good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
841 > absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
842 > In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
843 > efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
844 > For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
845 > a data vs. MC discrepancy in the isolated track veto efficiency.
846 >
847 >
848 > %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
849 > %This requirement is chosen because most of the tracks rejected by the isolated
850 > %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
851 >
852 > \begin{figure}[hbt]
853 >  \begin{center}
854 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
855 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
856 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
857 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
858 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
859 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
860 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
861 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
862 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
863 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
864 >        \caption{
865 >          \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
866 > for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
867 > }  
868 >      \end{center}
869 > \end{figure}
870 >
871 > \clearpage
872 >
873 > \begin{table}[!ht]
874 > \begin{center}
875 > \begin{tabular}{l|c|c|c|c|c}
876 >
877 > %Electrons:
878 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
879 > %Total MC yields        : 2497277
880 > %Total DATA yields      : 2649453
881 > %Muons:
882 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
883 > %Total MC yields        : 3749863
884 > %Total DATA yields      : 4210022
885 > %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
886 > %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
887 >
888 > \hline
889 > \hline
890 > e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
891 > \hline
892 >      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
893 >        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
894 >   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
895 >
896 > \hline
897 > \hline
898 > $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
899 > \hline
900 >      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
901 >        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
902 >   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
903 >
904 > \hline
905 > \hline
906 > e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
907   \hline
908 +      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
909 +        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
910 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
911 +
912 + \hline
913 + \hline
914 + $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
915 + \hline
916 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
917 +        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
918 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
919 +
920 + \hline
921 + \hline
922 + e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
923 + \hline
924 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
925 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
926 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
927 +
928 + \hline
929 + \hline
930 + $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
931 + \hline
932 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
933 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
934 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
935 +
936 + \hline
937 + \hline
938 + e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
939 + \hline
940 +      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
941 +        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
942 +   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
943 +
944 + \hline
945 + \hline
946 + $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
947 + \hline
948 +      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
949 +        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
950 +   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
951 +
952 + \hline
953 + \hline
954 + e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
955 + \hline
956 +      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
957 +        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
958 +   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
959 +
960 + \hline
961 + \hline
962 + $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
963 + \hline
964 +      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
965 +        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
966 +   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
967 +
968 + \hline
969 + \hline
970 +
971   \end{tabular}
972 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
973 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
974 + jet multiplicity requirements.}
975   \end{center}
976   \end{table}
977 +
978 + \clearpage
979 + \subsection{Summary of uncertainties}
980 + \label{sec:bgunc-bottomline}
981 +
982 + The contribution from each source to the total uncertainty on the background yield is given in Tables~\ref{tab:relativeuncertaintycomponents} and~\ref{tab:uncertaintycomponents} for the relative and absolute uncertainties, respectively. In the low-\met\ regions the dominant uncertainty comes from the top tail-to-peak ratio, $R_{top}$ (Section~\ref{sec:ttp}), while in the high-\met\ regions the \ttll\ systematic uncertainty dominates (Section~\ref{sec:ttdilbkgunc}).
983 +
984 + \input{uncertainties_table.tex}
985 +
986 +
987 +
988 +
989 +
990 + %Figure.~\ref{fig:reliso} compares the relative track isolation
991 + %for events with a track with $\pt > 10~\GeV$ in addition to a selected
992 + %muon for $\Z+4$ jet events and various \ttll\ components. The
993 + %isolation distributions show significant differences, particularly
994 + %between the leptons from a \W\ or \Z\ decay and the tracks arising
995 + %from $\tau$ decays. As can also be seen in the figure, the \pt\
996 + %distribution for the various categories of tracks is different, where
997 + %the decay products from $\tau$s are significantly softer. Since the
998 + %\pt\ enters the denominator of the isolation definition and hence
999 + %alters the isolation variable...
1000 +
1001 + %\begin{figure}[hbt]
1002 + %  \begin{center}
1003 + %       \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
1004 + %       \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
1005 + %       \caption{
1006 + %         \label{fig:reliso}%\protect
1007 + %          Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
1008 + %          Z+Jets and ttbar dilepton have similar isolation distributions
1009 + %          ttbar with leptonic and single prong taus tend to be less
1010 + %          isolated. The difference in the isolation can be attributed
1011 + %          to the different \pt\ distribution of the samples, since
1012 + %          $\tau$ decay products tend to be softer than leptons arising
1013 + %          from \W\ or \Z\ decays.}  
1014 + %      \end{center}
1015 + %\end{figure}
1016 +
1017 + %       \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
1018 +
1019 +
1020 + %BEGIN SECTION TO WRITE OUT
1021 + %In detail, the procedure to correct the dilepton background is:
1022 +
1023 + %\begin{itemize}
1024 + %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
1025 + %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
1026 + %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
1027 + %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
1028 + %the lepton \pt {\bf TODO: verify this in data and MC.}.
1029 + %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
1030 + %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
1031 + %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
1032 + %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
1033 + %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
1034 + %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
1035 + %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
1036 + %\end{itemize}
1037 + %END SECTION TO WRITE OUT
1038 +
1039 +
1040 + %{\bf fix me: What you have written in the next paragraph does not
1041 + %explain how $\epsilon_{fake}$ is measured.
1042 + %Why not measure $\epsilon_{fake}$ in the b-veto region?}
1043 +
1044 + %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
1045 + %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
1046 + %applying an additional scale factor for the single lepton background
1047 + %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
1048 + %veto and after subtracting the \ttll\ component, corrected for the
1049 + %isolation efficiency derived previously.
1050 + %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
1051 + %isolated track in single lepton events is independent of \mt\, so the use of
1052 + %an overall scale factor is justified to estimate the contribution in
1053 + %the \mt\ tail.
1054 + %
1055 + %\begin{figure}[hbt]
1056 + %  \begin{center}
1057 + %       \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
1058 + %       \caption{
1059 + %         \label{fig:vetoeffcomp}%\protect
1060 + %          Efficiency for selecting an isolated track comparing
1061 + %          single lepton \ttlj\ and dilepton \ttll\ events in MC and
1062 + %          data as a function of \mt. The
1063 + %          efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
1064 + %          \mt\, while the data ranges between the two. This behavior
1065 + %          is expected since the low \mt\ region is predominantly \ttlj, while the
1066 + %          high \mt\ region contains mostly \ttll\ events.}  
1067 + %      \end{center}
1068 + %\end{figure}
1069 +
1070 +
1071 +
1072 + % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines