ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.1 by benhoob, Sun Jun 24 15:06:07 2012 UTC vs.
Revision 1.28 by benhoob, Wed Oct 31 17:45:34 2012 UTC

# Line 1 | Line 1
1 < \section{Systematics Uncertainties in the Background Prediction}
2 < \label{sec:systematics}
1 > %\section{Systematics Uncertainties on the Background Prediction}
2 > %\label{sec:systematics}
3  
4 < The methodology for determining the systematics on the background
5 < predictions has not changed with respect to the nominal analysis.
6 < Because the template method has not changed, the same
7 < systematic uncertainty is assessed on this prediction (32\%).
8 < The 50\% uncertainty on the WZ and ZZ background is also unchanged.
9 < The systematic uncertainty in the OF background prediction based on
10 < e$\mu$ events has changed, due to the different composition of this
11 < sample after vetoing events containing b-tagged jets.
12 <
13 < As in the nominal analysis, we do not require the e$\mu$ events
14 < to satisfy the dilepton mass requirement and apply a scaling factor K,
15 < extracted from MC, to account for the fraction of e$\mu$ events
16 < which satisfy the dilepton mass requirement. This procedure is used
17 < in order to improve the statistical precision of the OF background estimate.
18 <
19 < For the selection used in the nominal analysis,
20 < the e$\mu$ sample is completely dominated by $t\bar{t}$
21 < events, and we observe that K is statistically consistent with constant with
22 < respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
23 < background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
24 < backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
25 < At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
26 < and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
27 < Therefore, the sample composition changes
28 < as the \MET\ requirement is varied, and as a result K depends
29 < on the \MET\ requirement.
30 <
31 < We thus measure K in MC separately for each
32 < \MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
33 < %The systematic uncertainty on K is determined separately for each \MET\
34 < %requirement by comparing the relative difference in K in data vs. MC.
35 < The values of K used are the MC predictions
36 < %and the total systematic uncertainty on the OF prediction
37 < %as shown in
38 < (Table \ref{fig:kvmettable}).
39 < The contribution to the total OF prediction systematic uncertainty
40 < from K is assessed from the ratio of K in data and MC,
41 < shown in Fig.~\ref{fig:kvmet} (right).
42 < The ratio is consistent with unity to roughly 17\%,
43 < so we take this value as the systematic from K.
44 < 17\% added in quadrature with 7\% from
45 < the electron to muon efficieny ratio
46 < (as assessed in the inclusive analysis)
47 < yields a total systematic of $\sim$18\%
48 < which we round up to 20\%.
49 < For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
50 < so we take a systematic based on the statistical uncertainty
51 < of the MC prediction for K.
52 < This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
53 < %Although we cannot check the value of K in data for \MET\ $>$ 150
54 < %because we find no OF events inside the Z mass window for this \MET\
55 < %cut, the overall OF yields with no dilepton mass requirement
56 < %agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
57 <
58 <
59 < %Below Old
60 <
61 < %In reevaluating the systematics on the OF prediction, however,
62 < %we observed a different behavior of K as a function of \MET\
63 < %as was seen in the inclusive analysis.
64 <
65 < %Recall that K is the ratio of the number of \emu\ events
66 < %inside the Z window to the total number of \emu\ events.
67 < %In the inclusive analysis, it is taken from \ttbar\ MC
68 < %and used to scale the inclusive \emu\ yield in data.
69 < %The yield scaled by K is then corrected for
70 < %the $e$ vs $\mu$ efficiency difference to obtain the
71 < %final OF prediction.
72 <
73 < %Based on the plot in figure \ref{fig:kvmet},
74 < %we choose to use a different
75 < %K for each \MET\ cut and assess a systematic uncertainty
76 < %on the OF prediction based on the difference between
77 < %K in data and MC.
78 < %The variation of K as a function of \MET\ is caused
79 < %by a change in sample composition with increasing \MET.
80 < %At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
81 < %not negligible (as it was in the inclusive analysis)
82 < %because of the b veto. (See appendix \ref{app:kinemu}.)
83 < %At higher \MET, \ttbar\ and diboson backgrounds dominate.
4 > In this Section we discuss the systematic uncertainty on the BG
5 > prediction.  This prediction is assembled from the event
6 > counts in the peak region of the transverse mass distribution as
7 > well as Monte Carlo
8 > with a number of correction factors, as described previously.
9 > The
10 > final uncertainty on the prediction is built up from the uncertainties in these
11 > individual
12 > components.
13 > The calculation is done for each signal
14 > region,
15 > for electrons and muons separately.
16  
17 + The choice to normalize to the peak region of $M_T$ has the
18 + advantage that some uncertainties, e.g., luminosity, cancel.
19 + It does however introduce complications because it couples
20 + some of the uncertainties in non-trivial ways.  For example,
21 + the primary effect of an uncertainty on the rare MC cross-section
22 + is to introduce an uncertainty in the rare MC background estimate
23 + which comes entirely from MC.   But this uncertainty also affects,
24 + for example,
25 + the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 + $t\bar{t}$ normalization to the peak region (because some of the
27 + events in the peak region are from rare processes).  These effects
28 + are carefully accounted for. The contribution to the overall
29 + uncertainty from each background source is tabulated in
30 + Section~\ref{sec:bgunc-bottomline}.
31 + Here we discuss the uncertainties one-by-one and comment
32 + on their impact on the overall result, at least to first order.
33 + Second order effects, such as the one described, are also included.
34  
35 + \subsection{Statistical uncertainties on the event counts in the $M_T$
36 + peak regions}
37 + These vary between 2\% and 20\%, depending on the signal region
38 + (different
39 + signal regions have different \met\ requirements, thus they also have
40 + different $M_T$ regions used as control).
41 + Since
42 + the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
43 + fractional uncertainty is pretty much carried through all the way to
44 + the end.  There is also an uncertainty from the finite MC event counts
45 + in the $M_T$ peak regions.  This is also included, but it is smaller.
46  
47 + Normalizing to the $M_T$ peak has the distinct advantages that
48 + uncertainties on luminosity, cross-sections, trigger efficiency,
49 + lepton ID, cancel out.
50 + For the low statistics regions with high \met\ requirements, the
51 + price to pay in terms of event count is that statistical uncertainties start
52 + to become significant.  In the future we may consider a different
53 + normalization startegy in the low statistics regions.
54 +
55 + \subsection{Uncertainty from the choice of $M_T$ peak region}
56 +
57 + This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
58 + If the $M_T$ peak region is not well modelled, this would introduce an
59 + uncertainty.
60 +
61 + We have tested this possibility by recalculating the post-veto scale factors for a different
62 + choice
63 + of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 + $50 < M_T < 80$ GeV).  This is shown in Table~\ref{tab:mtpeaksf2}.  
65 + The two results for the scale factors are very compatible.
66 + We do not take any systematic uncertainty for this possible effect.
67 +
68 + \begin{table}[!h]
69 + \begin{center}
70 + {\footnotesize
71 + \begin{tabular}{l||c|c|c|c|c|c|c}
72 + \hline
73 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 + \hline
75 + \hline
76 + \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 + \hline
78 + $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 + $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 + \hline
81 + $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 + \hline
83 + \hline
84 + e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 + e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 + \hline
87 + e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 + \hline
89 + \hline
90 + \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 + \hline
92 + $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 + $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 + \hline
95 + $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 + \hline
97 + \hline
98 + e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 + e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 + \hline
101 + e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 + \hline
103 + \end{tabular}}
104 + \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 +  \ttdl\ sample, while the post-veto SFs are applied to the single
106 +  lepton samples. The veto SF is shown for comparison across channels.
107 +  The raw MC is used for backgrounds from rare processes.
108 +  The uncertainties are statistical only.
109 + \label{tab:mtpeaksf2}}
110 + \end{center}
111 + \end{table}
112 +
113 +
114 + \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
115 + These are taken as 50\%, uncorrelated.  
116 + The primary effect is to introduce a 50\%
117 + uncertainty
118 + on the $W +$ jets and rare BG
119 + background predictions, respectively.  However they also
120 + have an effect on the other BGs via the $M_T$ peak normalization
121 + in a way that tends to reduce the uncertainty.  This is easy
122 + to understand: if the $W$ cross-section is increased by 50\%, then
123 + the $W$ background goes up.  But the number of $M_T$ peak events
124 + attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125 + scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126 + BG goes down.  
127 +
128 + \subsection{Tail-to-peak ratios for lepton +
129 +  jets top and W events}
130 + The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131 + The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132 + Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its
133 + uncertainty is given in Table~\ref{tab:cr1yields}.
134 + This uncertainty affects both $R_{wjet}$ and $R_{top}$.
135 + The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
136 +
137 +
138 + \subsection{Uncertainty on extra jet radiation for dilepton
139 +  background}
140 + As discussed in Section~\ref{sec:jetmultiplicity}, the
141 + jet distribution in
142 + $t\bar{t} \to$
143 + dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
144 + it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
145 + comes from data/MC statistics.  This  
146 + results directly in a 3\% uncertainty on the dilepton background, which is by far
147 + the most important one.
148 +
149 + \subsection{Uncertainty from MC statistics}
150 + This affects mostly the \ttll\ background estimate, which is taken
151 + from
152 + Monte Carlo with appropriate correction factors.  This uncertainty
153 + is negligible in the low \met\ signal regions, and grows to about
154 + 15\% in SRG.
155 +
156 +
157 + \subsection{Uncertainty on the \ttll\ Background}
158 + \label{sec:ttdilbkgunc}
159 + The \ttbar\ background prediction is obtained from MC, with corrections
160 + derived from control samples in data. The uncertainty associated with
161 + the \ttbar\ background is derived from the level of closure of the
162 + background prediction in CR4 (Table~\ref{tab:cr4yields}) and
163 + CR5 (Table~\ref{tab:cr5yields}). The results from these control region
164 + checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned
165 + to the \ttdl\ background prediction based on these tests are
166 + 5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G).
167 +
168 + \begin{figure}[hbt]
169 +  \begin{center}
170 +        \includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf}
171 +        \caption{
172 +          \label{fig:ttdlunc}%\protect
173 +          Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after
174 +          applying SFs) to data for CR4 and CR5 for all the signal
175 +          region requirements considered (A-G). The bands indicate the
176 +          systematic uncertainties assigned based on these tests,
177 +          ranging from $5\%$ for SRA to $40\%$ for SRE-G.}
178 +      \end{center}
179 + \end{figure}
180 +
181 + \clearpage
182 + \subsubsection{Check of the impact of Signal Contamination}
183 +
184 + We examine the contribution of possible signal events in the \ttll\
185 + control regions (CR4 and CR5). It should be emphasized that these
186 + regions are not used to apply data/MC SFs. They are used only to quantify
187 + the level of data/MC agreement and assign a corresponding uncertainty.
188 + As a result, if signal events were to populate these control regions
189 + this would not lead to an increase in the predicted background.
190 +
191 + To illustrate how much signal is expected to populate these control
192 + regions, we examine signal points near the edge of the analysis
193 + sensitivity (m(stop) = 450 m($\chi^0$) = 0 for T2tt, m(stop) = 450
194 + m($\chi^0$) = 0 for T2bw with x=0.75 and m(stop) = 350
195 + m($\chi^0$) = 0 for T2bw with x=0.5).
196 + Table~\ref{tab:signalcontamination} compares the expected signal
197 + yields and the raw total MC background prediction in the control
198 + regions with the \met\ and \mt\ requirements corresponding to SRB, SRC
199 + and SRD (these are the signal regions that dominate the
200 + sensitivity). The signal contamination is smaller than the uncertainty
201 + on the dilepton background and smaller than the signal/background in
202 + the signal regions, with the exception of the T2bw scenario with x=0.5.
203 + However, based on the fact that the CR4 and CR5 are not used to extract
204 + data/MC scale factors and that we do not observe evidence for signal
205 + contamination in these control regions (CR5, the control region with
206 + larger statistical precision, actually shows a slight deficit of data w.r.t. MC), we
207 + do not assign a correction for signal contamination in these control regions.
208 +
209 + \begin{table}[!h]
210 + \begin{center}
211 + {\small
212 + \begin{tabular}{l l||c|c|c}
213 + \hline
214 + \multicolumn{2}{c||}{Sample}              & CR B & CR C & CR D \\
215 + \hline
216 + \hline
217 + \multirow{4}{*}{CR4} & Raw MC            & $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$ \\
218 + %\hline
219 + & T2tt m(stop) = 450 m($\chi^0$) = 0  & $2.6 \pm 0.3$ $(2\%)$ & $2.0 \pm 0.2$ $(4\%)$ & $1.4 \pm 0.2$ $(7\%)$ \\
220 + & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $10.5 \pm 0.4$ $(6\%)$ &$6.1 \pm 0.3$ $(12\%)$ & $3.1 \pm 0.2$ $(16\%)$ \\
221 + & T2bw x=0.5  m(stop) = 350 m($\chi^0$) = 0     & $32.1 \pm 1.5$ $(19\%)$ & $14.7 \pm 1.0$ $(29\%)$ & $5.5 \pm 0.6$ $(28\%)$ \\
222 + \hline
223 + \hline
224 + \multirow{4}{*}{CR5} & Raw MC            & $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$ \\
225 + %\hline
226 + & T2tt m(stop) = 450 m($\chi^0$) = 0  & $10.6 \pm 0.6$ $(3\%)$ & $7.8 \pm 0.5$ $(8\%)$ & $5.4 \pm 0.4$ $(14\%)$ \\
227 + & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $17.3 \pm 0.5$ $(6\%)$ &$11.3 \pm 0.4$ $(11\%)$ & $6.2 \pm 0.3$ $(16\%)$\\
228 + & T2bw x=0.5  m(stop) = 350 m($\chi^0$) = 0     & $33.0 \pm 1.5$ $(11\%)$& $14.4 \pm 1.0$ $(14\%)$& $5.7 \pm 0.6$ $(15\%)$ \\
229 + \hline
230 + \hline
231 + \hline
232 + \multirow{4}{*}{SIGNAL} & Raw MC                 & $486.3 \pm 7.8$& $164.3 \pm 4.5$& $61.5 \pm 2.8$ \\
233 + & T2tt m(stop) = 450 m($\chi^0$) = 0    & $65.3 \pm 1.4$ $(13\%)$& $48.8 \pm 1.2$ $(30\%)$& $32.9 \pm 1.0$ $(53\%)$ \\
234 + & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0     & $69.3 \pm 1.0$ $(14\%)$& $47.3 \pm 0.8$ $(29\%)$& $27.3 \pm 0.6$ $(44\%)$ \\
235 + & T2bw x=0.5  m(stop) = 350 m($\chi^0$) = 0     & $105.5 \pm 2.8$ $(22\%)$& $44.6 \pm 1.8$ $(27\%)$& $15.9 \pm 1.1$ $(26\%)$ \\
236 + \hline
237 + \end{tabular}}
238 + \caption{ Yields in \mt\ tail comparing the raw SM MC prediction to the
239 +  yields for a few signal points on the edge of our sensitivity in the \ttll\
240 +  control regions CR4, CR5 and in the corresponding signal region.
241 +  The numbers in parenthesis are the expected signal yield divided by
242 +  the total background. The uncertainties are statistical only.
243 + \label{tab:signalcontamination}}
244 + \end{center}
245 + \end{table}
246 +
247 + %CR5 DUMP
248 + %Total           & $880.3 \pm 10.4$& $560.0 \pm 8.3$& $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$& $16.4 \pm 1.4$& $8.2 \pm 1.0$& $4.6 \pm 0.8$ \\
249 + %\hline
250 + %\hline
251 + %Data            & $941$& $559$& $287$& $95$& $26$& $8$& $5$& $3$ \\
252 + %\hline
253 + %T2tt m(stop) = 250 m($\chi^0$) = 0     & $84.3 \pm 9.2$& $61.9 \pm 7.9$& $35.7 \pm 6.0$& $5.9 \pm 2.4$& $1.0 \pm 1.0$& $1.0 \pm 1.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
254 + %\hline
255 + %T2tt m(stop) = 300 m($\chi^0$) = 50    & $61.4 \pm 4.7$& $53.6 \pm 4.4$& $42.0 \pm 3.9$& $14.3 \pm 2.3$& $7.2 \pm 1.6$& $1.8 \pm 0.8$& $0.7 \pm 0.5$& $0.0 \pm 0.0$ \\
256 + %\hline
257 + %T2tt m(stop) = 300 m($\chi^0$) = 100   & $33.3 \pm 3.5$& $28.6 \pm 3.2$& $19.2 \pm 2.6$& $6.1 \pm 1.5$& $1.8 \pm 0.8$& $0.4 \pm 0.4$& $0.4 \pm 0.4$& $0.4 \pm 0.4$ \\
258 + %\hline
259 + %T2tt m(stop) = 350 m($\chi^0$) = 0     & $33.4 \pm 2.2$& $29.8 \pm 2.1$& $27.3 \pm 2.0$& $15.3 \pm 1.5$& $5.6 \pm 0.9$& $1.9 \pm 0.5$& $0.3 \pm 0.2$& $0.0 \pm 0.0$ \\
260 + %\hline
261 + %T2tt m(stop) = 450 m($\chi^0$) = 0     & $12.0 \pm 0.6$& $11.3 \pm 0.6$& $10.6 \pm 0.6$& $7.8 \pm 0.5$& $5.4 \pm 0.4$& $3.1 \pm 0.3$& $1.8 \pm 0.2$& $0.6 \pm 0.1$ \\
262 + %\hline
263 + %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0       & $48.5 \pm 1.9$& $40.2 \pm 1.7$& $33.0 \pm 1.5$& $14.4 \pm 1.0$& $5.7 \pm 0.6$& $2.7 \pm 0.4$& $1.3 \pm 0.3$& $0.5 \pm 0.2$ \\
264 + %\hline
265 + %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0      & $22.3 \pm 0.6$& $20.2 \pm 0.6$& $17.3 \pm 0.5$& $11.3 \pm 0.4$& $6.2 \pm 0.3$& $3.1 \pm 0.2$& $1.3 \pm 0.1$& $0.7 \pm 0.1$ \\
266 + %\hline
267 +
268 + %CR4 DUMP
269 + %\hline
270 + %Total           & $510.1 \pm 8.0$& $324.2 \pm 6.3$& $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$& $7.8 \pm 1.0$& $2.6 \pm 0.6$& $1.1 \pm 0.3$ \\
271 + %\hline
272 + %\hline
273 + %Data            & $462$& $289$& $169$& $45$& $10$& $7$& $5$& $3$ \\
274 + %\hline
275 + %T2tt m(stop) = 250 m($\chi^0$) = 0     & $37.7 \pm 6.1$& $30.9 \pm 5.5$& $18.0 \pm 4.2$& $6.0 \pm 2.5$& $2.0 \pm 1.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
276 + %\hline
277 + %T2tt m(stop) = 300 m($\chi^0$) = 50    & $16.6 \pm 2.4$& $14.4 \pm 2.3$& $11.3 \pm 2.0$& $5.6 \pm 1.4$& $3.2 \pm 1.1$& $1.8 \pm 0.8$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
278 + %\hline
279 + %T2tt m(stop) = 300 m($\chi^0$) = 100   & $9.6 \pm 1.8$& $6.4 \pm 1.5$& $4.6 \pm 1.3$& $0.7 \pm 0.5$& $0.4 \pm 0.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
280 + %\hline
281 + %T2tt m(stop) = 350 m($\chi^0$) = 0     & $8.2 \pm 1.1$& $7.6 \pm 1.0$& $5.7 \pm 0.9$& $3.4 \pm 0.7$& $1.9 \pm 0.5$& $0.6 \pm 0.3$& $0.3 \pm 0.2$& $0.1 \pm 0.1$ \\
282 + %\hline
283 + %T2tt m(stop) = 450 m($\chi^0$) = 0     & $3.1 \pm 0.3$& $2.9 \pm 0.3$& $2.6 \pm 0.3$& $2.0 \pm 0.2$& $1.4 \pm 0.2$& $1.0 \pm 0.2$& $0.4 \pm 0.1$& $0.2 \pm 0.1$ \\
284 + %\hline
285 + %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0       & $52.6 \pm 1.9$& $42.6 \pm 1.7$& $32.1 \pm 1.5$& $14.7 \pm 1.0$& $5.5 \pm 0.6$& $1.9 \pm 0.4$& $0.6 \pm 0.2$& $0.3 \pm 0.1$ \\
286 + %\hline
287 + %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0      & $16.9 \pm 0.5$& $14.9 \pm 0.5$& $10.5 \pm 0.4$& $6.1 \pm 0.3$& $3.1 \pm 0.2$& $1.5 \pm 0.1$& $0.6 \pm 0.1$& $0.3 \pm 0.1$ \\
288 + %\hline
289 +
290 +
291 + \subsubsection{Check of the uncertainty on the \ttll\ Background}
292 +
293 + We check that the systematic uncertainty assigned to the \ttll\ background prediction
294 + covers the uncertainty associated with
295 + the theoretical modeling of the \ttbar\ production and decay
296 + by comparing the background predictions obtained using
297 + alternative MC samples. It should be noted that the full analysis is
298 + performed with the alternative samples under consideration,
299 + including the derivation of the various data-to-MC scale factors.
300 + The variations considered are
301 +
302 + \begin{itemize}
303 + \item Top mass: The alternative values for the top mass differ
304 +  from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
305 +  = 166.5~\GeV$.
306 + \item Jet-parton matching scale: This corresponds to variations in the
307 +  scale at which the Matrix Element partons from Madgraph are matched
308 +  to Parton Shower partons from Pythia. The nominal value is
309 +  $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
310 +  $x_q>40~\GeV$.
311 + \item Renormalization and factorization scale: The alternative samples
312 +  correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
313 +  value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
314 +  \sum_{\mathrm{jets}} \pt^2$.
315 + \item Alternative generators: Samples produced with different
316 +  generators, Powheg (our default) and Madgraph.
317 + \item Modeling of taus: The alternative sample does not include
318 +  Tauola and is otherwise identical to the Powheg sample.
319 +  This effect was studied earlier using 7~TeV samples and found to be negligible.
320 + \item The PDF uncertainty is estimated following the PDF4LHC
321 +  recommendations. The events are reweighted using alternative
322 +  PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
323 +  alternative eigenvector variations and the ``master equation''.
324 +  The NNPDF2.1 set with 100 replicas is also used. The central value is
325 +  determined from the mean and the uncertainty is derived from the
326 +  $1\sigma$ range. The overall uncertainty is derived from the envelope of the
327 +  alternative predictions and their uncertainties.
328 +  This effect was studied earlier using 7~TeV samples and found to be negligible.
329 +  \end{itemize}
330  
331   \begin{figure}[hbt]
332    \begin{center}
333 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
334 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
333 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
334 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
335 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
336 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
337 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
338          \caption{
339 <          \label{fig:kvmet}\protect
340 <          The left plot shows
341 <          K as a function of \MET\ in MC (red) and data (black).
342 <          The bin low edge corresponds to the \MET\ cut, and the
343 <          bins are inclusive.
344 <          The MC used is a sum of all SM MC used in the yield table of
345 <          section \ref{sec:yields}.
346 <          The right plot is the ratio of K in data to MC.
347 <          The ratio is fit to a line whose slope is consistent with zero
348 <          (the fit parameters are
349 <          0.9 $\pm$  0.4 for the intercept and
350 <      0.001 $\pm$ 0.005 for the slope).
351 <        }
352 <  \end{center}
339 >          \label{fig:ttllsyst}\protect
340 >          Comparison of the \ttll\ central prediction with those using
341 >          alternative MC samples. The blue band corresponds to the
342 >          total statistical error for all data and MC samples. The
343 >          alternative sample predictions are indicated by the
344 >          datapoints. The uncertainties on the alternative predictions
345 >          correspond to the uncorrelated statistical uncertainty from
346 >          the size of the alternative sample only.  Note the
347 >          suppressed vertical scales.}
348 >      \end{center}
349 >    \end{figure}
350 >
351 >
352 > \begin{table}[!h]
353 > \begin{center}
354 > {\footnotesize
355 > \begin{tabular}{l||c|c|c|c|c|c|c}
356 > \hline
357 > $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
358 > Match Up & Match Down \\
359 > \hline
360 > \hline
361 > SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
362 > \hline
363 > SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
364 > \hline
365 > % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
366 > % \hline
367 > % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
368 > % \hline
369 > % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
370 > \hline
371 > \end{tabular}}
372 > \caption{ Relative difference in \ttdl\ predictions for alternative MC
373 >  samples in
374 > the higher statistics regions SRA and SRB.  These differences
375 > are based on the central values of the predictions.  For a fuller
376 > picture
377 > of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
378 > \label{tab:fracdiff}}
379 > \end{center}
380 > \end{table}
381 >
382 >
383 > In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
384 > for regions A through E.  We can make the following observations based
385 > on this Figure.
386 >
387 > \begin{itemize}
388 > \item In the tighter signal regions we are running out of
389 >  statistics.    
390 > \item Within the limited statistics, there is no evidence that the
391 >  situation changes as we go from signal region A to signal region E.
392 > %Therefore, we assess a systematic based on the relatively high
393 > %statistics
394 > %test in signal region A, and apply the same systematic uncertainty
395 > %to all other regions.
396 > \item In signal regions B and above, the uncertainties assigned in Section~\ref{sec:ttdilbkgunc}
397 > fully cover the alternative MC variations.
398 > \item In order to fully (as opposed as 1$\sigma$) cover the
399 > alternative MC variations in region A we would have to take a
400 > systematic
401 > uncertainty of $\approx 10\%$ instead of $5\%$.  This would be driven by the
402 > scale up/scale down variations, see Table~\ref{tab:fracdiff}.
403 > \end{itemize}
404 >
405 > \begin{table}[!ht]
406 > \begin{center}
407 > \begin{tabular}{l|c|c}
408 > \hline
409 >            Sample
410 >            &                K3   & K4\\
411 > \hline
412 > \hline
413 > Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
414 > Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
415 > Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
416 > Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
417 > Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
418 > Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
419 > Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
420 > Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
421 > \hline
422 > \end{tabular}
423 > \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
424 >  fraction of events with additional hard jets from radiation in
425 >  \ttll\ events. \label{tab:njetskfactors_met100}}
426 > \end{center}
427 > \end{table}
428 >
429 >
430 > However, we have two pieces of information indicating that the
431 > scale up/scale down variations are inconsistent with the data.
432 > These are described below.
433 >
434 > The first piece of information is that the jet multiplicity in the scale
435 > up/scale down sample is the most inconsistent with the data.  This is shown
436 > in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
437 > $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
438 > different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
439 > distribution
440 > for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
441 > and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
442 > equivalent $N_{jets}$ plots for the default Powheg MC, see
443 > Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
444 >
445 > \begin{figure}[hbt]
446 >  \begin{center}
447 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
448 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
449 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
450 >        \caption{
451 >          \label{fig:dileptonnjets_scaleup}%\protect
452 >          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
453 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
454 >      \end{center}
455 > \end{figure}
456 >
457 > \begin{figure}[hbt]
458 >  \begin{center}
459 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
460 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
461 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
462 >        \caption{
463 >          \label{fig:dileptonnjets_scaledw}%\protect
464 >          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
465 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
466 >      \end{center}
467   \end{figure}
468  
469  
470 + \clearpage
471 +
472 + The second piece of information is that we have performed closure
473 + tests in CR5 using the alternative MC samples.  These are exactly
474 + the same tests as the one performed in Section~\ref{sec:CR5} on the
475 + Powheg sample.  As we argued previously, this is a very powerful
476 + test of the background calculation.
477 + The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
478 + Concentrating on the relatively high statistics CR5A region, we see
479 + for all \ttbar\ MC samples except scale up/scale down we obtain
480 + closure within 1$\sigma$.  The scale up/scale down tests closes
481 + worse, only within 2$\sigma$.  This again is evidence that the
482 + scale up/scale down variations are in disagreement with the data.
483 +
484 + \input{hugeCR5Table.tex}
485 +
486 + Based on the two observations above, we argue that the MC
487 + scale up/scale down variations are too extreme.  We feel that
488 + a reasonable choice would be to take one-half of the scale up/scale
489 + down variations in our MC.  This factor of 1/2 would then bring
490 + the discrepancy in the closure test of
491 + Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
492 + from about 2$\sigma$ to about 1$\sigma$.
493 +
494 + Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
495 + up/scale
496 + down variations by a factor 2, we can see that a systematic
497 + uncertainty
498 + of 5\% covers the range of reasonable variations from different MC
499 + models in SRA and SRB.
500 + %The alternative MC models indicate that a 6\% systematic uncertainty
501 + %covers the range of reasonable variations.
502 + Note that this 5\% is also consistent with the level at which we are
503 + able to test the closure of the method with alternative samples in CR5 for the high statistics
504 + regions (Table~\ref{tab:hugecr5yields}).
505 + The range of reasonable variations obtained with the alternative
506 + samples are consistent with the uncertainties assigned for
507 + the \ttll\ background based on the closure of the background
508 + predictions and data in CR4 and CR5.
509 +
510 +
511 +
512 +
513 +
514 + %\begin{table}[!h]
515 + %\begin{center}
516 + %{\footnotesize
517 + %\begin{tabular}{l||c||c|c|c|c|c|c|c}
518 + %\hline
519 + %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
520 + %Up & Scale Down &
521 + %Match Up & Match Down \\
522 + %\hline
523 + %\hline
524 + %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
525 + %\hline
526 + %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
527 + %\hline
528 + %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
529 + %\hline
530 + %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
531 + %\hline
532 + %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
533 + %\hline
534 + %\end{tabular}}
535 + %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
536 + %\label{tab:ttdlalt}}
537 + %\end{center}
538 + %\end{table}
539 +
540 +
541 +
542  
543 < \begin{table}[htb]
543 > %\begin{table}[!h]
544 > %\begin{center}
545 > %{\footnotesize
546 > %\begin{tabular}{l||c|c|c|c|c|c|c}
547 > %\hline
548 > %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
549 > %Match Up & Match Down \\
550 > %\hline
551 > %\hline
552 > %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
553 > %\hline
554 > %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
555 > %\hline
556 > %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
557 > %\hline
558 > %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
559 > %\hline
560 > %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
561 > %\hline
562 > %\end{tabular}}
563 > %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
564 > %\label{tab:nsig}}
565 > %\end{center}
566 > %\end{table}
567 >
568 >
569 > %\begin{table}[!h]
570 > %\begin{center}
571 > %\begin{tabular}{l||c|c|c|c}
572 > %\hline
573 > %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
574 > %& $\Delta$ Match \\
575 > %\hline
576 > %\hline
577 > %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
578 > %\hline
579 > %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
580 > %\hline
581 > %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
582 > %\hline
583 > %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
584 > %\hline
585 > %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
586 > %\hline
587 > %\end{tabular}
588 > %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
589 > %\label{tab:devt}}
590 > %\end{center}
591 > %\end{table}
592 >
593 >
594 >
595 > \clearpage
596 >
597 > %
598 > %
599 > %The methodology for determining the systematics on the background
600 > %predictions has not changed with respect to the nominal analysis.
601 > %Because the template method has not changed, the same
602 > %systematic uncertainty is assessed on this prediction (32\%).
603 > %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
604 > %The systematic uncertainty in the OF background prediction based on
605 > %e$\mu$ events has changed, due to the different composition of this
606 > %sample after vetoing events containing b-tagged jets.
607 > %
608 > %As in the nominal analysis, we do not require the e$\mu$ events
609 > %to satisfy the dilepton mass requirement and apply a scaling factor K,
610 > %extracted from MC, to account for the fraction of e$\mu$ events
611 > %which satisfy the dilepton mass requirement. This procedure is used
612 > %in order to improve the statistical precision of the OF background estimate.
613 > %
614 > %For the selection used in the nominal analysis,
615 > %the e$\mu$ sample is completely dominated by $t\bar{t}$
616 > %events, and we observe that K is statistically consistent with constant with
617 > %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
618 > %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
619 > %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
620 > %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
621 > %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
622 > %Therefore, the sample composition changes
623 > %as the \MET\ requirement is varied, and as a result K depends
624 > %on the \MET\ requirement.
625 > %
626 > %We thus measure K in MC separately for each
627 > %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
628 > %%The systematic uncertainty on K is determined separately for each \MET\
629 > %%requirement by comparing the relative difference in K in data vs. MC.
630 > %The values of K used are the MC predictions
631 > %%and the total systematic uncertainty on the OF prediction
632 > %%as shown in
633 > %(Table \ref{fig:kvmettable}).
634 > %The contribution to the total OF prediction systematic uncertainty
635 > %from K is assessed from the ratio of K in data and MC,
636 > %shown in Fig.~\ref{fig:kvmet} (right).
637 > %The ratio is consistent with unity to roughly 17\%,
638 > %so we take this value as the systematic from K.
639 > %17\% added in quadrature with 7\% from
640 > %the electron to muon efficieny ratio
641 > %(as assessed in the inclusive analysis)
642 > %yields a total systematic of $\sim$18\%
643 > %which we round up to 20\%.
644 > %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
645 > %so we take a systematic based on the statistical uncertainty
646 > %of the MC prediction for K.
647 > %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
648 > %%Although we cannot check the value of K in data for \MET\ $>$ 150
649 > %%because we find no OF events inside the Z mass window for this \MET\
650 > %%cut, the overall OF yields with no dilepton mass requirement
651 > %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
652 > %
653 > %
654 > %%Below Old
655 > %
656 > %%In reevaluating the systematics on the OF prediction, however,
657 > %%we observed a different behavior of K as a function of \MET\
658 > %%as was seen in the inclusive analysis.
659 > %
660 > %%Recall that K is the ratio of the number of \emu\ events
661 > %%inside the Z window to the total number of \emu\ events.
662 > %%In the inclusive analysis, it is taken from \ttbar\ MC
663 > %%and used to scale the inclusive \emu\ yield in data.
664 > %%The yield scaled by K is then corrected for
665 > %%the $e$ vs $\mu$ efficiency difference to obtain the
666 > %%final OF prediction.
667 > %
668 > %%Based on the plot in figure \ref{fig:kvmet},
669 > %%we choose to use a different
670 > %%K for each \MET\ cut and assess a systematic uncertainty
671 > %%on the OF prediction based on the difference between
672 > %%K in data and MC.
673 > %%The variation of K as a function of \MET\ is caused
674 > %%by a change in sample composition with increasing \MET.
675 > %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
676 > %%not negligible (as it was in the inclusive analysis)
677 > %%because of the b veto. (See appendix \ref{app:kinemu}.)
678 > %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
679 > %
680 > %
681 > %
682 > %
683 > %\begin{figure}[hbt]
684 > %  \begin{center}
685 > %       \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
686 > %       \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
687 > %       \caption{
688 > %         \label{fig:kvmet}\protect
689 > %         The left plot shows
690 > %         K as a function of \MET\ in MC (red) and data (black).
691 > %         The bin low edge corresponds to the \MET\ cut, and the
692 > %         bins are inclusive.
693 > %         The MC used is a sum of all SM MC used in the yield table of
694 > %         section \ref{sec:yields}.
695 > %         The right plot is the ratio of K in data to MC.
696 > %         The ratio is fit to a line whose slope is consistent with zero
697 > %         (the fit parameters are
698 > %         0.9 $\pm$  0.4 for the intercept and
699 > %      0.001 $\pm$ 0.005 for the slope).
700 > %       }
701 > %  \end{center}
702 > %\end{figure}
703 > %
704 > %
705 > %
706 > %\begin{table}[htb]
707 > %\begin{center}
708 > %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
709 > %The uncertainties shown are the total relative systematic used for the OF prediction,
710 > %which is the systematic uncertainty from K added in quadrature with
711 > %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
712 > %inclusive analysis.
713 > %}
714 > %\begin{tabular}{lcc}
715 > %\hline
716 > %\MET\ Cut    &    K        &  Relative Systematic \\
717 > %\hline
718 > %%the met zero row is used only for normalization of the money plot.
719 > %%0    &  0.1   &        \\  
720 > %30   &  0.12  &  20\%  \\  
721 > %60   &  0.13  &  20\%  \\  
722 > %80   &  0.12  &  20\%  \\  
723 > %100  &  0.12  &  20\%  \\  
724 > %150  &  0.09  &  25\%  \\  
725 > %200  &  0.06  &  60\%  \\  
726 > %\hline
727 > %\end{tabular}
728 > %\end{center}
729 > %\end{table}
730 >
731 > \subsection{Uncertainty from the isolated track veto}
732 > This is the uncertainty associated with how well the isolated track
733 > veto performance is modeled by the Monte Carlo.  This uncertainty
734 > only applies to the fraction of dilepton BG events that have
735 > a second e/$\mu$ or a one prong $\tau \to h$, with
736 > $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
737 > Table~\ref{tab:trueisotrk}.
738 > The uncertainty for these events
739 > is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
740 >
741 > \begin{table}[!h]
742   \begin{center}
743 < \caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
744 < The uncertainties shown are the total relative systematic used for the OF prediction,
745 < which is the systematic uncertainty from K added in quadrature with
746 < a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
747 < inclusive analysis.
748 < }
749 < \begin{tabular}{lcc}
750 < \hline
751 < \MET\ Cut    &    K        &  Relative Systematic \\
752 < \hline
753 < %the met zero row is used only for normalization of the money plot.
754 < %0    &  0.1   &        \\  
755 < 30   &  0.12  &  20\%  \\  
756 < 60   &  0.13  &  20\%  \\  
757 < 80   &  0.12  &  20\%  \\  
758 < 100  &  0.12  &  20\%  \\  
759 < 150  &  0.09  &  25\%  \\  
760 < 200  &  0.06  &  60\%  \\  
743 > {\footnotesize
744 > \begin{tabular}{l||c|c|c|c|c|c|c}
745 > \hline
746 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
747 > \hline
748 > \hline
749 > $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
750 > \hline
751 > \hline
752 > e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
753 > \hline
754 > \end{tabular}}
755 > \caption{ Fraction of \ttdl\ events with a true isolated track.
756 > \label{tab:trueisotrk}}
757 > \end{center}
758 > \end{table}
759 >
760 > \subsubsection{Isolated Track Veto: Tag and Probe Studies}
761 > \label{sec:trkveto}
762 >
763 >
764 > In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
765 > with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
766 > to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
767 > we would need to apply a data-to-MC scale factor in order to correctly
768 > predict the \ttll\ background.
769 >
770 > This study
771 > addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
772 > second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
773 > in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
774 > procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
775 >
776 > Furthermore, we test the data and MC
777 > isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
778 > directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
779 > may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
780 > or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
781 > the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
782 > consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
783 > $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
784 > decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
785 > Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
786 > As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
787 > leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
788 > due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
789 >
790 > The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
791 > All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
792 > We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
793 > this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
794 > not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
795 > fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
796 > \met\ $<$ 30 GeV and 0 b-tagged events.
797 > The specific criteria for tags and probes for electrons and muons are:
798 >
799 > %We study the isolated track veto efficiency in bins of \njets.
800 > %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
801 > %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
802 >
803 >
804 > \begin{itemize}
805 >  \item{Electrons}
806 >
807 >    \begin{itemize}
808 >    \item{Tag criteria}
809 >
810 >      \begin{itemize}
811 >      \item Electron passes full analysis ID/iso selection
812 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
813 >      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
814 >      \end{itemize}
815 >
816 >    \item{Probe criteria}
817 >      \begin{itemize}
818 >      \item Electron passes full analysis ID selection
819 >      \item \pt\ $>$ 30 GeV
820 >      \end{itemize}
821 >      \end{itemize}
822 >  \item{Muons}
823 >    \begin{itemize}
824 >    \item{Tag criteria}
825 >      \begin{itemize}
826 >      \item Muon passes full analysis ID/iso selection
827 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
828 >      \item Matched to 1 of the 2 single muon triggers
829 >        \begin{itemize}
830 >        \item \verb=HLT_IsoMu30_v*=
831 >        \item \verb=HLT_IsoMu30_eta2p1_v*=
832 >        \end{itemize}
833 >      \end{itemize}
834 >    \item{Probe criteria}
835 >      \begin{itemize}
836 >      \item Muon passes full analysis ID selection
837 >      \item \pt\ $>$ 30 GeV
838 >      \end{itemize}
839 >    \end{itemize}
840 > \end{itemize}
841 >
842 > The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
843 > good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
844 > absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
845 > In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
846 > efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
847 > For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
848 > a data vs. MC discrepancy in the isolated track veto efficiency.
849 >
850 >
851 > %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
852 > %This requirement is chosen because most of the tracks rejected by the isolated
853 > %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
854 >
855 > \begin{figure}[hbt]
856 >  \begin{center}
857 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
858 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
859 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
860 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
861 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
862 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
863 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
864 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
865 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
866 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
867 >        \caption{
868 >          \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
869 > for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
870 > }  
871 >      \end{center}
872 > \end{figure}
873 >
874 > \clearpage
875 >
876 > \begin{table}[!ht]
877 > \begin{center}
878 > \begin{tabular}{l|c|c|c|c|c}
879 >
880 > %Electrons:
881 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
882 > %Total MC yields        : 2497277
883 > %Total DATA yields      : 2649453
884 > %Muons:
885 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
886 > %Total MC yields        : 3749863
887 > %Total DATA yields      : 4210022
888 > %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
889 > %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
890 >
891 > \hline
892 > \hline
893 > e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
894 > \hline
895 >      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
896 >        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
897 >   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
898 >
899 > \hline
900 > \hline
901 > $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
902 > \hline
903 >      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
904 >        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
905 >   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
906 >
907 > \hline
908 > \hline
909 > e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
910   \hline
911 +      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
912 +        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
913 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
914 +
915 + \hline
916 + \hline
917 + $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
918 + \hline
919 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
920 +        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
921 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
922 +
923 + \hline
924 + \hline
925 + e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
926 + \hline
927 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
928 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
929 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
930 +
931 + \hline
932 + \hline
933 + $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
934 + \hline
935 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
936 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
937 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
938 +
939 + \hline
940 + \hline
941 + e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
942 + \hline
943 +      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
944 +        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
945 +   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
946 +
947 + \hline
948 + \hline
949 + $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
950 + \hline
951 +      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
952 +        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
953 +   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
954 +
955 + \hline
956 + \hline
957 + e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
958 + \hline
959 +      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
960 +        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
961 +   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
962 +
963 + \hline
964 + \hline
965 + $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
966 + \hline
967 +      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
968 +        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
969 +   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
970 +
971 + \hline
972 + \hline
973 +
974   \end{tabular}
975 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
976 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
977 + jet multiplicity requirements.}
978   \end{center}
979   \end{table}
980 +
981 + \clearpage
982 + \subsection{Summary of uncertainties}
983 + \label{sec:bgunc-bottomline}
984 +
985 + The contribution from each source to the total uncertainty on the background yield is given in Tables~\ref{tab:relativeuncertaintycomponents} and~\ref{tab:uncertaintycomponents} for the relative and absolute uncertainties, respectively. In the low-\met\ regions the dominant uncertainty comes from the top tail-to-peak ratio, $R_{top}$ (Section~\ref{sec:ttp}), while in the high-\met\ regions the \ttll\ systematic uncertainty dominates (Section~\ref{sec:ttdilbkgunc}).
986 +
987 + \input{uncertainties_table.tex}
988 +
989 +
990 +
991 +
992 +
993 + %Figure.~\ref{fig:reliso} compares the relative track isolation
994 + %for events with a track with $\pt > 10~\GeV$ in addition to a selected
995 + %muon for $\Z+4$ jet events and various \ttll\ components. The
996 + %isolation distributions show significant differences, particularly
997 + %between the leptons from a \W\ or \Z\ decay and the tracks arising
998 + %from $\tau$ decays. As can also be seen in the figure, the \pt\
999 + %distribution for the various categories of tracks is different, where
1000 + %the decay products from $\tau$s are significantly softer. Since the
1001 + %\pt\ enters the denominator of the isolation definition and hence
1002 + %alters the isolation variable...
1003 +
1004 + %\begin{figure}[hbt]
1005 + %  \begin{center}
1006 + %       \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
1007 + %       \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
1008 + %       \caption{
1009 + %         \label{fig:reliso}%\protect
1010 + %          Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
1011 + %          Z+Jets and ttbar dilepton have similar isolation distributions
1012 + %          ttbar with leptonic and single prong taus tend to be less
1013 + %          isolated. The difference in the isolation can be attributed
1014 + %          to the different \pt\ distribution of the samples, since
1015 + %          $\tau$ decay products tend to be softer than leptons arising
1016 + %          from \W\ or \Z\ decays.}  
1017 + %      \end{center}
1018 + %\end{figure}
1019 +
1020 + %       \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
1021 +
1022 +
1023 + %BEGIN SECTION TO WRITE OUT
1024 + %In detail, the procedure to correct the dilepton background is:
1025 +
1026 + %\begin{itemize}
1027 + %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
1028 + %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
1029 + %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
1030 + %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
1031 + %the lepton \pt {\bf TODO: verify this in data and MC.}.
1032 + %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
1033 + %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
1034 + %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
1035 + %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
1036 + %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
1037 + %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
1038 + %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
1039 + %\end{itemize}
1040 + %END SECTION TO WRITE OUT
1041 +
1042 +
1043 + %{\bf fix me: What you have written in the next paragraph does not
1044 + %explain how $\epsilon_{fake}$ is measured.
1045 + %Why not measure $\epsilon_{fake}$ in the b-veto region?}
1046 +
1047 + %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
1048 + %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
1049 + %applying an additional scale factor for the single lepton background
1050 + %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
1051 + %veto and after subtracting the \ttll\ component, corrected for the
1052 + %isolation efficiency derived previously.
1053 + %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
1054 + %isolated track in single lepton events is independent of \mt\, so the use of
1055 + %an overall scale factor is justified to estimate the contribution in
1056 + %the \mt\ tail.
1057 + %
1058 + %\begin{figure}[hbt]
1059 + %  \begin{center}
1060 + %       \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
1061 + %       \caption{
1062 + %         \label{fig:vetoeffcomp}%\protect
1063 + %          Efficiency for selecting an isolated track comparing
1064 + %          single lepton \ttlj\ and dilepton \ttll\ events in MC and
1065 + %          data as a function of \mt. The
1066 + %          efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
1067 + %          \mt\, while the data ranges between the two. This behavior
1068 + %          is expected since the low \mt\ region is predominantly \ttlj, while the
1069 + %          high \mt\ region contains mostly \ttll\ events.}  
1070 + %      \end{center}
1071 + %\end{figure}
1072 +
1073 +
1074 +
1075 + % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines