1 |
|
%\section{Systematics Uncertainties on the Background Prediction} |
2 |
|
%\label{sec:systematics} |
3 |
|
|
4 |
+ |
In this Section we discuss the systematic uncertainty on the BG |
5 |
+ |
prediction. This prediction is assembled from the event |
6 |
+ |
counts in the peak region of the transverse mass distribution as |
7 |
+ |
well as Monte Carlo |
8 |
+ |
with a number of correction factors, as described previously. |
9 |
+ |
The |
10 |
+ |
final uncertainty on the prediction is built up from the uncertainties in these |
11 |
+ |
individual |
12 |
+ |
components. |
13 |
+ |
The calculation is done for each signal |
14 |
+ |
region, |
15 |
+ |
for electrons and muons separately. |
16 |
+ |
|
17 |
+ |
The choice to normalizing to the peak region of $M_T$ has the |
18 |
+ |
advantage that some uncertainties, e.g., luminosity, cancel. |
19 |
+ |
It does however introduce complications because it couples |
20 |
+ |
some of the uncertainties in non-trivial ways. For example, |
21 |
+ |
the primary effect of an uncertainty on the rare MC cross-section |
22 |
+ |
is to introduce an uncertainty in the rare MC background estimate |
23 |
+ |
which comes entirely from MC. But this uncertainty also affects, |
24 |
+ |
for example, |
25 |
+ |
the $t\bar{t} \to$ dilepton BG estimate because it changes the |
26 |
+ |
$t\bar{t}$ normalization to the peak region (because some of the |
27 |
+ |
events in the peak region are from rare processes). These effects |
28 |
+ |
are carefully accounted for. The contribution to the overall |
29 |
+ |
uncertainty from each BG source is tabulated in |
30 |
+ |
Section~\ref{sec:bgunc-bottomline}. |
31 |
+ |
First, however, we discuss the uncertainties one-by-one and we comment |
32 |
+ |
on their impact on the overall result, at least to first order. |
33 |
+ |
Second order effects, such as the one described, are also included. |
34 |
+ |
|
35 |
+ |
\subsection{Statistical uncertainties on the event counts in the $M_T$ |
36 |
+ |
peak regions} |
37 |
+ |
These vary between 2\% and 20\%, depending on the signal region |
38 |
+ |
(different |
39 |
+ |
signal regions have different \met\ requirements, thus they also have |
40 |
+ |
different $M_T$ regions used as control. |
41 |
+ |
Since |
42 |
+ |
the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this |
43 |
+ |
fractional uncertainty is pretty much carried through all the way to |
44 |
+ |
the end. There is also an uncertainty from the finite MC event counts |
45 |
+ |
in the $M_T$ peak regions. This is also included, but it is smaller. |
46 |
+ |
|
47 |
+ |
Normalizing to the $M_T$ peak has the distinct advantages that |
48 |
+ |
uncertainties on luminosity, cross-sections, trigger efficiency, |
49 |
+ |
lepton ID, cancel out. |
50 |
+ |
For the low statistics regions with high \met requirements, the |
51 |
+ |
price to pay in terms of event count statistical uncertainties starts |
52 |
+ |
to become significant. In the future we may consider a different |
53 |
+ |
normalization startegy in the low statistics regions. |
54 |
+ |
|
55 |
+ |
\subsection{Uncertainty from the choice of $M_T$ peak region} |
56 |
+ |
|
57 |
+ |
This choice affects the scale factors of Table~\ref{tab:mtpeaksf}. |
58 |
+ |
If the $M_T$ peak region is not well modelled, this would introduce an |
59 |
+ |
uncertainty. |
60 |
+ |
|
61 |
+ |
We have tested this possibility by recalculating the post veto scale factors for a different |
62 |
+ |
choice |
63 |
+ |
of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default |
64 |
+ |
$50 < M_T < 80$ GeV. This is shown in Table~\ref{tab:mtpeaksf2}. |
65 |
+ |
The two results for the scale factors are very compatible. |
66 |
+ |
We do not take any systematic uncertainty for this possible effect. |
67 |
+ |
|
68 |
+ |
\begin{table}[!h] |
69 |
+ |
\begin{center} |
70 |
+ |
{\footnotesize |
71 |
+ |
\begin{tabular}{l||c|c|c|c|c|c|c} |
72 |
+ |
\hline |
73 |
+ |
Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\ |
74 |
+ |
\hline |
75 |
+ |
\hline |
76 |
+ |
\multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\ |
77 |
+ |
\hline |
78 |
+ |
$\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\ |
79 |
+ |
$\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\ |
80 |
+ |
\hline |
81 |
+ |
$\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\ |
82 |
+ |
\hline |
83 |
+ |
\hline |
84 |
+ |
e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\ |
85 |
+ |
e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\ |
86 |
+ |
\hline |
87 |
+ |
e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\ |
88 |
+ |
\hline |
89 |
+ |
\hline |
90 |
+ |
\multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\ |
91 |
+ |
\hline |
92 |
+ |
$\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\ |
93 |
+ |
$\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\ |
94 |
+ |
\hline |
95 |
+ |
$\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\ |
96 |
+ |
\hline |
97 |
+ |
\hline |
98 |
+ |
e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\ |
99 |
+ |
e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\ |
100 |
+ |
\hline |
101 |
+ |
e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\ |
102 |
+ |
\hline |
103 |
+ |
\end{tabular}} |
104 |
+ |
\caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the |
105 |
+ |
\ttdl\ sample, while the post-veto SFs are applied to the single |
106 |
+ |
lepton samples. The veto SF is shown for comparison across channels. |
107 |
+ |
The raw MC is used for backgrounds from rare processes. |
108 |
+ |
The uncertainties are statistical only. |
109 |
+ |
\label{tab:mtpeaksf2}} |
110 |
+ |
\end{center} |
111 |
+ |
\end{table} |
112 |
+ |
|
113 |
+ |
|
114 |
+ |
\subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections} |
115 |
+ |
These are taken as 50\%, uncorrelated. |
116 |
+ |
The primary effect is to introduce a 50\% |
117 |
+ |
uncertainty |
118 |
+ |
on the $W +$ jets and rare BG |
119 |
+ |
background predictions, respectively. However they also |
120 |
+ |
have an effect on the other BGs via the $M_T$ peak normalization |
121 |
+ |
in a way that tends to reduce the uncertainty. This is easy |
122 |
+ |
to understand: if the $W$ cross-section is increased by 50\%, then |
123 |
+ |
the $W$ background goes up. But the number of $M_T$ peak events |
124 |
+ |
attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is |
125 |
+ |
scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$ |
126 |
+ |
BG goes down. |
127 |
+ |
|
128 |
+ |
\subsection{Scale factors for the tail-to-peak ratios for lepton + |
129 |
+ |
jets top and W events} |
130 |
+ |
These tail-to-peak ratios are described in Section~\ref{sec:ttp}. |
131 |
+ |
They are studied in CR1 and CR2. The studies are described |
132 |
+ |
in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where |
133 |
+ |
we also give the uncertainty on the scale factors. See |
134 |
+ |
Tables~\ref{tab:cr1yields} |
135 |
+ |
and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top})$. |
136 |
+ |
|
137 |
+ |
\subsection{Uncertainty on extra jet radiation for dilepton |
138 |
+ |
background} |
139 |
+ |
As discussed in Section~\ref{sec:jetmultiplicity}, the |
140 |
+ |
jet distribution in |
141 |
+ |
$t\bar{t} \to$ |
142 |
+ |
dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make |
143 |
+ |
it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$ |
144 |
+ |
comes from data/MC statistics. This |
145 |
+ |
result directly in a 3\% uncertainty on the dilepton BG, which is by far |
146 |
+ |
the most important one. |
147 |
+ |
|
148 |
+ |
|
149 |
|
\subsection{Uncertainty on the \ttll\ Acceptance} |
150 |
|
|
151 |
+ |
[CLAUDIO: WE NEED TO DISCUSS THIS A LITTLE MORE -- THEN I CAN PUT THE |
152 |
+ |
WORDS IN] |
153 |
+ |
|
154 |
|
The \ttbar\ background prediction is obtained from MC, with corrections |
155 |
|
derived from control samples in data. The uncertainty associated with |
156 |
|
the theoretical modeling of the \ttbar\ production and decay is |
174 |
|
value for the scale used is $Q^2 = m_{\mathrm{top}}^2 + |
175 |
|
\sum_{\mathrm{jets}} \pt^2$. |
176 |
|
\item Alternative generators: Samples produced with different |
177 |
< |
generators include MC@NLO and Powheg (NLO generators) and |
30 |
< |
Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the |
31 |
< |
hadronisation, while POWHEG uses Pythia6. |
177 |
> |
generators, Powheg (our default) and Madgraph. |
178 |
|
\item Modeling of taus: The alternative sample does not include |
179 |
< |
Tauola and is otherwise identical to the Powheg sample. |
179 |
> |
Tauola and is otherwise identical to the Powheg sample. |
180 |
> |
This effect was studied earlier using 7~TeV samples and found to be negligible. |
181 |
|
\item The PDF uncertainty is estimated following the PDF4LHC |
182 |
|
recommendations[CITE]. The events are reweighted using alternative |
183 |
|
PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the |
185 |
|
addition, the NNPDF2.1 set with 100 replicas. The central value is |
186 |
|
determined from the mean and the uncertainty is derived from the |
187 |
|
$1\sigma$ range. The overall uncertainty is derived from the envelope of the |
188 |
< |
alternative predictions and their uncertainties. |
189 |
< |
\end{itemize} |
188 |
> |
alternative predictions and their uncertainties. |
189 |
> |
This effect was studied earlier using 7~TeV samples and found to be negligible. |
190 |
> |
\end{itemize} |
191 |
> |
|
192 |
> |
|
193 |
> |
\begin{table}[!h] |
194 |
> |
\begin{center} |
195 |
> |
{\footnotesize |
196 |
> |
\begin{tabular}{l||c||c|c|c|c|c|c|c} |
197 |
> |
\hline |
198 |
> |
Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down & |
199 |
> |
Match Up & Match Down \\ |
200 |
> |
\hline |
201 |
> |
\hline |
202 |
> |
SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\ |
203 |
> |
\hline |
204 |
> |
SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\ |
205 |
> |
\hline |
206 |
> |
SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\ |
207 |
> |
\hline |
208 |
> |
SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\ |
209 |
> |
\hline |
210 |
> |
SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\ |
211 |
> |
\hline |
212 |
> |
\end{tabular}} |
213 |
> |
\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only. |
214 |
> |
\label{tab:ttdlalt}} |
215 |
> |
\end{center} |
216 |
> |
\end{table} |
217 |
> |
|
218 |
> |
|
219 |
> |
\begin{table}[!h] |
220 |
> |
\begin{center} |
221 |
> |
{\footnotesize |
222 |
> |
\begin{tabular}{l||c|c|c|c|c|c|c} |
223 |
> |
\hline |
224 |
> |
$\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down & |
225 |
> |
Match Up & Match Down \\ |
226 |
> |
\hline |
227 |
> |
\hline |
228 |
> |
SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\ |
229 |
> |
\hline |
230 |
> |
SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\ |
231 |
> |
\hline |
232 |
> |
SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\ |
233 |
> |
\hline |
234 |
> |
SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\ |
235 |
> |
\hline |
236 |
> |
SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\ |
237 |
> |
\hline |
238 |
> |
\end{tabular}} |
239 |
> |
\caption{ Relative difference in \ttdl\ predictions for alternative MC samples. |
240 |
> |
\label{tab:fracdiff}} |
241 |
> |
\end{center} |
242 |
> |
\end{table} |
243 |
> |
|
244 |
> |
|
245 |
> |
\begin{table}[!h] |
246 |
> |
\begin{center} |
247 |
> |
{\footnotesize |
248 |
> |
\begin{tabular}{l||c|c|c|c|c|c|c} |
249 |
> |
\hline |
250 |
> |
$N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down & |
251 |
> |
Match Up & Match Down \\ |
252 |
> |
\hline |
253 |
> |
\hline |
254 |
> |
SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\ |
255 |
> |
\hline |
256 |
> |
SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\ |
257 |
> |
\hline |
258 |
> |
SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\ |
259 |
> |
\hline |
260 |
> |
SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\ |
261 |
> |
\hline |
262 |
> |
SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\ |
263 |
> |
\hline |
264 |
> |
\end{tabular}} |
265 |
> |
\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples. |
266 |
> |
\label{tab:nsig}} |
267 |
> |
\end{center} |
268 |
> |
\end{table} |
269 |
> |
|
270 |
> |
|
271 |
> |
\begin{table}[!h] |
272 |
> |
\begin{center} |
273 |
> |
\begin{tabular}{l||c|c|c|c} |
274 |
> |
\hline |
275 |
> |
Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale |
276 |
> |
& $\Delta$ Match \\ |
277 |
> |
\hline |
278 |
> |
\hline |
279 |
> |
SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\ |
280 |
> |
\hline |
281 |
> |
SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\ |
282 |
> |
\hline |
283 |
> |
SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\ |
284 |
> |
\hline |
285 |
> |
SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\ |
286 |
> |
\hline |
287 |
> |
SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\ |
288 |
> |
\hline |
289 |
> |
\end{tabular} |
290 |
> |
\caption{ Av. difference in \ttdl\ events for alternative sample pairs. |
291 |
> |
\label{tab:devt}} |
292 |
> |
\end{center} |
293 |
> |
\end{table} |
294 |
|
|
295 |
|
|
296 |
|
\begin{figure}[hbt] |
297 |
|
\begin{center} |
298 |
< |
\includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png} |
298 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}% |
299 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf} |
300 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}% |
301 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf} |
302 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf} |
303 |
|
\caption{ |
304 |
< |
\label{fig:ttllsyst}%\protect |
305 |
< |
Central Prediction |
306 |
< |
Band: |
307 |
< |
- total stat. error for all Data and MC samples |
308 |
< |
- N jets scaling uncertainty (ISR/FSR) |
309 |
< |
Alternative Sample Predictions |
310 |
< |
Error bars: uncorrelated stat. error from alternative ttbar sample only} |
304 |
> |
\label{fig:ttllsyst}\protect |
305 |
> |
Comparison of the \ttll\ central prediction with those using |
306 |
> |
alternative MC samples. The blue band corresponds to the |
307 |
> |
total statistical error for all data and MC samples. The |
308 |
> |
alternative sample predictions are indicated by the |
309 |
> |
datapoints. The uncertainties on the alternative predictions |
310 |
> |
correspond to the uncorrelated statistical uncertainty from |
311 |
> |
the size of the alternative sample only. |
312 |
> |
[TO BE UPDATED WITH THE LATEST SELECTION AND SFS]} |
313 |
|
\end{center} |
314 |
|
\end{figure} |
315 |
|
|
316 |
< |
|
316 |
> |
\clearpage |
317 |
|
|
318 |
|
% |
319 |
|
% |
448 |
|
%\end{tabular} |
449 |
|
%\end{center} |
450 |
|
%\end{table} |
451 |
+ |
|
452 |
+ |
\subsection{Uncertainty from the isolated track veto} |
453 |
+ |
This is the uncertainty associated with how well the isolated track |
454 |
+ |
veto performance is modeled by the Monte Carlo. This uncertainty |
455 |
+ |
only applies to the fraction of dilepton BG events that have |
456 |
+ |
a second e/$\mu$ or a one prong $\tau \to h$, with |
457 |
+ |
$P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see |
458 |
+ |
Table~\ref{tab:trueisotrk}. |
459 |
+ |
The uncertainty for these events |
460 |
+ |
is 6\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto} |
461 |
+ |
|
462 |
+ |
\begin{table}[!h] |
463 |
+ |
\begin{center} |
464 |
+ |
{\footnotesize |
465 |
+ |
\begin{tabular}{l||c|c|c|c|c|c|c} |
466 |
+ |
\hline |
467 |
+ |
Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\ |
468 |
+ |
\hline |
469 |
+ |
\hline |
470 |
+ |
$\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\ |
471 |
+ |
\hline |
472 |
+ |
\hline |
473 |
+ |
e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\ |
474 |
+ |
\hline |
475 |
+ |
\end{tabular}} |
476 |
+ |
\caption{ Fraction of \ttdl\ events with a true isolated track. |
477 |
+ |
\label{tab:trueisotrk}} |
478 |
+ |
\end{center} |
479 |
+ |
\end{table} |
480 |
+ |
|
481 |
+ |
\subsubsection{Isolated Track Veto: Tag and Probe Studies} |
482 |
+ |
\label{sec:trkveto} |
483 |
+ |
|
484 |
+ |
|
485 |
+ |
In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies |
486 |
+ |
with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency |
487 |
+ |
to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case |
488 |
+ |
we would need to apply a data-to-MC scale factor in order to correctly |
489 |
+ |
predict the \ttll\ background. |
490 |
+ |
|
491 |
+ |
This study |
492 |
+ |
addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a |
493 |
+ |
second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies |
494 |
+ |
in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization |
495 |
+ |
procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto. |
496 |
+ |
|
497 |
+ |
Furthermore, we test the data and MC |
498 |
+ |
isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not |
499 |
+ |
directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products |
500 |
+ |
may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one |
501 |
+ |
or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso}, |
502 |
+ |
the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are |
503 |
+ |
consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with |
504 |
+ |
$\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$ |
505 |
+ |
decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only. |
506 |
+ |
Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed. |
507 |
+ |
As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%, |
508 |
+ |
leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background |
509 |
+ |
due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible. |
510 |
+ |
|
511 |
+ |
The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample. |
512 |
+ |
All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV. |
513 |
+ |
We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to |
514 |
+ |
this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do |
515 |
+ |
not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress |
516 |
+ |
fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require |
517 |
+ |
\met\ $<$ 30 GeV and 0 b-tagged events. |
518 |
+ |
The specific criteria for tags and probes for electrons and muons are: |
519 |
+ |
|
520 |
+ |
%We study the isolated track veto efficiency in bins of \njets. |
521 |
+ |
%We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since |
522 |
+ |
%there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with |
523 |
+ |
|
524 |
+ |
|
525 |
+ |
\begin{itemize} |
526 |
+ |
\item{Electrons} |
527 |
+ |
|
528 |
+ |
\begin{itemize} |
529 |
+ |
\item{Tag criteria} |
530 |
+ |
|
531 |
+ |
\begin{itemize} |
532 |
+ |
\item Electron passes full analysis ID/iso selection |
533 |
+ |
\item \pt\ $>$ 30 GeV, $|\eta|<2.1$ |
534 |
+ |
\item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*= |
535 |
+ |
\end{itemize} |
536 |
+ |
|
537 |
+ |
\item{Probe criteria} |
538 |
+ |
\begin{itemize} |
539 |
+ |
\item Electron passes full analysis ID selection |
540 |
+ |
\item \pt\ $>$ 30 GeV |
541 |
+ |
\end{itemize} |
542 |
+ |
\end{itemize} |
543 |
+ |
\item{Muons} |
544 |
+ |
\begin{itemize} |
545 |
+ |
\item{Tag criteria} |
546 |
+ |
\begin{itemize} |
547 |
+ |
\item Muon passes full analysis ID/iso selection |
548 |
+ |
\item \pt\ $>$ 30 GeV, $|\eta|<2.1$ |
549 |
+ |
\item Matched to 1 of the 2 single muon triggers |
550 |
+ |
\begin{itemize} |
551 |
+ |
\item \verb=HLT_IsoMu30_v*= |
552 |
+ |
\item \verb=HLT_IsoMu30_eta2p1_v*= |
553 |
+ |
\end{itemize} |
554 |
+ |
\end{itemize} |
555 |
+ |
\item{Probe criteria} |
556 |
+ |
\begin{itemize} |
557 |
+ |
\item Muon passes full analysis ID selection |
558 |
+ |
\item \pt\ $>$ 30 GeV |
559 |
+ |
\end{itemize} |
560 |
+ |
\end{itemize} |
561 |
+ |
\end{itemize} |
562 |
+ |
|
563 |
+ |
The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe |
564 |
+ |
good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy |
565 |
+ |
absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}. |
566 |
+ |
In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC |
567 |
+ |
efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency. |
568 |
+ |
For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for |
569 |
+ |
a data vs. MC discrepancy in the isolated track veto efficiency. |
570 |
+ |
|
571 |
+ |
|
572 |
+ |
%This is because our analysis requirement is relative track isolation $<$ 0.1, and m |
573 |
+ |
%This requirement is chosen because most of the tracks rejected by the isolated |
574 |
+ |
%track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV. |
575 |
+ |
|
576 |
+ |
\begin{figure}[hbt] |
577 |
+ |
\begin{center} |
578 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}% |
579 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf} |
580 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}% |
581 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf} |
582 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}% |
583 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf} |
584 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}% |
585 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf} |
586 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}% |
587 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf} |
588 |
+ |
\caption{ |
589 |
+ |
\label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right) |
590 |
+ |
for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4. |
591 |
+ |
} |
592 |
+ |
\end{center} |
593 |
+ |
\end{figure} |
594 |
+ |
|
595 |
+ |
\clearpage |
596 |
+ |
|
597 |
+ |
\begin{table}[!ht] |
598 |
+ |
\begin{center} |
599 |
+ |
\caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements |
600 |
+ |
on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various |
601 |
+ |
jet multiplicity requirements.} |
602 |
+ |
\begin{tabular}{l|c|c|c|c|c} |
603 |
+ |
|
604 |
+ |
%Electrons: |
605 |
+ |
%Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05) |
606 |
+ |
%Total MC yields : 2497277 |
607 |
+ |
%Total DATA yields : 2649453 |
608 |
+ |
%Muons: |
609 |
+ |
%Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05) |
610 |
+ |
%Total MC yields : 3749863 |
611 |
+ |
%Total DATA yields : 4210022 |
612 |
+ |
%Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1 |
613 |
+ |
%Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created |
614 |
+ |
|
615 |
+ |
\hline |
616 |
+ |
\hline |
617 |
+ |
e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
618 |
+ |
\hline |
619 |
+ |
data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\ |
620 |
+ |
mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\ |
621 |
+ |
data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\ |
622 |
+ |
|
623 |
+ |
\hline |
624 |
+ |
\hline |
625 |
+ |
$\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
626 |
+ |
\hline |
627 |
+ |
data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\ |
628 |
+ |
mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\ |
629 |
+ |
data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\ |
630 |
+ |
|
631 |
+ |
\hline |
632 |
+ |
\hline |
633 |
+ |
e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
634 |
+ |
\hline |
635 |
+ |
data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\ |
636 |
+ |
mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\ |
637 |
+ |
data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\ |
638 |
+ |
|
639 |
+ |
\hline |
640 |
+ |
\hline |
641 |
+ |
$\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
642 |
+ |
\hline |
643 |
+ |
data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\ |
644 |
+ |
mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\ |
645 |
+ |
data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\ |
646 |
+ |
|
647 |
+ |
\hline |
648 |
+ |
\hline |
649 |
+ |
e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
650 |
+ |
\hline |
651 |
+ |
data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\ |
652 |
+ |
mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\ |
653 |
+ |
data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\ |
654 |
+ |
|
655 |
+ |
\hline |
656 |
+ |
\hline |
657 |
+ |
$\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
658 |
+ |
\hline |
659 |
+ |
data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\ |
660 |
+ |
mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\ |
661 |
+ |
data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\ |
662 |
+ |
|
663 |
+ |
\hline |
664 |
+ |
\hline |
665 |
+ |
e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
666 |
+ |
\hline |
667 |
+ |
data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\ |
668 |
+ |
mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\ |
669 |
+ |
data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\ |
670 |
+ |
|
671 |
+ |
\hline |
672 |
+ |
\hline |
673 |
+ |
$\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
674 |
+ |
\hline |
675 |
+ |
data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\ |
676 |
+ |
mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\ |
677 |
+ |
data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\ |
678 |
+ |
|
679 |
+ |
\hline |
680 |
+ |
\hline |
681 |
+ |
e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
682 |
+ |
\hline |
683 |
+ |
data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\ |
684 |
+ |
mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\ |
685 |
+ |
data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\ |
686 |
+ |
|
687 |
+ |
\hline |
688 |
+ |
\hline |
689 |
+ |
$\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
690 |
+ |
\hline |
691 |
+ |
data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\ |
692 |
+ |
mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\ |
693 |
+ |
data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\ |
694 |
+ |
|
695 |
+ |
\hline |
696 |
+ |
\hline |
697 |
+ |
|
698 |
+ |
\end{tabular} |
699 |
+ |
\end{center} |
700 |
+ |
\end{table} |
701 |
+ |
|
702 |
+ |
|
703 |
+ |
%Figure.~\ref{fig:reliso} compares the relative track isolation |
704 |
+ |
%for events with a track with $\pt > 10~\GeV$ in addition to a selected |
705 |
+ |
%muon for $\Z+4$ jet events and various \ttll\ components. The |
706 |
+ |
%isolation distributions show significant differences, particularly |
707 |
+ |
%between the leptons from a \W\ or \Z\ decay and the tracks arising |
708 |
+ |
%from $\tau$ decays. As can also be seen in the figure, the \pt\ |
709 |
+ |
%distribution for the various categories of tracks is different, where |
710 |
+ |
%the decay products from $\tau$s are significantly softer. Since the |
711 |
+ |
%\pt\ enters the denominator of the isolation definition and hence |
712 |
+ |
%alters the isolation variable... |
713 |
+ |
|
714 |
+ |
%\begin{figure}[hbt] |
715 |
+ |
% \begin{center} |
716 |
+ |
% \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}% |
717 |
+ |
% \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png} |
718 |
+ |
% \caption{ |
719 |
+ |
% \label{fig:reliso}%\protect |
720 |
+ |
% Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar |
721 |
+ |
% Z+Jets and ttbar dilepton have similar isolation distributions |
722 |
+ |
% ttbar with leptonic and single prong taus tend to be less |
723 |
+ |
% isolated. The difference in the isolation can be attributed |
724 |
+ |
% to the different \pt\ distribution of the samples, since |
725 |
+ |
% $\tau$ decay products tend to be softer than leptons arising |
726 |
+ |
% from \W\ or \Z\ decays.} |
727 |
+ |
% \end{center} |
728 |
+ |
%\end{figure} |
729 |
+ |
|
730 |
+ |
% \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png} |
731 |
+ |
|
732 |
+ |
|
733 |
+ |
%BEGIN SECTION TO WRITE OUT |
734 |
+ |
%In detail, the procedure to correct the dilepton background is: |
735 |
+ |
|
736 |
+ |
%\begin{itemize} |
737 |
+ |
%\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons |
738 |
+ |
%and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}. |
739 |
+ |
%\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton. |
740 |
+ |
%This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with |
741 |
+ |
%the lepton \pt {\bf TODO: verify this in data and MC.}. |
742 |
+ |
%\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd |
743 |
+ |
%lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt. |
744 |
+ |
%\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which |
745 |
+ |
%is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event. |
746 |
+ |
%\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic |
747 |
+ |
%tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due |
748 |
+ |
%to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.} |
749 |
+ |
%\end{itemize} |
750 |
+ |
%END SECTION TO WRITE OUT |
751 |
+ |
|
752 |
+ |
|
753 |
+ |
%{\bf fix me: What you have written in the next paragraph does not |
754 |
+ |
%explain how $\epsilon_{fake}$ is measured. |
755 |
+ |
%Why not measure $\epsilon_{fake}$ in the b-veto region?} |
756 |
+ |
|
757 |
+ |
%A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is |
758 |
+ |
%possible to correct for differences in the $\epsilon_{fake}$ between data and MC by |
759 |
+ |
%applying an additional scale factor for the single lepton background |
760 |
+ |
%alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track |
761 |
+ |
%veto and after subtracting the \ttll\ component, corrected for the |
762 |
+ |
%isolation efficiency derived previously. |
763 |
+ |
%As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an |
764 |
+ |
%isolated track in single lepton events is independent of \mt\, so the use of |
765 |
+ |
%an overall scale factor is justified to estimate the contribution in |
766 |
+ |
%the \mt\ tail. |
767 |
+ |
% |
768 |
+ |
%\begin{figure}[hbt] |
769 |
+ |
% \begin{center} |
770 |
+ |
% \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png} |
771 |
+ |
% \caption{ |
772 |
+ |
% \label{fig:vetoeffcomp}%\protect |
773 |
+ |
% Efficiency for selecting an isolated track comparing |
774 |
+ |
% single lepton \ttlj\ and dilepton \ttll\ events in MC and |
775 |
+ |
% data as a function of \mt. The |
776 |
+ |
% efficiencies in \ttlj\ and \ttll\ exhibit no dependence on |
777 |
+ |
% \mt\, while the data ranges between the two. This behavior |
778 |
+ |
% is expected since the low \mt\ region is predominantly \ttlj, while the |
779 |
+ |
% high \mt\ region contains mostly \ttll\ events.} |
780 |
+ |
% \end{center} |
781 |
+ |
%\end{figure} |
782 |
+ |
|
783 |
+ |
\subsection{Summary of uncertainties} |
784 |
+ |
\label{sec:bgunc-bottomline}. |
785 |
+ |
|
786 |
+ |
THIS NEEDS TO BE WRITTEN |