ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.15 by claudioc, Thu Oct 11 07:33:42 2012 UTC vs.
Revision 1.27 by vimartin, Wed Oct 31 17:13:29 2012 UTC

# Line 14 | Line 14 | The calculation is done for each signal
14   region,
15   for electrons and muons separately.
16  
17 < The choice to normalizing to the peak region of $M_T$ has the
17 > The choice to normalize to the peak region of $M_T$ has the
18   advantage that some uncertainties, e.g., luminosity, cancel.
19   It does however introduce complications because it couples
20   some of the uncertainties in non-trivial ways.  For example,
# Line 25 | Line 25 | for example,
25   the $t\bar{t} \to$ dilepton BG estimate because it changes the
26   $t\bar{t}$ normalization to the peak region (because some of the
27   events in the peak region are from rare processes).  These effects
28 < are carefully accounted for.  The contribution to the overall
29 < uncertainty from each BG source is tabulated in
28 > are carefully accounted for. The contribution to the overall
29 > uncertainty from each background source is tabulated in
30   Section~\ref{sec:bgunc-bottomline}.
31 < First, however, we discuss the uncertainties one-by-one and we comment
31 > Here we discuss the uncertainties one-by-one and comment
32   on their impact on the overall result, at least to first order.
33   Second order effects, such as the one described, are also included.
34  
# Line 37 | Line 37 | peak regions}
37   These vary between 2\% and 20\%, depending on the signal region
38   (different
39   signal regions have different \met\ requirements, thus they also have
40 < different $M_T$ regions used as control.
40 > different $M_T$ regions used as control).
41   Since
42 < the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
42 > the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
43   fractional uncertainty is pretty much carried through all the way to
44   the end.  There is also an uncertainty from the finite MC event counts
45   in the $M_T$ peak regions.  This is also included, but it is smaller.
# Line 47 | Line 47 | in the $M_T$ peak regions.  This is also
47   Normalizing to the $M_T$ peak has the distinct advantages that
48   uncertainties on luminosity, cross-sections, trigger efficiency,
49   lepton ID, cancel out.
50 < For the low statistics regions with high \met requirements, the
51 < price to pay in terms of event count statistical uncertainties starts
50 > For the low statistics regions with high \met\ requirements, the
51 > price to pay in terms of event count is that statistical uncertainties start
52   to become significant.  In the future we may consider a different
53   normalization startegy in the low statistics regions.
54  
# Line 58 | Line 58 | This choice affects the scale factors of
58   If the $M_T$ peak region is not well modelled, this would introduce an
59   uncertainty.
60  
61 < We have tested this possibility by recalculating the post veto scale factors for a different
61 > We have tested this possibility by recalculating the post-veto scale factors for a different
62   choice
63   of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 < $50 < M_T < 80$ GeV.  This is shown in Table~\ref{tab:mtpeaksf2}.  
64 > $50 < M_T < 80$ GeV).  This is shown in Table~\ref{tab:mtpeaksf2}.  
65   The two results for the scale factors are very compatible.
66   We do not take any systematic uncertainty for this possible effect.
67  
# Line 111 | Line 111 | e veto \mt-SF      & $0.97 \pm 0.01$ & $
111   \end{table}
112  
113  
114 < \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
114 > \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
115   These are taken as 50\%, uncorrelated.  
116   The primary effect is to introduce a 50\%
117   uncertainty
# Line 125 | Line 125 | attributed to $t\bar{t}$ goes down, and
125   scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126   BG goes down.  
127  
128 < \subsection{Scale factors for the tail-to-peak ratios for lepton +
128 > \subsection{Tail-to-peak ratios for lepton +
129    jets top and W events}
130 < These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
131 < They are studied in CR1 and CR2.  The studies are described
132 < in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
133 < we also give the uncertainty on the scale factors.  See
134 < Tables~\ref{tab:cr1yields}
135 < and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top})$.
130 > The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131 > The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132 > Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its
133 > uncertainty is given in Table~\ref{tab:cr1yields}.
134 > This uncertainty affects both $R_{wjet}$ and $R_{top}$.
135 > The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
136 >
137  
138   \subsection{Uncertainty on extra jet radiation for dilepton
139    background}
# Line 142 | Line 143 | $t\bar{t} \to$
143   dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
144   it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
145   comes from data/MC statistics.  This  
146 < result directly in a 3\% uncertainty on the dilepton BG, which is by far
146 > results directly in a 3\% uncertainty on the dilepton background, which is by far
147   the most important one.
148  
149 + \subsection{Uncertainty from MC statistics}
150 + This affects mostly the \ttll\ background estimate, which is taken
151 + from
152 + Monte Carlo with appropriate correction factors.  This uncertainty
153 + is negligible in the low \met\ signal regions, and grows to about
154 + 15\% in SRG.
155  
149 \subsection{Uncertainty on the \ttll\ Acceptance}
150
151 [CLAUDIO: WE NEED TO DISCUSS THIS A LITTLE MORE -- THEN I CAN PUT THE
152 WORDS IN]
156  
157 + \subsection{Uncertainty on the \ttll\ Background}
158 + \label{sec:ttdilbkgunc}
159   The \ttbar\ background prediction is obtained from MC, with corrections
160   derived from control samples in data. The uncertainty associated with
161 < the theoretical modeling of the \ttbar\ production and decay is
162 < estimated by comparing the background predictions obtained using
161 > the \ttbar\ background is derived from the level of closure of the
162 > background prediction in CR4 (Table~\ref{tab:cr4yields}) and
163 > CR5 (Table~\ref{tab:cr5yields}). The results from these control region
164 > checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned
165 > to the \ttdl\ background prediction based on these tests are
166 > 5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G).
167 >
168 > \begin{figure}[hbt]
169 >  \begin{center}
170 >        \includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf}
171 >        \caption{
172 >          \label{fig:ttdlunc}%\protect
173 >          Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after
174 >          applying SFs) to data for CR4 and CR5 for all the signal
175 >          region requirements considered (A-G). The bands indicate the
176 >          systematic uncertainties assigned based on these tests,
177 >          ranging from $5\%$ for SRA to $40\%$ for SRE-G.}
178 >      \end{center}
179 > \end{figure}
180 >
181 > \clearpage
182 > \subsubsection{Check of the impact of Signal Contamination}
183 >
184 > We examine the contribution of possible signal events in the \ttll\
185 > control regions (CR4 and CR5). It should be emphasized that these
186 > regions are not used to apply data/MC SFs. They are used to quantify
187 > the level of data/MC agreement and assign a corresponding uncertainty.
188 >
189 > To illustrate how much signal is expected to populate these control
190 > regions, we examine signal points near the edge of the analysis'
191 > sensitivity (m(stop) = 450 m($\chi^0$) = 0 for T2tt, m(stop) = 450
192 > m($\chi^0$) = 0 for T2bw with x=0.75 and m(stop) = 350
193 > m($\chi^0$) = 0 for T2bw with x=0.5).
194 > Table~\ref{tab:signalcontamination} compares the expected signal
195 > yields and the raw total MC background prediction in the control
196 > regions with the \met\ and \mt\ requirements corresponding to SRB, SRC
197 > and SRD (these are the signal regions that dominate the
198 > sensitivity). The signal contamination is smaller than the uncertainty
199 > on the dilepton background and smaller than the signal/background in
200 > the signal regions, with the exception of the T2bw scenario with x=0.5.
201 > However, based on the fact that the CR4 and CR5 are not used to extract
202 > data/MC SFs and that CR4 shows a slight deficit of data compared to
203 > the MC prediction, indicating that we do not observe evidence of
204 > signal contamination, we do not assign an additional uncertainty.
205 >
206 > \begin{table}[!h]
207 > \begin{center}
208 > {\small
209 > \begin{tabular}{l l||c|c|c}
210 > \hline
211 > \multicolumn{2}{c||}{Sample}              & CR B & CR C & CR D \\
212 > \hline
213 > \hline
214 > \multirow{4}{*}{CR4} & Raw MC            & $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$ \\
215 > %\hline
216 > & T2tt m(stop) = 450 m($\chi^0$) = 0  & $2.6 \pm 0.3$ $(2\%)$ & $2.0 \pm 0.2$ $(4\%)$ & $1.4 \pm 0.2$ $(7\%)$ \\
217 > & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $10.5 \pm 0.4$ $(6\%)$ &$6.1 \pm 0.3$ $(12\%)$ & $3.1 \pm 0.2$ $(16\%)$ \\
218 > & T2bw x=0.5  m(stop) = 350 m($\chi^0$) = 0     & $32.1 \pm 1.5$ $(19\%)$ & $14.7 \pm 1.0$ $(29\%)$ & $5.5 \pm 0.6$ $(28\%)$ \\
219 > \hline
220 > \hline
221 > \multirow{4}{*}{CR5} & Raw MC            & $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$ \\
222 > %\hline
223 > & T2tt m(stop) = 450 m($\chi^0$) = 0  & $10.6 \pm 0.6$ $(3\%)$ & $7.8 \pm 0.5$ $(8\%)$ & $5.4 \pm 0.4$ $(14\%)$ \\
224 > & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $17.3 \pm 0.5$ $(6\%)$ &$11.3 \pm 0.4$ $(11\%)$ & $6.2 \pm 0.3$ $(16\%)$\\
225 > & T2bw x=0.5  m(stop) = 350 m($\chi^0$) = 0     & $33.0 \pm 1.5$ $(11\%)$& $14.4 \pm 1.0$ $(14\%)$& $5.7 \pm 0.6$ $(15\%)$ \\
226 > \hline
227 > \hline
228 > \hline
229 > \multirow{4}{*}{SIGNAL} & Raw MC                 & $486.3 \pm 7.8$& $164.3 \pm 4.5$& $61.5 \pm 2.8$ \\
230 > & T2tt m(stop) = 450 m($\chi^0$) = 0    & $65.3 \pm 1.4$ $(13\%)$& $48.8 \pm 1.2$ $(30\%)$& $32.9 \pm 1.0$ $(53\%)$ \\
231 > & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0     & $69.3 \pm 1.0$ $(14\%)$& $47.3 \pm 0.8$ $(29\%)$& $27.3 \pm 0.6$ $(44\%)$ \\
232 > & T2bw x=0.5  m(stop) = 350 m($\chi^0$) = 0     & $105.5 \pm 2.8$ $(22\%)$& $44.6 \pm 1.8$ $(27\%)$& $15.9 \pm 1.1$ $(26\%)$ \\
233 > \hline
234 > \end{tabular}}
235 > \caption{ Yields in \mt\ tail comparing the raw SM MC prediction to the
236 >  yields for a few signal points on the edge of our sensitivity in the \ttll\
237 >  control regions CR4, CR5 and in the corresponding signal region.
238 >  The numbers in parenthesis are the expected signal yield divided by
239 >  the total background. The uncertainties are statistical only.
240 > \label{tab:signalcontamination}}
241 > \end{center}
242 > \end{table}
243 >
244 > %CR5 DUMP
245 > %Total           & $880.3 \pm 10.4$& $560.0 \pm 8.3$& $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$& $16.4 \pm 1.4$& $8.2 \pm 1.0$& $4.6 \pm 0.8$ \\
246 > %\hline
247 > %\hline
248 > %Data            & $941$& $559$& $287$& $95$& $26$& $8$& $5$& $3$ \\
249 > %\hline
250 > %T2tt m(stop) = 250 m($\chi^0$) = 0     & $84.3 \pm 9.2$& $61.9 \pm 7.9$& $35.7 \pm 6.0$& $5.9 \pm 2.4$& $1.0 \pm 1.0$& $1.0 \pm 1.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
251 > %\hline
252 > %T2tt m(stop) = 300 m($\chi^0$) = 50    & $61.4 \pm 4.7$& $53.6 \pm 4.4$& $42.0 \pm 3.9$& $14.3 \pm 2.3$& $7.2 \pm 1.6$& $1.8 \pm 0.8$& $0.7 \pm 0.5$& $0.0 \pm 0.0$ \\
253 > %\hline
254 > %T2tt m(stop) = 300 m($\chi^0$) = 100   & $33.3 \pm 3.5$& $28.6 \pm 3.2$& $19.2 \pm 2.6$& $6.1 \pm 1.5$& $1.8 \pm 0.8$& $0.4 \pm 0.4$& $0.4 \pm 0.4$& $0.4 \pm 0.4$ \\
255 > %\hline
256 > %T2tt m(stop) = 350 m($\chi^0$) = 0     & $33.4 \pm 2.2$& $29.8 \pm 2.1$& $27.3 \pm 2.0$& $15.3 \pm 1.5$& $5.6 \pm 0.9$& $1.9 \pm 0.5$& $0.3 \pm 0.2$& $0.0 \pm 0.0$ \\
257 > %\hline
258 > %T2tt m(stop) = 450 m($\chi^0$) = 0     & $12.0 \pm 0.6$& $11.3 \pm 0.6$& $10.6 \pm 0.6$& $7.8 \pm 0.5$& $5.4 \pm 0.4$& $3.1 \pm 0.3$& $1.8 \pm 0.2$& $0.6 \pm 0.1$ \\
259 > %\hline
260 > %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0       & $48.5 \pm 1.9$& $40.2 \pm 1.7$& $33.0 \pm 1.5$& $14.4 \pm 1.0$& $5.7 \pm 0.6$& $2.7 \pm 0.4$& $1.3 \pm 0.3$& $0.5 \pm 0.2$ \\
261 > %\hline
262 > %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0      & $22.3 \pm 0.6$& $20.2 \pm 0.6$& $17.3 \pm 0.5$& $11.3 \pm 0.4$& $6.2 \pm 0.3$& $3.1 \pm 0.2$& $1.3 \pm 0.1$& $0.7 \pm 0.1$ \\
263 > %\hline
264 >
265 > %CR4 DUMP
266 > %\hline
267 > %Total           & $510.1 \pm 8.0$& $324.2 \pm 6.3$& $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$& $7.8 \pm 1.0$& $2.6 \pm 0.6$& $1.1 \pm 0.3$ \\
268 > %\hline
269 > %\hline
270 > %Data            & $462$& $289$& $169$& $45$& $10$& $7$& $5$& $3$ \\
271 > %\hline
272 > %T2tt m(stop) = 250 m($\chi^0$) = 0     & $37.7 \pm 6.1$& $30.9 \pm 5.5$& $18.0 \pm 4.2$& $6.0 \pm 2.5$& $2.0 \pm 1.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
273 > %\hline
274 > %T2tt m(stop) = 300 m($\chi^0$) = 50    & $16.6 \pm 2.4$& $14.4 \pm 2.3$& $11.3 \pm 2.0$& $5.6 \pm 1.4$& $3.2 \pm 1.1$& $1.8 \pm 0.8$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
275 > %\hline
276 > %T2tt m(stop) = 300 m($\chi^0$) = 100   & $9.6 \pm 1.8$& $6.4 \pm 1.5$& $4.6 \pm 1.3$& $0.7 \pm 0.5$& $0.4 \pm 0.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
277 > %\hline
278 > %T2tt m(stop) = 350 m($\chi^0$) = 0     & $8.2 \pm 1.1$& $7.6 \pm 1.0$& $5.7 \pm 0.9$& $3.4 \pm 0.7$& $1.9 \pm 0.5$& $0.6 \pm 0.3$& $0.3 \pm 0.2$& $0.1 \pm 0.1$ \\
279 > %\hline
280 > %T2tt m(stop) = 450 m($\chi^0$) = 0     & $3.1 \pm 0.3$& $2.9 \pm 0.3$& $2.6 \pm 0.3$& $2.0 \pm 0.2$& $1.4 \pm 0.2$& $1.0 \pm 0.2$& $0.4 \pm 0.1$& $0.2 \pm 0.1$ \\
281 > %\hline
282 > %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0       & $52.6 \pm 1.9$& $42.6 \pm 1.7$& $32.1 \pm 1.5$& $14.7 \pm 1.0$& $5.5 \pm 0.6$& $1.9 \pm 0.4$& $0.6 \pm 0.2$& $0.3 \pm 0.1$ \\
283 > %\hline
284 > %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0      & $16.9 \pm 0.5$& $14.9 \pm 0.5$& $10.5 \pm 0.4$& $6.1 \pm 0.3$& $3.1 \pm 0.2$& $1.5 \pm 0.1$& $0.6 \pm 0.1$& $0.3 \pm 0.1$ \\
285 > %\hline
286 >
287 >
288 > \subsubsection{Check of the uncertainty on the \ttll\ Background}
289 >
290 > We check that the systematic uncertainty assigned to the \ttll\ background prediction
291 > covers the uncertainty associated with
292 > the theoretical modeling of the \ttbar\ production and decay
293 > by comparing the background predictions obtained using
294   alternative MC samples. It should be noted that the full analysis is
295   performed with the alternative samples under consideration,
296   including the derivation of the various data-to-MC scale factors.
# Line 162 | Line 298 | The variations considered are
298  
299   \begin{itemize}
300   \item Top mass: The alternative values for the top mass differ
301 <  from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
301 >  from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
302    = 166.5~\GeV$.
303   \item Jet-parton matching scale: This corresponds to variations in the
304    scale at which the Matrix Element partons from Madgraph are matched
# Line 179 | Line 315 | The variations considered are
315    Tauola and is otherwise identical to the Powheg sample.
316    This effect was studied earlier using 7~TeV samples and found to be negligible.
317   \item The PDF uncertainty is estimated following the PDF4LHC
318 <  recommendations[CITE]. The events are reweighted using alternative
318 >  recommendations. The events are reweighted using alternative
319    PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
320 <  alternative eigenvector variations and the ``master equation''. In
321 <  addition, the NNPDF2.1 set with 100 replicas. The central value is
320 >  alternative eigenvector variations and the ``master equation''.
321 >  The NNPDF2.1 set with 100 replicas is also used. The central value is
322    determined from the mean and the uncertainty is derived from the
323    $1\sigma$ range. The overall uncertainty is derived from the envelope of the
324    alternative predictions and their uncertainties.
325    This effect was studied earlier using 7~TeV samples and found to be negligible.
326    \end{itemize}
327  
328 <
329 < \begin{table}[!h]
330 < \begin{center}
331 < {\footnotesize
332 < \begin{tabular}{l||c||c|c|c|c|c|c|c}
333 < \hline
334 < Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
335 < Match Up & Match Down \\
336 < \hline
337 < \hline
338 < SRA      & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
339 < \hline
340 < SRB      & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
341 < \hline
342 < SRC      & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
343 < \hline
344 < SRD      & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
345 < \hline
346 < SRE      & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
211 < \hline
212 < \end{tabular}}
213 < \caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
214 < \label{tab:ttdlalt}}
215 < \end{center}
216 < \end{table}
328 > \begin{figure}[hbt]
329 >  \begin{center}
330 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
331 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
332 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
333 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
334 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
335 >        \caption{
336 >          \label{fig:ttllsyst}\protect
337 >          Comparison of the \ttll\ central prediction with those using
338 >          alternative MC samples. The blue band corresponds to the
339 >          total statistical error for all data and MC samples. The
340 >          alternative sample predictions are indicated by the
341 >          datapoints. The uncertainties on the alternative predictions
342 >          correspond to the uncorrelated statistical uncertainty from
343 >          the size of the alternative sample only.  Note the
344 >          suppressed vertical scales.}
345 >      \end{center}
346 >    \end{figure}
347  
348  
349   \begin{table}[!h]
# Line 229 | Line 359 | SRA     & $2$ & $2$ & $5$ & $12$ & $7$ & $
359   \hline
360   SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
361   \hline
362 < SRC      & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
363 < \hline
364 < SRD      & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
365 < \hline
366 < SRE      & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
362 > % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
363 > % \hline
364 > % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
365 > % \hline
366 > % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
367   \hline
368   \end{tabular}}
369 < \caption{ Relative difference in \ttdl\ predictions for alternative MC samples.
369 > \caption{ Relative difference in \ttdl\ predictions for alternative MC
370 >  samples in
371 > the higher statistics regions SRA and SRB.  These differences
372 > are based on the central values of the predictions.  For a fuller
373 > picture
374 > of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
375   \label{tab:fracdiff}}
376   \end{center}
377   \end{table}
378  
379  
380 < \begin{table}[!h]
381 < \begin{center}
382 < {\footnotesize
248 < \begin{tabular}{l||c|c|c|c|c|c|c}
249 < \hline
250 < $N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
251 < Match Up & Match Down \\
252 < \hline
253 < \hline
254 < SRA      & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
255 < \hline
256 < SRB      & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
257 < \hline
258 < SRC      & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
259 < \hline
260 < SRD      & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
261 < \hline
262 < SRE      & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
263 < \hline
264 < \end{tabular}}
265 < \caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
266 < \label{tab:nsig}}
267 < \end{center}
268 < \end{table}
380 > In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
381 > for regions A through E.  We can make the following observations based
382 > on this Figure.
383  
384 + \begin{itemize}
385 + \item In the tighter signal regions we are running out of
386 +  statistics.    
387 + \item Within the limited statistics, there is no evidence that the
388 +  situation changes as we go from signal region A to signal region E.
389 + %Therefore, we assess a systematic based on the relatively high
390 + %statistics
391 + %test in signal region A, and apply the same systematic uncertainty
392 + %to all other regions.
393 + \item In signal regions B and above, the uncertainties assigned in Section~\ref{sec:ttdilbkgunc}
394 + fully cover the alternative MC variations.
395 + \item In order to fully (as opposed as 1$\sigma$) cover the
396 + alternative MC variations in region A we would have to take a
397 + systematic
398 + uncertainty of $\approx 10\%$ instead of $5\%$.  This would be driven by the
399 + scale up/scale down variations, see Table~\ref{tab:fracdiff}.
400 + \end{itemize}
401  
402 < \begin{table}[!h]
402 > \begin{table}[!ht]
403   \begin{center}
404 < \begin{tabular}{l||c|c|c|c}
404 > \begin{tabular}{l|c|c}
405   \hline
406 < Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
407 < & $\Delta$ Match \\
406 >            Sample
407 >            &                K3   & K4\\
408   \hline
409   \hline
410 < SRA      & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
411 < \hline
412 < SRB      & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
413 < \hline
414 < SRC      & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
415 < \hline
416 < SRD      & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
417 < \hline
287 < SRE      & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
410 > Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
411 > Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
412 > Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
413 > Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
414 > Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
415 > Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
416 > Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
417 > Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
418   \hline
419   \end{tabular}
420 < \caption{ Av. difference in \ttdl\ events for alternative sample pairs.
421 < \label{tab:devt}}
420 > \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
421 >  fraction of events with additional hard jets from radiation in
422 >  \ttll\ events. \label{tab:njetskfactors_met100}}
423   \end{center}
424   \end{table}
425  
426  
427 + However, we have two pieces of information indicating that the
428 + scale up/scale down variations are inconsistent with the data.
429 + These are described below.
430 +
431 + The first piece of information is that the jet multiplicity in the scale
432 + up/scale down sample is the most inconsistent with the data.  This is shown
433 + in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
434 + $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
435 + different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
436 + distribution
437 + for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
438 + and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
439 + equivalent $N_{jets}$ plots for the default Powheg MC, see
440 + Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
441 +
442   \begin{figure}[hbt]
443    \begin{center}
444 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
445 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
446 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
447 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
448 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
449 <        \caption{
450 <          \label{fig:ttllsyst}\protect
305 <          Comparison of the \ttll\ central prediction with those using
306 <          alternative MC samples. The blue band corresponds to the
307 <          total statistical error for all data and MC samples. The
308 <          alternative sample predictions are indicated by the
309 <          datapoints. The uncertainties on the alternative predictions
310 <          correspond to the uncorrelated statistical uncertainty from
311 <          the size of the alternative sample only.
312 <        [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
444 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
445 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
446 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
447 >        \caption{
448 >          \label{fig:dileptonnjets_scaleup}%\protect
449 >          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
450 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
451        \end{center}
452 <    \end{figure}
452 > \end{figure}
453 >
454 > \begin{figure}[hbt]
455 >  \begin{center}
456 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
457 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
458 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
459 >        \caption{
460 >          \label{fig:dileptonnjets_scaledw}%\protect
461 >          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
462 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
463 >      \end{center}
464 > \end{figure}
465 >
466 >
467 > \clearpage
468 >
469 > The second piece of information is that we have performed closure
470 > tests in CR5 using the alternative MC samples.  These are exactly
471 > the same tests as the one performed in Section~\ref{sec:CR5} on the
472 > Powheg sample.  As we argued previously, this is a very powerful
473 > test of the background calculation.
474 > The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
475 > Concentrating on the relatively high statistics CR5A region, we see
476 > for all \ttbar\ MC samples except scale up/scale down we obtain
477 > closure within 1$\sigma$.  The scale up/scale down tests closes
478 > worse, only within 2$\sigma$.  This again is evidence that the
479 > scale up/scale down variations are in disagreement with the data.
480 >
481 > \input{hugeCR5Table.tex}
482 >
483 > Based on the two observations above, we argue that the MC
484 > scale up/scale down variations are too extreme.  We feel that
485 > a reasonable choice would be to take one-half of the scale up/scale
486 > down variations in our MC.  This factor of 1/2 would then bring
487 > the discrepancy in the closure test of
488 > Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
489 > from about 2$\sigma$ to about 1$\sigma$.
490 >
491 > Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
492 > up/scale
493 > down variations by a factor 2, we can see that a systematic
494 > uncertainty
495 > of 5\% covers the range of reasonable variations from different MC
496 > models in SRA and SRB.
497 > %The alternative MC models indicate that a 6\% systematic uncertainty
498 > %covers the range of reasonable variations.
499 > Note that this 5\% is also consistent with the level at which we are
500 > able to test the closure of the method with alternative samples in CR5 for the high statistics
501 > regions (Table~\ref{tab:hugecr5yields}).
502 > The range of reasonable variations obtained with the alternative
503 > samples are consistent with the uncertainties assigned for
504 > the \ttll\ background based on the closure of the background
505 > predictions and data in CR4 and CR5.
506 >
507 >
508 >
509 >
510 >
511 > %\begin{table}[!h]
512 > %\begin{center}
513 > %{\footnotesize
514 > %\begin{tabular}{l||c||c|c|c|c|c|c|c}
515 > %\hline
516 > %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
517 > %Up & Scale Down &
518 > %Match Up & Match Down \\
519 > %\hline
520 > %\hline
521 > %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
522 > %\hline
523 > %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
524 > %\hline
525 > %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
526 > %\hline
527 > %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
528 > %\hline
529 > %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
530 > %\hline
531 > %\end{tabular}}
532 > %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
533 > %\label{tab:ttdlalt}}
534 > %\end{center}
535 > %\end{table}
536 >
537 >
538 >
539 >
540 > %\begin{table}[!h]
541 > %\begin{center}
542 > %{\footnotesize
543 > %\begin{tabular}{l||c|c|c|c|c|c|c}
544 > %\hline
545 > %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
546 > %Match Up & Match Down \\
547 > %\hline
548 > %\hline
549 > %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
550 > %\hline
551 > %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
552 > %\hline
553 > %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
554 > %\hline
555 > %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
556 > %\hline
557 > %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
558 > %\hline
559 > %\end{tabular}}
560 > %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
561 > %\label{tab:nsig}}
562 > %\end{center}
563 > %\end{table}
564 >
565 >
566 > %\begin{table}[!h]
567 > %\begin{center}
568 > %\begin{tabular}{l||c|c|c|c}
569 > %\hline
570 > %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
571 > %& $\Delta$ Match \\
572 > %\hline
573 > %\hline
574 > %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
575 > %\hline
576 > %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
577 > %\hline
578 > %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
579 > %\hline
580 > %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
581 > %\hline
582 > %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
583 > %\hline
584 > %\end{tabular}
585 > %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
586 > %\label{tab:devt}}
587 > %\end{center}
588 > %\end{table}
589 >
590 >
591  
592   \clearpage
593  
# Line 457 | Line 733 | a second e/$\mu$ or a one prong $\tau \t
733   $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
734   Table~\ref{tab:trueisotrk}.
735   The uncertainty for these events
736 < is 6\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
736 > is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
737  
738   \begin{table}[!h]
739   \begin{center}
# Line 506 | Line 782 | decays are well-understood, we currently
782   Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
783   As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
784   leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
785 < due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
785 > due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
786  
787   The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
788   All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
# Line 563 | Line 839 | The specific criteria for tags and probe
839   The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
840   good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
841   absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
842 < In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
842 > In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
843   efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
844   For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
845   a data vs. MC discrepancy in the isolated track veto efficiency.
# Line 596 | Line 872 | for events with the \njets\ requirement
872  
873   \begin{table}[!ht]
874   \begin{center}
599 \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
600 on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
601 jet multiplicity requirements.}
875   \begin{tabular}{l|c|c|c|c|c}
876  
877   %Electrons:
# Line 696 | Line 969 | $\mu$ + $\geq$4 jets   &           $>$ 1
969   \hline
970  
971   \end{tabular}
972 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
973 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
974 + jet multiplicity requirements.}
975   \end{center}
976   \end{table}
977  
978 + \clearpage
979 + \subsection{Summary of uncertainties}
980 + \label{sec:bgunc-bottomline}
981 +
982 + The contribution from each source to the total uncertainty on the background yield is given in Tables~\ref{tab:relativeuncertaintycomponents} and~\ref{tab:uncertaintycomponents} for the relative and absolute uncertainties, respectively. In the low-\met\ regions the dominant uncertainty comes from the top tail-to-peak ratio, $R_{top}$ (Section~\ref{sec:ttp}), while in the high-\met\ regions the \ttll\ systematic uncertainty dominates (Section~\ref{sec:ttdilbkgunc}).
983 +
984 + \input{uncertainties_table.tex}
985 +
986 +
987 +
988 +
989  
990   %Figure.~\ref{fig:reliso} compares the relative track isolation
991   %for events with a track with $\pt > 10~\GeV$ in addition to a selected
# Line 780 | Line 1067 | $\mu$ + $\geq$4 jets   &           $>$ 1
1067   %      \end{center}
1068   %\end{figure}
1069  
783 \subsection{Summary of uncertainties}
784 \label{sec:bgunc-bottomline}.
1070  
1071 < THIS NEEDS TO BE WRITTEN
1071 >
1072 > % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines