ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.5 by vimartin, Wed Oct 3 05:48:26 2012 UTC vs.
Revision 1.17 by claudioc, Fri Oct 12 02:41:46 2012 UTC

# Line 1 | Line 1
1   %\section{Systematics Uncertainties on the Background Prediction}
2   %\label{sec:systematics}
3  
4 < [ADD INTRODUCTORY BLURB ON UNCERTAINTIES \\
5 < ADD COMPARISONS OF ALL THE ALTERNATIVE SAMPLES FOR ALL THE SIGNAL
6 < REGIONS \\
7 < LIST ALL THE UNCERTAINTIES INCLUDED AND THEIR VALUES]
4 > In this Section we discuss the systematic uncertainty on the BG
5 > prediction.  This prediction is assembled from the event
6 > counts in the peak region of the transverse mass distribution as
7 > well as Monte Carlo
8 > with a number of correction factors, as described previously.
9 > The
10 > final uncertainty on the prediction is built up from the uncertainties in these
11 > individual
12 > components.
13 > The calculation is done for each signal
14 > region,
15 > for electrons and muons separately.
16 >
17 > The choice to normalizing to the peak region of $M_T$ has the
18 > advantage that some uncertainties, e.g., luminosity, cancel.
19 > It does however introduce complications because it couples
20 > some of the uncertainties in non-trivial ways.  For example,
21 > the primary effect of an uncertainty on the rare MC cross-section
22 > is to introduce an uncertainty in the rare MC background estimate
23 > which comes entirely from MC.   But this uncertainty also affects,
24 > for example,
25 > the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 > $t\bar{t}$ normalization to the peak region (because some of the
27 > events in the peak region are from rare processes).  These effects
28 > are carefully accounted for.  The contribution to the overall
29 > uncertainty from each BG source is tabulated in
30 > Section~\ref{sec:bgunc-bottomline}.
31 > First, however, we discuss the uncertainties one-by-one and we comment
32 > on their impact on the overall result, at least to first order.
33 > Second order effects, such as the one described, are also included.
34 >
35 > \subsection{Statistical uncertainties on the event counts in the $M_T$
36 > peak regions}
37 > These vary between 2\% and 20\%, depending on the signal region
38 > (different
39 > signal regions have different \met\ requirements, thus they also have
40 > different $M_T$ regions used as control.
41 > Since
42 > the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
43 > fractional uncertainty is pretty much carried through all the way to
44 > the end.  There is also an uncertainty from the finite MC event counts
45 > in the $M_T$ peak regions.  This is also included, but it is smaller.
46 >
47 > Normalizing to the $M_T$ peak has the distinct advantages that
48 > uncertainties on luminosity, cross-sections, trigger efficiency,
49 > lepton ID, cancel out.
50 > For the low statistics regions with high \met requirements, the
51 > price to pay in terms of event count statistical uncertainties starts
52 > to become significant.  In the future we may consider a different
53 > normalization startegy in the low statistics regions.
54 >
55 > \subsection{Uncertainty from the choice of $M_T$ peak region}
56 >
57 > This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
58 > If the $M_T$ peak region is not well modelled, this would introduce an
59 > uncertainty.
60 >
61 > We have tested this possibility by recalculating the post veto scale factors for a different
62 > choice
63 > of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 > $50 < M_T < 80$ GeV.  This is shown in Table~\ref{tab:mtpeaksf2}.  
65 > The two results for the scale factors are very compatible.
66 > We do not take any systematic uncertainty for this possible effect.
67 >
68 > \begin{table}[!h]
69 > \begin{center}
70 > {\footnotesize
71 > \begin{tabular}{l||c|c|c|c|c|c|c}
72 > \hline
73 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 > \hline
75 > \hline
76 > \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 > \hline
78 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 > \hline
81 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 > \hline
83 > \hline
84 > e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 > e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 > \hline
87 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 > \hline
89 > \hline
90 > \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 > \hline
92 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 > \hline
95 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 > \hline
97 > \hline
98 > e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 > e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 > \hline
101 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 > \hline
103 > \end{tabular}}
104 > \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 >  \ttdl\ sample, while the post-veto SFs are applied to the single
106 >  lepton samples. The veto SF is shown for comparison across channels.
107 >  The raw MC is used for backgrounds from rare processes.
108 >  The uncertainties are statistical only.
109 > \label{tab:mtpeaksf2}}
110 > \end{center}
111 > \end{table}
112 >
113 >
114 > \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
115 > These are taken as 50\%, uncorrelated.  
116 > The primary effect is to introduce a 50\%
117 > uncertainty
118 > on the $W +$ jets and rare BG
119 > background predictions, respectively.  However they also
120 > have an effect on the other BGs via the $M_T$ peak normalization
121 > in a way that tends to reduce the uncertainty.  This is easy
122 > to understand: if the $W$ cross-section is increased by 50\%, then
123 > the $W$ background goes up.  But the number of $M_T$ peak events
124 > attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125 > scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126 > BG goes down.  
127 >
128 > \subsection{Scale factors for the tail-to-peak ratios for lepton +
129 >  jets top and W events}
130 > These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
131 > They are studied in CR1 and CR2.  The studies are described
132 > in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
133 > we also give the uncertainty on the scale factors.  See
134 > Tables~\ref{tab:cr1yields}
135 > and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top})$.
136 >
137 > \subsection{Uncertainty on extra jet radiation for dilepton
138 >  background}
139 > As discussed in Section~\ref{sec:jetmultiplicity}, the
140 > jet distribution in
141 > $t\bar{t} \to$
142 > dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
143 > it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
144 > comes from data/MC statistics.  This  
145 > result directly in a 3\% uncertainty on the dilepton BG, which is by far
146 > the most important one.
147 >
148  
149   \subsection{Uncertainty on the \ttll\ Acceptance}
150  
# Line 31 | Line 171 | The variations considered are
171    value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
172    \sum_{\mathrm{jets}} \pt^2$.
173   \item Alternative generators: Samples produced with different
174 <  generators include MC@NLO and Powheg (NLO generators) and
35 <  Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
36 <  hadronisation, while POWHEG uses Pythia6.
174 >  generators, Powheg (our default) and Madgraph.
175   \item Modeling of taus: The alternative sample does not include
176 <  Tauola and is otherwise identical to the Powheg sample.  [DONE AT
177 <  7TEV AND FOUND TO BE NEGLIGIBLE]
176 >  Tauola and is otherwise identical to the Powheg sample.
177 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
178   \item The PDF uncertainty is estimated following the PDF4LHC
179    recommendations[CITE]. The events are reweighted using alternative
180    PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
# Line 44 | Line 182 | The variations considered are
182    addition, the NNPDF2.1 set with 100 replicas. The central value is
183    determined from the mean and the uncertainty is derived from the
184    $1\sigma$ range. The overall uncertainty is derived from the envelope of the
185 <  alternative predictions and their uncertainties. [DONE AT 7 TEV AND
186 <  FOUND TO BE NEGLIGIBLE]
187 < \end{itemize}
50 <
185 >  alternative predictions and their uncertainties.
186 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
187 >  \end{itemize}
188  
189   \begin{figure}[hbt]
190    \begin{center}
191 <        \includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png}
191 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
192 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
193 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
194 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
195 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
196          \caption{
197 <          \label{fig:ttllsyst}%\protect
197 >          \label{fig:ttllsyst}\protect
198            Comparison of the \ttll\ central prediction with those using
199            alternative MC samples. The blue band corresponds to the
200            total statistical error for all data and MC samples. The
201            alternative sample predictions are indicated by the
202            datapoints. The uncertainties on the alternative predictions
203            correspond to the uncorrelated statistical uncertainty from
204 <          the size of the alternative sample only.}
204 >          the size of the alternative sample only.  Note the
205 >          suppressed vertical scales.}
206        \end{center}
207      \end{figure}
208  
209  
210 + \begin{table}[!h]
211 + \begin{center}
212 + {\footnotesize
213 + \begin{tabular}{l||c|c|c|c|c|c|c}
214 + \hline
215 + $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
216 + Match Up & Match Down \\
217 + \hline
218 + \hline
219 + SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
220 + \hline
221 + SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
222 + \hline
223 + % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
224 + % \hline
225 + % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
226 + % \hline
227 + % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
228 + \hline
229 + \end{tabular}}
230 + \caption{ Relative difference in \ttdl\ predictions for alternative MC
231 +  samples in
232 + the higher statistics regions SRA and SRB.  These differences
233 + are based on the central values of the predictions.  For a fuller
234 + picture
235 + of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
236 + \label{tab:fracdiff}}
237 + \end{center}
238 + \end{table}
239 +
240 +
241 + In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
242 + for regions A through E.  We can make the following observations based
243 + on this Figure.
244 +
245 + \begin{itemize}
246 + \item In the tighter signal regions we are running out of
247 +  statistics.    
248 + \item Within the limited statistics, there is no evidence that the
249 +  situation changes as we go from signal region A to signal region E.
250 + Therefore, we assess a systematic based on the relatively high
251 + statistics
252 + test in signal region A, and apply the same systematic uncertainty
253 + to all other regions.
254 + \item In order to fully (as opposed as 1$\sigma$) cover the
255 + alternative MC variations in region A we would have to take a
256 + systematic
257 + uncertainty of $\approx 10\%$.  This would be driven by the
258 + scale up/scale down variations, see Table~\ref{tab:fracdiff}.
259 + \end{itemize}
260 +
261 + \begin{table}[!ht]
262 + \begin{center}
263 + \begin{tabular}{l|c|c}
264 + \hline
265 +            Sample
266 +            &                K3   & K4\\
267 + \hline
268 + \hline
269 + Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
270 + Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
271 + Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
272 + Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
273 + Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
274 + Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
275 + Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
276 + Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
277 + \hline
278 + \end{tabular}
279 + \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
280 +  fraction of events with additional hard jets from radiation in
281 +  \ttll\ events. \label{tab:njetskfactors_met100}}
282 + \end{center}
283 + \end{table}
284 +
285 +
286 + However, we have two pieces of information indicating that the
287 + scale up/scale down variations are inconsistent with the data.
288 + These are described below.
289 +
290 + The first piece of information is that the jet multiplicity in the scale
291 + up/scale down sample is the most inconsistent with the data.  This can be shown
292 + in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
293 + $K_3$ and $K_4$ factors of Section~\ref{tab:njetskfactors_met100} for
294 + different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
295 + distribution
296 + for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
297 + and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
298 + equivalent $N_{jets}$ plots for the default Powheg MC, see
299 + Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
300 +
301 + \begin{figure}[hbt]
302 +  \begin{center}
303 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
304 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
305 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
306 +        \caption{
307 +          \label{fig:dileptonnjets_scaleup}%\protect
308 +          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
309 +          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
310 +      \end{center}
311 + \end{figure}
312 +
313 + \begin{figure}[hbt]
314 +  \begin{center}
315 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
316 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
317 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
318 +        \caption{
319 +          \label{fig:dileptonnjets_scaledw}%\protect
320 +          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
321 +          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
322 +      \end{center}
323 + \end{figure}
324 +
325 +
326 + \clearpage
327 +
328 + The second piece of information is that we have performed closure
329 + tests in CR5 using the alternative MC samples.  These are exactly
330 + the same tests as the one performed in Section~\ref{sec:CR5} on the
331 + Powheg sample.  As we argued previously, this is a very powerful
332 + test of the background calculation.
333 + The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
334 + Concentrating on the relatively high statistics CR5A region, we see
335 + for all \ttbar\ MC samples except scale up/scale down we obtain
336 + closure within 1$\sigma$.  The scale up/scale down tests closes
337 + worse, only within 2$\sigma$.  This again is evidence that the
338 + scale up/scale down variations are in disagreement with the data.
339 +
340 + \input{hugeCR5Table.tex}
341 +
342 + Based on the two observations above, we argue that the MC
343 + scale up/scale down variations are too extreme.  We feel that
344 + a reasonable choice would be to take one-half of the scale up/scale
345 + down variations in our MC.  This factor of 1/2 would then bring
346 + the discrepancy in the closure test of
347 + Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
348 + from about 2$\sigma$ to about 1$\sigma$.
349 +
350 + Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
351 + up/scale
352 + down variations by a factor 2, we can see that a systematic
353 + uncertainty
354 + of 6\% would fully cover all of the variations from different MC
355 + samples in SRA and SRB.
356 + {\bf Thus, we take a 6\% systematic uncertainty,  constant as a
357 + function of signal region, as the systematic due to alternative MC
358 + models.}.
359 + Note that this 6\% is also consistent with the level at which we are
360 + able
361 + to test the closure of the method in CR5 for the high statistics
362 + regions
363 + (Table~\ref{tab:hugecr5yields}).
364 +
365 +
366 +
367 +
368 +
369 +
370 + %\begin{table}[!h]
371 + %\begin{center}
372 + %{\footnotesize
373 + %\begin{tabular}{l||c||c|c|c|c|c|c|c}
374 + %\hline
375 + %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
376 + %Up & Scale Down &
377 + %Match Up & Match Down \\
378 + %\hline
379 + %\hline
380 + %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
381 + %\hline
382 + %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
383 + %\hline
384 + %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
385 + %\hline
386 + %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
387 + %\hline
388 + %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
389 + %\hline
390 + %\end{tabular}}
391 + %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
392 + %\label{tab:ttdlalt}}
393 + %\end{center}
394 + %\end{table}
395 +
396 +
397 +
398 +
399 + %\begin{table}[!h]
400 + %\begin{center}
401 + %{\footnotesize
402 + %\begin{tabular}{l||c|c|c|c|c|c|c}
403 + %\hline
404 + %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
405 + %Match Up & Match Down \\
406 + %\hline
407 + %\hline
408 + %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
409 + %\hline
410 + %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
411 + %\hline
412 + %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
413 + %\hline
414 + %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
415 + %\hline
416 + %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
417 + %\hline
418 + %\end{tabular}}
419 + %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
420 + %\label{tab:nsig}}
421 + %\end{center}
422 + %\end{table}
423 +
424 +
425 + %\begin{table}[!h]
426 + %\begin{center}
427 + %\begin{tabular}{l||c|c|c|c}
428 + %\hline
429 + %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
430 + %& $\Delta$ Match \\
431 + %\hline
432 + %\hline
433 + %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
434 + %\hline
435 + %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
436 + %\hline
437 + %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
438 + %\hline
439 + %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
440 + %\hline
441 + %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
442 + %\hline
443 + %\end{tabular}
444 + %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
445 + %\label{tab:devt}}
446 + %\end{center}
447 + %\end{table}
448 +
449 +
450 +
451 + \clearpage
452  
453   %
454   %
# Line 200 | Line 584 | The variations considered are
584   %\end{center}
585   %\end{table}
586  
587 + \subsection{Uncertainty from the isolated track veto}
588 + This is the uncertainty associated with how well the isolated track
589 + veto performance is modeled by the Monte Carlo.  This uncertainty
590 + only applies to the fraction of dilepton BG events that have
591 + a second e/$\mu$ or a one prong $\tau \to h$, with
592 + $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
593 + Table~\ref{tab:trueisotrk}.
594 + The uncertainty for these events
595 + is 6\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
596 +
597 + \begin{table}[!h]
598 + \begin{center}
599 + {\footnotesize
600 + \begin{tabular}{l||c|c|c|c|c|c|c}
601 + \hline
602 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
603 + \hline
604 + \hline
605 + $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
606 + \hline
607 + \hline
608 + e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
609 + \hline
610 + \end{tabular}}
611 + \caption{ Fraction of \ttdl\ events with a true isolated track.
612 + \label{tab:trueisotrk}}
613 + \end{center}
614 + \end{table}
615  
616 < \subsection{Isolated Track Veto: Tag and Probe Studies}
616 > \subsubsection{Isolated Track Veto: Tag and Probe Studies}
617 > \label{sec:trkveto}
618  
206 [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
207 ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
619  
620   In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
621   with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
622   to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
623 < we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
623 > we would need to apply a data-to-MC scale factor in order to correctly
624 > predict the \ttll\ background.
625 >
626 > This study
627   addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
628   second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
629   in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
630   procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
631 +
632   Furthermore, we test the data and MC
633   isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
634   directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
# Line 228 | Line 643 | As discussed above, independent studies
643   leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
644   due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
645  
646 < The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
646 > The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
647   All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
648   We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
649   this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
# Line 250 | Line 665 | The specific criteria for tags and probe
665  
666        \begin{itemize}
667        \item Electron passes full analysis ID/iso selection
668 <      \item \pt\ $>$ 30 GeV, $|\eta|<2.5$
669 <
255 <      \item Matched to 1 of the 2 electron tag-and-probe triggers
256 <        \begin{itemize}
257 <        \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8_Mass30_v*=
258 <        \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_Ele8_Mass30_v*=
259 <        \end{itemize}
668 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
669 >      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
670        \end{itemize}
671  
672      \item{Probe criteria}
# Line 271 | Line 681 | The specific criteria for tags and probe
681        \begin{itemize}
682        \item Muon passes full analysis ID/iso selection
683        \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
684 <      \item Matched to 1 of the 2 electron tag-and-probe triggers
684 >      \item Matched to 1 of the 2 single muon triggers
685          \begin{itemize}
686          \item \verb=HLT_IsoMu30_v*=
687          \item \verb=HLT_IsoMu30_eta2p1_v*=
# Line 289 | Line 699 | The absolute track isolation distributio
699   good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
700   absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
701   In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
702 < efficiencies agree within 7\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
702 > efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
703   For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
704   a data vs. MC discrepancy in the isolated track veto efficiency.
705  
# Line 300 | Line 710 | a data vs. MC discrepancy in the isolate
710  
711   \begin{figure}[hbt]
712    \begin{center}
713 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
714 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
715 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
716 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
717 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
718 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
719 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
720 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
721 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
722 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
713 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
714 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
715 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
716 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
717 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
718 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
719 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
720 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
721 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
722 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
723          \caption{
724            \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
725   for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
# Line 324 | Line 734 | for events with the \njets\ requirement
734   \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
735   on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
736   jet multiplicity requirements.}
737 < \begin{tabular}{l|l|c|c|c|c|c}
737 > \begin{tabular}{l|c|c|c|c|c}
738 >
739 > %Electrons:
740 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
741 > %Total MC yields        : 2497277
742 > %Total DATA yields      : 2649453
743 > %Muons:
744 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
745 > %Total MC yields        : 3749863
746 > %Total DATA yields      : 4210022
747 > %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
748 > %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
749 >
750   \hline
751   \hline
752 < e + $\geq$0 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
752 > e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
753   \hline
754 <      data   &  0.088 $\pm$ 0.0003   &  0.030 $\pm$ 0.0002   &  0.013 $\pm$ 0.0001   &  0.007 $\pm$ 0.0001   &  0.005 $\pm$ 0.0001  \\
755 <        mc   &  0.087 $\pm$ 0.0001   &  0.030 $\pm$ 0.0001   &  0.014 $\pm$ 0.0001   &  0.008 $\pm$ 0.0000   &  0.005 $\pm$ 0.0000  \\
756 <   data/mc   &     1.01 $\pm$ 0.00   &     0.99 $\pm$ 0.01   &     0.97 $\pm$ 0.01   &     0.95 $\pm$ 0.01   &     0.93 $\pm$ 0.01  \\
754 >      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
755 >        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
756 >   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
757 >
758   \hline
759   \hline
760 < $\mu$ + $\geq$0 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
760 > $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
761   \hline
762 <      data   &  0.087 $\pm$ 0.0002   &  0.031 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.008 $\pm$ 0.0001   &  0.005 $\pm$ 0.0001  \\
763 <        mc   &  0.085 $\pm$ 0.0001   &  0.030 $\pm$ 0.0001   &  0.014 $\pm$ 0.0000   &  0.008 $\pm$ 0.0000   &  0.005 $\pm$ 0.0000  \\
764 <   data/mc   &     1.02 $\pm$ 0.00   &     1.06 $\pm$ 0.00   &     1.06 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
762 >      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
763 >        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
764 >   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
765 >
766   \hline
343 \hline
344 e + $\geq$1 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
767   \hline
768 <      data   &  0.099 $\pm$ 0.0008   &  0.038 $\pm$ 0.0005   &  0.019 $\pm$ 0.0004   &  0.011 $\pm$ 0.0003   &  0.008 $\pm$ 0.0002  \\
347 <        mc   &  0.100 $\pm$ 0.0004   &  0.038 $\pm$ 0.0003   &  0.019 $\pm$ 0.0002   &  0.012 $\pm$ 0.0002   &  0.008 $\pm$ 0.0001  \\
348 <   data/mc   &     0.99 $\pm$ 0.01   &     1.00 $\pm$ 0.02   &     0.99 $\pm$ 0.02   &     0.98 $\pm$ 0.03   &     0.97 $\pm$ 0.03  \\
768 > e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
769   \hline
770 +      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
771 +        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
772 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
773 +
774   \hline
351 $\mu$ + $\geq$1 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
775   \hline
776 <      data   &  0.100 $\pm$ 0.0006   &  0.041 $\pm$ 0.0004   &  0.022 $\pm$ 0.0003   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0002  \\
354 <        mc   &  0.099 $\pm$ 0.0004   &  0.039 $\pm$ 0.0002   &  0.020 $\pm$ 0.0002   &  0.013 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001  \\
355 <   data/mc   &     1.01 $\pm$ 0.01   &     1.05 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.06 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
776 > $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
777   \hline
778 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
779 +        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
780 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
781 +
782   \hline
358 e + $\geq$2 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
783   \hline
784 <      data   &  0.105 $\pm$ 0.0020   &  0.042 $\pm$ 0.0013   &  0.021 $\pm$ 0.0009   &  0.013 $\pm$ 0.0007   &  0.009 $\pm$ 0.0006  \\
361 <        mc   &  0.109 $\pm$ 0.0011   &  0.043 $\pm$ 0.0007   &  0.021 $\pm$ 0.0005   &  0.013 $\pm$ 0.0004   &  0.009 $\pm$ 0.0003  \\
362 <   data/mc   &     0.96 $\pm$ 0.02   &     0.97 $\pm$ 0.03   &     1.00 $\pm$ 0.05   &     1.01 $\pm$ 0.06   &     0.97 $\pm$ 0.08  \\
784 > e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
785   \hline
786 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
787 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
788 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
789 +
790   \hline
365 $\mu$ + $\geq$2 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
791   \hline
792 <      data   &  0.106 $\pm$ 0.0016   &  0.045 $\pm$ 0.0011   &  0.025 $\pm$ 0.0008   &  0.016 $\pm$ 0.0007   &  0.012 $\pm$ 0.0006  \\
793 <        mc   &  0.108 $\pm$ 0.0009   &  0.044 $\pm$ 0.0006   &  0.024 $\pm$ 0.0004   &  0.016 $\pm$ 0.0004   &  0.011 $\pm$ 0.0003  \\
794 <   data/mc   &     0.98 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.04 $\pm$ 0.04   &     1.04 $\pm$ 0.05   &     1.06 $\pm$ 0.06  \\
792 > $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
793 > \hline
794 >      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
795 >        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
796 >   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
797 >
798   \hline
799   \hline
800 < e + $\geq$3 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
800 > e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
801   \hline
802 <      data   &  0.117 $\pm$ 0.0055   &  0.051 $\pm$ 0.0038   &  0.029 $\pm$ 0.0029   &  0.018 $\pm$ 0.0023   &  0.012 $\pm$ 0.0019  \\
803 <        mc   &  0.120 $\pm$ 0.0031   &  0.052 $\pm$ 0.0021   &  0.027 $\pm$ 0.0015   &  0.018 $\pm$ 0.0012   &  0.013 $\pm$ 0.0011  \\
804 <   data/mc   &     0.97 $\pm$ 0.05   &     0.99 $\pm$ 0.08   &     1.10 $\pm$ 0.13   &     1.03 $\pm$ 0.15   &     0.91 $\pm$ 0.16  \\
802 >      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
803 >        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
804 >   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
805 >
806   \hline
807   \hline
808 < $\mu$ + $\geq$3 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
808 > $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
809   \hline
810 <      data   &  0.111 $\pm$ 0.0044   &  0.050 $\pm$ 0.0030   &  0.029 $\pm$ 0.0024   &  0.019 $\pm$ 0.0019   &  0.014 $\pm$ 0.0017  \\
811 <        mc   &  0.115 $\pm$ 0.0025   &  0.051 $\pm$ 0.0017   &  0.030 $\pm$ 0.0013   &  0.020 $\pm$ 0.0011   &  0.015 $\pm$ 0.0009  \\
812 <   data/mc   &     0.97 $\pm$ 0.04   &     0.97 $\pm$ 0.07   &     0.95 $\pm$ 0.09   &     0.97 $\pm$ 0.11   &     0.99 $\pm$ 0.13  \\
810 >      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
811 >        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
812 >   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
813 >
814   \hline
815   \hline
816 < e + $\geq$4 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
816 > e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
817   \hline
818 <      data   &  0.113 $\pm$ 0.0148   &  0.048 $\pm$ 0.0100   &  0.033 $\pm$ 0.0083   &  0.020 $\pm$ 0.0065   &  0.017 $\pm$ 0.0062  \\
819 <        mc   &  0.146 $\pm$ 0.0092   &  0.064 $\pm$ 0.0064   &  0.034 $\pm$ 0.0048   &  0.024 $\pm$ 0.0040   &  0.021 $\pm$ 0.0037  \\
820 <   data/mc   &     0.78 $\pm$ 0.11   &     0.74 $\pm$ 0.17   &     0.96 $\pm$ 0.28   &     0.82 $\pm$ 0.30   &     0.85 $\pm$ 0.34  \\
818 >      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
819 >        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
820 >   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
821 >
822   \hline
823   \hline
824 < $\mu$ + $\geq$4 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
824 > $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
825   \hline
826 <      data   &  0.130 $\pm$ 0.0128   &  0.052 $\pm$ 0.0085   &  0.028 $\pm$ 0.0063   &  0.019 $\pm$ 0.0052   &  0.019 $\pm$ 0.0052  \\
827 <        mc   &  0.105 $\pm$ 0.0064   &  0.045 $\pm$ 0.0043   &  0.027 $\pm$ 0.0034   &  0.019 $\pm$ 0.0028   &  0.014 $\pm$ 0.0024  \\
828 <   data/mc   &     1.23 $\pm$ 0.14   &     1.18 $\pm$ 0.22   &     1.03 $\pm$ 0.27   &     1.01 $\pm$ 0.32   &     1.37 $\pm$ 0.45  \\
826 >      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
827 >        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
828 >   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
829 >
830   \hline
831   \hline
832  
# Line 403 | Line 835 | jet multiplicity requirements.}
835   \end{table}
836  
837  
406
838   %Figure.~\ref{fig:reliso} compares the relative track isolation
839   %for events with a track with $\pt > 10~\GeV$ in addition to a selected
840   %muon for $\Z+4$ jet events and various \ttll\ components. The
# Line 454 | Line 885 | jet multiplicity requirements.}
885   %END SECTION TO WRITE OUT
886  
887  
888 < {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
889 < Why not measure $\epsilon_{fake}$ in the b-veto region?}
888 > %{\bf fix me: What you have written in the next paragraph does not
889 > %explain how $\epsilon_{fake}$ is measured.
890 > %Why not measure $\epsilon_{fake}$ in the b-veto region?}
891  
892   %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
893   %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
# Line 483 | Line 915 | Why not measure $\epsilon_{fake}$ in the
915   %      \end{center}
916   %\end{figure}
917  
918 + % \subsection{Summary of uncertainties}
919 + % \label{sec:bgunc-bottomline}.
920 +
921 + % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines