ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.13 by vimartin, Tue Oct 9 14:00:42 2012 UTC vs.
Revision 1.17 by claudioc, Fri Oct 12 02:41:46 2012 UTC

# Line 1 | Line 1
1   %\section{Systematics Uncertainties on the Background Prediction}
2   %\label{sec:systematics}
3  
4 [DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET
5 FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS
6 AND
7 WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL
8 UNCERTAINTIES
9 CORRECTLY THROUGH.  WE WILL DO IT ONCE WE HAVE SETTLED ON THE
10 INDIVIDUAL PIECES WHICH ARE STILL IN FLUX]
11
4   In this Section we discuss the systematic uncertainty on the BG
5   prediction.  This prediction is assembled from the event
6   counts in the peak region of the transverse mass distribution as
# Line 42 | Line 34 | Second order effects, such as the one de
34  
35   \subsection{Statistical uncertainties on the event counts in the $M_T$
36   peak regions}
37 < These vary between XX and XX \%, depending on the signal region
37 > These vary between 2\% and 20\%, depending on the signal region
38   (different
39   signal regions have different \met\ requirements, thus they also have
40   different $M_T$ regions used as control.
# Line 52 | Line 44 | fractional uncertainty is pretty much ca
44   the end.  There is also an uncertainty from the finite MC event counts
45   in the $M_T$ peak regions.  This is also included, but it is smaller.
46  
47 + Normalizing to the $M_T$ peak has the distinct advantages that
48 + uncertainties on luminosity, cross-sections, trigger efficiency,
49 + lepton ID, cancel out.
50 + For the low statistics regions with high \met requirements, the
51 + price to pay in terms of event count statistical uncertainties starts
52 + to become significant.  In the future we may consider a different
53 + normalization startegy in the low statistics regions.
54 +
55   \subsection{Uncertainty from the choice of $M_T$ peak region}
56 < IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT
57 < LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY.  WE NEED TO LOOK
58 < INTO THIS AGAIN
56 >
57 > This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
58 > If the $M_T$ peak region is not well modelled, this would introduce an
59 > uncertainty.
60 >
61 > We have tested this possibility by recalculating the post veto scale factors for a different
62 > choice
63 > of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 > $50 < M_T < 80$ GeV.  This is shown in Table~\ref{tab:mtpeaksf2}.  
65 > The two results for the scale factors are very compatible.
66 > We do not take any systematic uncertainty for this possible effect.
67 >
68 > \begin{table}[!h]
69 > \begin{center}
70 > {\footnotesize
71 > \begin{tabular}{l||c|c|c|c|c|c|c}
72 > \hline
73 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 > \hline
75 > \hline
76 > \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 > \hline
78 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 > \hline
81 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 > \hline
83 > \hline
84 > e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 > e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 > \hline
87 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 > \hline
89 > \hline
90 > \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 > \hline
92 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 > \hline
95 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 > \hline
97 > \hline
98 > e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 > e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 > \hline
101 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 > \hline
103 > \end{tabular}}
104 > \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 >  \ttdl\ sample, while the post-veto SFs are applied to the single
106 >  lepton samples. The veto SF is shown for comparison across channels.
107 >  The raw MC is used for backgrounds from rare processes.
108 >  The uncertainties are statistical only.
109 > \label{tab:mtpeaksf2}}
110 > \end{center}
111 > \end{table}
112 >
113  
114   \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
115   These are taken as 50\%, uncorrelated.  
# Line 76 | Line 130 | BG goes down.
130   These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
131   They are studied in CR1 and CR2.  The studies are described
132   in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
133 < we also give the uncertainty on the scale factors.
133 > we also give the uncertainty on the scale factors.  See
134 > Tables~\ref{tab:cr1yields}
135 > and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top})$.
136  
137   \subsection{Uncertainty on extra jet radiation for dilepton
138    background}
# Line 84 | Line 140 | As discussed in Section~\ref{sec:jetmult
140   jet distribution in
141   $t\bar{t} \to$
142   dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
143 < it agree with the data.  The XX\% uncertainties on $K_3$ and $K_4$
143 > it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
144   comes from data/MC statistics.  This  
145 < result directly in a XX\% uncertainty on the dilepton BG, which is by far
145 > result directly in a 3\% uncertainty on the dilepton BG, which is by far
146   the most important one.
147  
148  
# Line 115 | Line 171 | The variations considered are
171    value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
172    \sum_{\mathrm{jets}} \pt^2$.
173   \item Alternative generators: Samples produced with different
174 <  generators include MC@NLO and Powheg (NLO generators) and
119 <  Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
120 <  hadronisation, while POWHEG uses Pythia6.
174 >  generators, Powheg (our default) and Madgraph.
175   \item Modeling of taus: The alternative sample does not include
176    Tauola and is otherwise identical to the Powheg sample.
177    This effect was studied earlier using 7~TeV samples and found to be negligible.
# Line 132 | Line 186 | The variations considered are
186    This effect was studied earlier using 7~TeV samples and found to be negligible.
187    \end{itemize}
188  
135
189   \begin{figure}[hbt]
190    \begin{center}
191 <        \includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png}
191 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
192 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
193 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
194 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
195 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
196          \caption{
197 <          \label{fig:ttllsyst}%\protect
197 >          \label{fig:ttllsyst}\protect
198            Comparison of the \ttll\ central prediction with those using
199            alternative MC samples. The blue band corresponds to the
200            total statistical error for all data and MC samples. The
201            alternative sample predictions are indicated by the
202            datapoints. The uncertainties on the alternative predictions
203            correspond to the uncorrelated statistical uncertainty from
204 <          the size of the alternative sample only.
205 <        [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
204 >          the size of the alternative sample only.  Note the
205 >          suppressed vertical scales.}
206        \end{center}
207      \end{figure}
208  
209 +
210 + \begin{table}[!h]
211 + \begin{center}
212 + {\footnotesize
213 + \begin{tabular}{l||c|c|c|c|c|c|c}
214 + \hline
215 + $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
216 + Match Up & Match Down \\
217 + \hline
218 + \hline
219 + SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
220 + \hline
221 + SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
222 + \hline
223 + % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
224 + % \hline
225 + % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
226 + % \hline
227 + % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
228 + \hline
229 + \end{tabular}}
230 + \caption{ Relative difference in \ttdl\ predictions for alternative MC
231 +  samples in
232 + the higher statistics regions SRA and SRB.  These differences
233 + are based on the central values of the predictions.  For a fuller
234 + picture
235 + of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
236 + \label{tab:fracdiff}}
237 + \end{center}
238 + \end{table}
239 +
240 +
241 + In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
242 + for regions A through E.  We can make the following observations based
243 + on this Figure.
244 +
245 + \begin{itemize}
246 + \item In the tighter signal regions we are running out of
247 +  statistics.    
248 + \item Within the limited statistics, there is no evidence that the
249 +  situation changes as we go from signal region A to signal region E.
250 + Therefore, we assess a systematic based on the relatively high
251 + statistics
252 + test in signal region A, and apply the same systematic uncertainty
253 + to all other regions.
254 + \item In order to fully (as opposed as 1$\sigma$) cover the
255 + alternative MC variations in region A we would have to take a
256 + systematic
257 + uncertainty of $\approx 10\%$.  This would be driven by the
258 + scale up/scale down variations, see Table~\ref{tab:fracdiff}.
259 + \end{itemize}
260 +
261 + \begin{table}[!ht]
262 + \begin{center}
263 + \begin{tabular}{l|c|c}
264 + \hline
265 +            Sample
266 +            &                K3   & K4\\
267 + \hline
268 + \hline
269 + Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
270 + Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
271 + Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
272 + Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
273 + Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
274 + Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
275 + Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
276 + Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
277 + \hline
278 + \end{tabular}
279 + \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
280 +  fraction of events with additional hard jets from radiation in
281 +  \ttll\ events. \label{tab:njetskfactors_met100}}
282 + \end{center}
283 + \end{table}
284 +
285 +
286 + However, we have two pieces of information indicating that the
287 + scale up/scale down variations are inconsistent with the data.
288 + These are described below.
289 +
290 + The first piece of information is that the jet multiplicity in the scale
291 + up/scale down sample is the most inconsistent with the data.  This can be shown
292 + in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
293 + $K_3$ and $K_4$ factors of Section~\ref{tab:njetskfactors_met100} for
294 + different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
295 + distribution
296 + for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
297 + and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
298 + equivalent $N_{jets}$ plots for the default Powheg MC, see
299 + Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
300 +
301 + \begin{figure}[hbt]
302 +  \begin{center}
303 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
304 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
305 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
306 +        \caption{
307 +          \label{fig:dileptonnjets_scaleup}%\protect
308 +          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
309 +          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
310 +      \end{center}
311 + \end{figure}
312 +
313 + \begin{figure}[hbt]
314 +  \begin{center}
315 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
316 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
317 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
318 +        \caption{
319 +          \label{fig:dileptonnjets_scaledw}%\protect
320 +          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
321 +          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
322 +      \end{center}
323 + \end{figure}
324 +
325 +
326 + \clearpage
327 +
328 + The second piece of information is that we have performed closure
329 + tests in CR5 using the alternative MC samples.  These are exactly
330 + the same tests as the one performed in Section~\ref{sec:CR5} on the
331 + Powheg sample.  As we argued previously, this is a very powerful
332 + test of the background calculation.
333 + The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
334 + Concentrating on the relatively high statistics CR5A region, we see
335 + for all \ttbar\ MC samples except scale up/scale down we obtain
336 + closure within 1$\sigma$.  The scale up/scale down tests closes
337 + worse, only within 2$\sigma$.  This again is evidence that the
338 + scale up/scale down variations are in disagreement with the data.
339 +
340 + \input{hugeCR5Table.tex}
341 +
342 + Based on the two observations above, we argue that the MC
343 + scale up/scale down variations are too extreme.  We feel that
344 + a reasonable choice would be to take one-half of the scale up/scale
345 + down variations in our MC.  This factor of 1/2 would then bring
346 + the discrepancy in the closure test of
347 + Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
348 + from about 2$\sigma$ to about 1$\sigma$.
349 +
350 + Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
351 + up/scale
352 + down variations by a factor 2, we can see that a systematic
353 + uncertainty
354 + of 6\% would fully cover all of the variations from different MC
355 + samples in SRA and SRB.
356 + {\bf Thus, we take a 6\% systematic uncertainty,  constant as a
357 + function of signal region, as the systematic due to alternative MC
358 + models.}.
359 + Note that this 6\% is also consistent with the level at which we are
360 + able
361 + to test the closure of the method in CR5 for the high statistics
362 + regions
363 + (Table~\ref{tab:hugecr5yields}).
364 +
365 +
366 +
367 +
368 +
369 +
370 + %\begin{table}[!h]
371 + %\begin{center}
372 + %{\footnotesize
373 + %\begin{tabular}{l||c||c|c|c|c|c|c|c}
374 + %\hline
375 + %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
376 + %Up & Scale Down &
377 + %Match Up & Match Down \\
378 + %\hline
379 + %\hline
380 + %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
381 + %\hline
382 + %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
383 + %\hline
384 + %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
385 + %\hline
386 + %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
387 + %\hline
388 + %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
389 + %\hline
390 + %\end{tabular}}
391 + %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
392 + %\label{tab:ttdlalt}}
393 + %\end{center}
394 + %\end{table}
395 +
396 +
397 +
398 +
399 + %\begin{table}[!h]
400 + %\begin{center}
401 + %{\footnotesize
402 + %\begin{tabular}{l||c|c|c|c|c|c|c}
403 + %\hline
404 + %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
405 + %Match Up & Match Down \\
406 + %\hline
407 + %\hline
408 + %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
409 + %\hline
410 + %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
411 + %\hline
412 + %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
413 + %\hline
414 + %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
415 + %\hline
416 + %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
417 + %\hline
418 + %\end{tabular}}
419 + %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
420 + %\label{tab:nsig}}
421 + %\end{center}
422 + %\end{table}
423 +
424 +
425 + %\begin{table}[!h]
426 + %\begin{center}
427 + %\begin{tabular}{l||c|c|c|c}
428 + %\hline
429 + %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
430 + %& $\Delta$ Match \\
431 + %\hline
432 + %\hline
433 + %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
434 + %\hline
435 + %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
436 + %\hline
437 + %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
438 + %\hline
439 + %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
440 + %\hline
441 + %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
442 + %\hline
443 + %\end{tabular}
444 + %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
445 + %\label{tab:devt}}
446 + %\end{center}
447 + %\end{table}
448 +
449 +
450 +
451   \clearpage
452  
453   %
# Line 290 | Line 589 | This is the uncertainty associated with
589   veto performance is modeled by the Monte Carlo.  This uncertainty
590   only applies to the fraction of dilepton BG events that have
591   a second e/$\mu$ or a one prong $\tau \to h$, with
592 < $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is 1/3 (THIS WAS THE
593 < 7 TEV NUMBER, CHECK).  The uncertainty for these events
594 < is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
595 <
297 < \subsubsection{Isolated Track Veto: Tag and Probe Studies}
298 < \label{sec:trkveto}
299 <
300 < [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
301 < ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
592 > $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
593 > Table~\ref{tab:trueisotrk}.
594 > The uncertainty for these events
595 > is 6\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
596  
597   \begin{table}[!h]
598   \begin{center}
599   {\footnotesize
600 < \begin{tabular}{l||c|c|c|c|c}
600 > \begin{tabular}{l||c|c|c|c|c|c|c}
601   \hline
602 < Sample              & SRA & SRB & SRC & SRD & SRE\\
602 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
603   \hline
604   \hline
605 < Muon Frac. \ttdl\ with true iso. trk.    & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$  \\
605 > $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
606   \hline
607   \hline
608 < Electron Frac. \ttdl\ with true iso. trk.        & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$  \\
608 > e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
609   \hline
610   \end{tabular}}
611   \caption{ Fraction of \ttdl\ events with a true isolated track.
# Line 319 | Line 613 | Electron Frac. \ttdl\ with true iso. trk
613   \end{center}
614   \end{table}
615  
616 + \subsubsection{Isolated Track Veto: Tag and Probe Studies}
617 + \label{sec:trkveto}
618 +
619  
620   In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
621   with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
622   to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
623 < we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
623 > we would need to apply a data-to-MC scale factor in order to correctly
624 > predict the \ttll\ background.
625 >
626 > This study
627   addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
628   second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
629   in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
630   procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
631 +
632   Furthermore, we test the data and MC
633   isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
634   directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
# Line 342 | Line 643 | As discussed above, independent studies
643   leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
644   due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
645  
646 < The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
646 > The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
647   All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
648   We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
649   this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
# Line 584 | Line 885 | $\mu$ + $\geq$4 jets   &           $>$ 1
885   %END SECTION TO WRITE OUT
886  
887  
888 < {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
889 < Why not measure $\epsilon_{fake}$ in the b-veto region?}
888 > %{\bf fix me: What you have written in the next paragraph does not
889 > %explain how $\epsilon_{fake}$ is measured.
890 > %Why not measure $\epsilon_{fake}$ in the b-veto region?}
891  
892   %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
893   %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
# Line 613 | Line 915 | Why not measure $\epsilon_{fake}$ in the
915   %      \end{center}
916   %\end{figure}
917  
918 < \subsection{Summary of uncertainties}
919 < \label{sec:bgunc-bottomline}.
918 > % \subsection{Summary of uncertainties}
919 > % \label{sec:bgunc-bottomline}.
920  
921 < THIS NEEDS TO BE WRITTEN
921 > % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines