ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.2 by vimartin, Fri Jun 29 02:57:07 2012 UTC vs.
Revision 1.15 by claudioc, Thu Oct 11 07:33:42 2012 UTC

# Line 1 | Line 1
1   %\section{Systematics Uncertainties on the Background Prediction}
2   %\label{sec:systematics}
3  
4 + In this Section we discuss the systematic uncertainty on the BG
5 + prediction.  This prediction is assembled from the event
6 + counts in the peak region of the transverse mass distribution as
7 + well as Monte Carlo
8 + with a number of correction factors, as described previously.
9 + The
10 + final uncertainty on the prediction is built up from the uncertainties in these
11 + individual
12 + components.
13 + The calculation is done for each signal
14 + region,
15 + for electrons and muons separately.
16 +
17 + The choice to normalizing to the peak region of $M_T$ has the
18 + advantage that some uncertainties, e.g., luminosity, cancel.
19 + It does however introduce complications because it couples
20 + some of the uncertainties in non-trivial ways.  For example,
21 + the primary effect of an uncertainty on the rare MC cross-section
22 + is to introduce an uncertainty in the rare MC background estimate
23 + which comes entirely from MC.   But this uncertainty also affects,
24 + for example,
25 + the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 + $t\bar{t}$ normalization to the peak region (because some of the
27 + events in the peak region are from rare processes).  These effects
28 + are carefully accounted for.  The contribution to the overall
29 + uncertainty from each BG source is tabulated in
30 + Section~\ref{sec:bgunc-bottomline}.
31 + First, however, we discuss the uncertainties one-by-one and we comment
32 + on their impact on the overall result, at least to first order.
33 + Second order effects, such as the one described, are also included.
34 +
35 + \subsection{Statistical uncertainties on the event counts in the $M_T$
36 + peak regions}
37 + These vary between 2\% and 20\%, depending on the signal region
38 + (different
39 + signal regions have different \met\ requirements, thus they also have
40 + different $M_T$ regions used as control.
41 + Since
42 + the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
43 + fractional uncertainty is pretty much carried through all the way to
44 + the end.  There is also an uncertainty from the finite MC event counts
45 + in the $M_T$ peak regions.  This is also included, but it is smaller.
46 +
47 + Normalizing to the $M_T$ peak has the distinct advantages that
48 + uncertainties on luminosity, cross-sections, trigger efficiency,
49 + lepton ID, cancel out.
50 + For the low statistics regions with high \met requirements, the
51 + price to pay in terms of event count statistical uncertainties starts
52 + to become significant.  In the future we may consider a different
53 + normalization startegy in the low statistics regions.
54 +
55 + \subsection{Uncertainty from the choice of $M_T$ peak region}
56 +
57 + This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
58 + If the $M_T$ peak region is not well modelled, this would introduce an
59 + uncertainty.
60 +
61 + We have tested this possibility by recalculating the post veto scale factors for a different
62 + choice
63 + of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 + $50 < M_T < 80$ GeV.  This is shown in Table~\ref{tab:mtpeaksf2}.  
65 + The two results for the scale factors are very compatible.
66 + We do not take any systematic uncertainty for this possible effect.
67 +
68 + \begin{table}[!h]
69 + \begin{center}
70 + {\footnotesize
71 + \begin{tabular}{l||c|c|c|c|c|c|c}
72 + \hline
73 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 + \hline
75 + \hline
76 + \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 + \hline
78 + $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 + $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 + \hline
81 + $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 + \hline
83 + \hline
84 + e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 + e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 + \hline
87 + e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 + \hline
89 + \hline
90 + \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 + \hline
92 + $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 + $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 + \hline
95 + $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 + \hline
97 + \hline
98 + e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 + e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 + \hline
101 + e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 + \hline
103 + \end{tabular}}
104 + \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 +  \ttdl\ sample, while the post-veto SFs are applied to the single
106 +  lepton samples. The veto SF is shown for comparison across channels.
107 +  The raw MC is used for backgrounds from rare processes.
108 +  The uncertainties are statistical only.
109 + \label{tab:mtpeaksf2}}
110 + \end{center}
111 + \end{table}
112 +
113 +
114 + \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
115 + These are taken as 50\%, uncorrelated.  
116 + The primary effect is to introduce a 50\%
117 + uncertainty
118 + on the $W +$ jets and rare BG
119 + background predictions, respectively.  However they also
120 + have an effect on the other BGs via the $M_T$ peak normalization
121 + in a way that tends to reduce the uncertainty.  This is easy
122 + to understand: if the $W$ cross-section is increased by 50\%, then
123 + the $W$ background goes up.  But the number of $M_T$ peak events
124 + attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125 + scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126 + BG goes down.  
127 +
128 + \subsection{Scale factors for the tail-to-peak ratios for lepton +
129 +  jets top and W events}
130 + These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
131 + They are studied in CR1 and CR2.  The studies are described
132 + in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
133 + we also give the uncertainty on the scale factors.  See
134 + Tables~\ref{tab:cr1yields}
135 + and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top})$.
136 +
137 + \subsection{Uncertainty on extra jet radiation for dilepton
138 +  background}
139 + As discussed in Section~\ref{sec:jetmultiplicity}, the
140 + jet distribution in
141 + $t\bar{t} \to$
142 + dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
143 + it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
144 + comes from data/MC statistics.  This  
145 + result directly in a 3\% uncertainty on the dilepton BG, which is by far
146 + the most important one.
147 +
148 +
149   \subsection{Uncertainty on the \ttll\ Acceptance}
150  
151 + [CLAUDIO: WE NEED TO DISCUSS THIS A LITTLE MORE -- THEN I CAN PUT THE
152 + WORDS IN]
153 +
154   The \ttbar\ background prediction is obtained from MC, with corrections
155   derived from control samples in data. The uncertainty associated with
156   the theoretical modeling of the \ttbar\ production and decay is
# Line 26 | Line 174 | The variations considered are
174    value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
175    \sum_{\mathrm{jets}} \pt^2$.
176   \item Alternative generators: Samples produced with different
177 <  generators include MC@NLO and Powheg (NLO generators) and
30 <  Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
31 <  hadronisation, while POWHEG uses Pythia6.
177 >  generators, Powheg (our default) and Madgraph.
178   \item Modeling of taus: The alternative sample does not include
179 <  Tauola and is otherwise identical to the Powheg sample.
179 >  Tauola and is otherwise identical to the Powheg sample.
180 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
181   \item The PDF uncertainty is estimated following the PDF4LHC
182    recommendations[CITE]. The events are reweighted using alternative
183    PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
# Line 38 | Line 185 | The variations considered are
185    addition, the NNPDF2.1 set with 100 replicas. The central value is
186    determined from the mean and the uncertainty is derived from the
187    $1\sigma$ range. The overall uncertainty is derived from the envelope of the
188 <  alternative predictions and their uncertainties.
189 < \end{itemize}
188 >  alternative predictions and their uncertainties.
189 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
190 >  \end{itemize}
191 >
192 >
193 > \begin{table}[!h]
194 > \begin{center}
195 > {\footnotesize
196 > \begin{tabular}{l||c||c|c|c|c|c|c|c}
197 > \hline
198 > Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
199 > Match Up & Match Down \\
200 > \hline
201 > \hline
202 > SRA      & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
203 > \hline
204 > SRB      & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
205 > \hline
206 > SRC      & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
207 > \hline
208 > SRD      & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
209 > \hline
210 > SRE      & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
211 > \hline
212 > \end{tabular}}
213 > \caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
214 > \label{tab:ttdlalt}}
215 > \end{center}
216 > \end{table}
217 >
218 >
219 > \begin{table}[!h]
220 > \begin{center}
221 > {\footnotesize
222 > \begin{tabular}{l||c|c|c|c|c|c|c}
223 > \hline
224 > $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
225 > Match Up & Match Down \\
226 > \hline
227 > \hline
228 > SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
229 > \hline
230 > SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
231 > \hline
232 > SRC      & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
233 > \hline
234 > SRD      & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
235 > \hline
236 > SRE      & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
237 > \hline
238 > \end{tabular}}
239 > \caption{ Relative difference in \ttdl\ predictions for alternative MC samples.
240 > \label{tab:fracdiff}}
241 > \end{center}
242 > \end{table}
243 >
244 >
245 > \begin{table}[!h]
246 > \begin{center}
247 > {\footnotesize
248 > \begin{tabular}{l||c|c|c|c|c|c|c}
249 > \hline
250 > $N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
251 > Match Up & Match Down \\
252 > \hline
253 > \hline
254 > SRA      & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
255 > \hline
256 > SRB      & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
257 > \hline
258 > SRC      & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
259 > \hline
260 > SRD      & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
261 > \hline
262 > SRE      & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
263 > \hline
264 > \end{tabular}}
265 > \caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
266 > \label{tab:nsig}}
267 > \end{center}
268 > \end{table}
269 >
270 >
271 > \begin{table}[!h]
272 > \begin{center}
273 > \begin{tabular}{l||c|c|c|c}
274 > \hline
275 > Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
276 > & $\Delta$ Match \\
277 > \hline
278 > \hline
279 > SRA      & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
280 > \hline
281 > SRB      & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
282 > \hline
283 > SRC      & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
284 > \hline
285 > SRD      & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
286 > \hline
287 > SRE      & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
288 > \hline
289 > \end{tabular}
290 > \caption{ Av. difference in \ttdl\ events for alternative sample pairs.
291 > \label{tab:devt}}
292 > \end{center}
293 > \end{table}
294  
295  
296   \begin{figure}[hbt]
297    \begin{center}
298 <        \includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png}
298 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
299 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
300 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
301 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
302 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
303          \caption{
304 <          \label{fig:ttllsyst}%\protect
305 <          Central Prediction
306 <          Band:
307 <          - total stat. error for all Data and MC samples
308 <          - N jets scaling uncertainty (ISR/FSR)
309 <          Alternative Sample Predictions
310 <          Error bars: uncorrelated stat. error from alternative ttbar sample only}
304 >          \label{fig:ttllsyst}\protect
305 >          Comparison of the \ttll\ central prediction with those using
306 >          alternative MC samples. The blue band corresponds to the
307 >          total statistical error for all data and MC samples. The
308 >          alternative sample predictions are indicated by the
309 >          datapoints. The uncertainties on the alternative predictions
310 >          correspond to the uncorrelated statistical uncertainty from
311 >          the size of the alternative sample only.
312 >        [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
313        \end{center}
314      \end{figure}
315  
316 <
316 > \clearpage
317  
318   %
319   %
# Line 191 | Line 448 | The variations considered are
448   %\end{tabular}
449   %\end{center}
450   %\end{table}
451 +
452 + \subsection{Uncertainty from the isolated track veto}
453 + This is the uncertainty associated with how well the isolated track
454 + veto performance is modeled by the Monte Carlo.  This uncertainty
455 + only applies to the fraction of dilepton BG events that have
456 + a second e/$\mu$ or a one prong $\tau \to h$, with
457 + $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
458 + Table~\ref{tab:trueisotrk}.
459 + The uncertainty for these events
460 + is 6\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
461 +
462 + \begin{table}[!h]
463 + \begin{center}
464 + {\footnotesize
465 + \begin{tabular}{l||c|c|c|c|c|c|c}
466 + \hline
467 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
468 + \hline
469 + \hline
470 + $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
471 + \hline
472 + \hline
473 + e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
474 + \hline
475 + \end{tabular}}
476 + \caption{ Fraction of \ttdl\ events with a true isolated track.
477 + \label{tab:trueisotrk}}
478 + \end{center}
479 + \end{table}
480 +
481 + \subsubsection{Isolated Track Veto: Tag and Probe Studies}
482 + \label{sec:trkveto}
483 +
484 +
485 + In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
486 + with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
487 + to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
488 + we would need to apply a data-to-MC scale factor in order to correctly
489 + predict the \ttll\ background.
490 +
491 + This study
492 + addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
493 + second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
494 + in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
495 + procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
496 +
497 + Furthermore, we test the data and MC
498 + isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
499 + directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
500 + may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
501 + or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
502 + the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
503 + consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
504 + $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
505 + decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
506 + Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
507 + As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
508 + leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
509 + due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
510 +
511 + The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
512 + All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
513 + We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
514 + this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
515 + not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
516 + fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
517 + \met\ $<$ 30 GeV and 0 b-tagged events.
518 + The specific criteria for tags and probes for electrons and muons are:
519 +
520 + %We study the isolated track veto efficiency in bins of \njets.
521 + %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
522 + %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
523 +
524 +
525 + \begin{itemize}
526 +  \item{Electrons}
527 +
528 +    \begin{itemize}
529 +    \item{Tag criteria}
530 +
531 +      \begin{itemize}
532 +      \item Electron passes full analysis ID/iso selection
533 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
534 +      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
535 +      \end{itemize}
536 +
537 +    \item{Probe criteria}
538 +      \begin{itemize}
539 +      \item Electron passes full analysis ID selection
540 +      \item \pt\ $>$ 30 GeV
541 +      \end{itemize}
542 +      \end{itemize}
543 +  \item{Muons}
544 +    \begin{itemize}
545 +    \item{Tag criteria}
546 +      \begin{itemize}
547 +      \item Muon passes full analysis ID/iso selection
548 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
549 +      \item Matched to 1 of the 2 single muon triggers
550 +        \begin{itemize}
551 +        \item \verb=HLT_IsoMu30_v*=
552 +        \item \verb=HLT_IsoMu30_eta2p1_v*=
553 +        \end{itemize}
554 +      \end{itemize}
555 +    \item{Probe criteria}
556 +      \begin{itemize}
557 +      \item Muon passes full analysis ID selection
558 +      \item \pt\ $>$ 30 GeV
559 +      \end{itemize}
560 +    \end{itemize}
561 + \end{itemize}
562 +
563 + The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
564 + good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
565 + absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
566 + In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
567 + efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
568 + For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
569 + a data vs. MC discrepancy in the isolated track veto efficiency.
570 +
571 +
572 + %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
573 + %This requirement is chosen because most of the tracks rejected by the isolated
574 + %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
575 +
576 + \begin{figure}[hbt]
577 +  \begin{center}
578 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
579 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
580 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
581 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
582 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
583 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
584 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
585 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
586 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
587 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
588 +        \caption{
589 +          \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
590 + for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
591 + }  
592 +      \end{center}
593 + \end{figure}
594 +
595 + \clearpage
596 +
597 + \begin{table}[!ht]
598 + \begin{center}
599 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
600 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
601 + jet multiplicity requirements.}
602 + \begin{tabular}{l|c|c|c|c|c}
603 +
604 + %Electrons:
605 + %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
606 + %Total MC yields        : 2497277
607 + %Total DATA yields      : 2649453
608 + %Muons:
609 + %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
610 + %Total MC yields        : 3749863
611 + %Total DATA yields      : 4210022
612 + %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
613 + %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
614 +
615 + \hline
616 + \hline
617 + e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
618 + \hline
619 +      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
620 +        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
621 +   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
622 +
623 + \hline
624 + \hline
625 + $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
626 + \hline
627 +      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
628 +        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
629 +   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
630 +
631 + \hline
632 + \hline
633 + e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
634 + \hline
635 +      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
636 +        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
637 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
638 +
639 + \hline
640 + \hline
641 + $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
642 + \hline
643 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
644 +        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
645 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
646 +
647 + \hline
648 + \hline
649 + e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
650 + \hline
651 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
652 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
653 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
654 +
655 + \hline
656 + \hline
657 + $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
658 + \hline
659 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
660 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
661 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
662 +
663 + \hline
664 + \hline
665 + e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
666 + \hline
667 +      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
668 +        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
669 +   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
670 +
671 + \hline
672 + \hline
673 + $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
674 + \hline
675 +      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
676 +        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
677 +   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
678 +
679 + \hline
680 + \hline
681 + e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
682 + \hline
683 +      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
684 +        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
685 +   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
686 +
687 + \hline
688 + \hline
689 + $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
690 + \hline
691 +      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
692 +        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
693 +   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
694 +
695 + \hline
696 + \hline
697 +
698 + \end{tabular}
699 + \end{center}
700 + \end{table}
701 +
702 +
703 + %Figure.~\ref{fig:reliso} compares the relative track isolation
704 + %for events with a track with $\pt > 10~\GeV$ in addition to a selected
705 + %muon for $\Z+4$ jet events and various \ttll\ components. The
706 + %isolation distributions show significant differences, particularly
707 + %between the leptons from a \W\ or \Z\ decay and the tracks arising
708 + %from $\tau$ decays. As can also be seen in the figure, the \pt\
709 + %distribution for the various categories of tracks is different, where
710 + %the decay products from $\tau$s are significantly softer. Since the
711 + %\pt\ enters the denominator of the isolation definition and hence
712 + %alters the isolation variable...
713 +
714 + %\begin{figure}[hbt]
715 + %  \begin{center}
716 + %       \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
717 + %       \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
718 + %       \caption{
719 + %         \label{fig:reliso}%\protect
720 + %          Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
721 + %          Z+Jets and ttbar dilepton have similar isolation distributions
722 + %          ttbar with leptonic and single prong taus tend to be less
723 + %          isolated. The difference in the isolation can be attributed
724 + %          to the different \pt\ distribution of the samples, since
725 + %          $\tau$ decay products tend to be softer than leptons arising
726 + %          from \W\ or \Z\ decays.}  
727 + %      \end{center}
728 + %\end{figure}
729 +
730 + %       \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
731 +
732 +
733 + %BEGIN SECTION TO WRITE OUT
734 + %In detail, the procedure to correct the dilepton background is:
735 +
736 + %\begin{itemize}
737 + %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
738 + %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
739 + %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
740 + %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
741 + %the lepton \pt {\bf TODO: verify this in data and MC.}.
742 + %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
743 + %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
744 + %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
745 + %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
746 + %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
747 + %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
748 + %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
749 + %\end{itemize}
750 + %END SECTION TO WRITE OUT
751 +
752 +
753 + %{\bf fix me: What you have written in the next paragraph does not
754 + %explain how $\epsilon_{fake}$ is measured.
755 + %Why not measure $\epsilon_{fake}$ in the b-veto region?}
756 +
757 + %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
758 + %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
759 + %applying an additional scale factor for the single lepton background
760 + %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
761 + %veto and after subtracting the \ttll\ component, corrected for the
762 + %isolation efficiency derived previously.
763 + %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
764 + %isolated track in single lepton events is independent of \mt\, so the use of
765 + %an overall scale factor is justified to estimate the contribution in
766 + %the \mt\ tail.
767 + %
768 + %\begin{figure}[hbt]
769 + %  \begin{center}
770 + %       \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
771 + %       \caption{
772 + %         \label{fig:vetoeffcomp}%\protect
773 + %          Efficiency for selecting an isolated track comparing
774 + %          single lepton \ttlj\ and dilepton \ttll\ events in MC and
775 + %          data as a function of \mt. The
776 + %          efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
777 + %          \mt\, while the data ranges between the two. This behavior
778 + %          is expected since the low \mt\ region is predominantly \ttlj, while the
779 + %          high \mt\ region contains mostly \ttll\ events.}  
780 + %      \end{center}
781 + %\end{figure}
782 +
783 + \subsection{Summary of uncertainties}
784 + \label{sec:bgunc-bottomline}.
785 +
786 + THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines