1 |
|
%\section{Systematics Uncertainties on the Background Prediction} |
2 |
|
%\label{sec:systematics} |
3 |
|
|
4 |
– |
[DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET |
5 |
– |
FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS |
6 |
– |
AND |
7 |
– |
WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL |
8 |
– |
UNCERTAINTIES |
9 |
– |
CORRECTLY THROUGH. WE WILL DO IT ONCE WE HAVE SETTLED ON THE |
10 |
– |
INDIVIDUAL PIECES WHICH ARE STILL IN FLUX] |
11 |
– |
|
4 |
|
In this Section we discuss the systematic uncertainty on the BG |
5 |
|
prediction. This prediction is assembled from the event |
6 |
|
counts in the peak region of the transverse mass distribution as |
34 |
|
|
35 |
|
\subsection{Statistical uncertainties on the event counts in the $M_T$ |
36 |
|
peak regions} |
37 |
< |
These vary between XX and XX \%, depending on the signal region |
37 |
> |
These vary between 2\% and 20\%, depending on the signal region |
38 |
|
(different |
39 |
|
signal regions have different \met\ requirements, thus they also have |
40 |
|
different $M_T$ regions used as control. |
44 |
|
the end. There is also an uncertainty from the finite MC event counts |
45 |
|
in the $M_T$ peak regions. This is also included, but it is smaller. |
46 |
|
|
47 |
+ |
Normalizing to the $M_T$ peak has the distinct advantages that |
48 |
+ |
uncertainties on luminosity, cross-sections, trigger efficiency, |
49 |
+ |
lepton ID, cancel out. |
50 |
+ |
For the low statistics regions with high \met requirements, the |
51 |
+ |
price to pay in terms of event count statistical uncertainties starts |
52 |
+ |
to become significant. In the future we may consider a different |
53 |
+ |
normalization startegy in the low statistics regions. |
54 |
+ |
|
55 |
|
\subsection{Uncertainty from the choice of $M_T$ peak region} |
56 |
< |
IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT |
57 |
< |
LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY. WE NEED TO LOOK |
58 |
< |
INTO THIS AGAIN |
56 |
> |
|
57 |
> |
This choice affects the scale factors of Table~\ref{tab:mtpeaksf}. |
58 |
> |
If the $M_T$ peak region is not well modelled, this would introduce an |
59 |
> |
uncertainty. |
60 |
> |
|
61 |
> |
We have tested this possibility by recalculating the post veto scale factors for a different |
62 |
> |
choice |
63 |
> |
of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default |
64 |
> |
$50 < M_T < 80$ GeV. This is shown in Table~\ref{tab:mtpeaksf2}. |
65 |
> |
The two results for the scale factors are very compatible. |
66 |
> |
We do not take any systematic uncertainty for this possible effect. |
67 |
> |
|
68 |
> |
\begin{table}[!h] |
69 |
> |
\begin{center} |
70 |
> |
{\footnotesize |
71 |
> |
\begin{tabular}{l||c|c|c|c|c|c|c} |
72 |
> |
\hline |
73 |
> |
Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\ |
74 |
> |
\hline |
75 |
> |
\hline |
76 |
> |
\multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\ |
77 |
> |
\hline |
78 |
> |
$\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\ |
79 |
> |
$\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\ |
80 |
> |
\hline |
81 |
> |
$\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\ |
82 |
> |
\hline |
83 |
> |
\hline |
84 |
> |
e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\ |
85 |
> |
e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\ |
86 |
> |
\hline |
87 |
> |
e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\ |
88 |
> |
\hline |
89 |
> |
\hline |
90 |
> |
\multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\ |
91 |
> |
\hline |
92 |
> |
$\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\ |
93 |
> |
$\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\ |
94 |
> |
\hline |
95 |
> |
$\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\ |
96 |
> |
\hline |
97 |
> |
\hline |
98 |
> |
e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\ |
99 |
> |
e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\ |
100 |
> |
\hline |
101 |
> |
e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\ |
102 |
> |
\hline |
103 |
> |
\end{tabular}} |
104 |
> |
\caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the |
105 |
> |
\ttdl\ sample, while the post-veto SFs are applied to the single |
106 |
> |
lepton samples. The veto SF is shown for comparison across channels. |
107 |
> |
The raw MC is used for backgrounds from rare processes. |
108 |
> |
The uncertainties are statistical only. |
109 |
> |
\label{tab:mtpeaksf2}} |
110 |
> |
\end{center} |
111 |
> |
\end{table} |
112 |
> |
|
113 |
|
|
114 |
|
\subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections} |
115 |
|
These are taken as 50\%, uncorrelated. |
130 |
|
These tail-to-peak ratios are described in Section~\ref{sec:ttp}. |
131 |
|
They are studied in CR1 and CR2. The studies are described |
132 |
|
in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where |
133 |
< |
we also give the uncertainty on the scale factors. |
133 |
> |
we also give the uncertainty on the scale factors. See |
134 |
> |
Tables~\ref{tab:cr1yields} |
135 |
> |
and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top})$. |
136 |
|
|
137 |
|
\subsection{Uncertainty on extra jet radiation for dilepton |
138 |
|
background} |
140 |
|
jet distribution in |
141 |
|
$t\bar{t} \to$ |
142 |
|
dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make |
143 |
< |
it agree with the data. The XX\% uncertainties on $K_3$ and $K_4$ |
143 |
> |
it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$ |
144 |
|
comes from data/MC statistics. This |
145 |
< |
result directly in a XX\% uncertainty on the dilepton BG, which is by far |
145 |
> |
result directly in a 3\% uncertainty on the dilepton BG, which is by far |
146 |
|
the most important one. |
147 |
|
|
148 |
|
|
171 |
|
value for the scale used is $Q^2 = m_{\mathrm{top}}^2 + |
172 |
|
\sum_{\mathrm{jets}} \pt^2$. |
173 |
|
\item Alternative generators: Samples produced with different |
174 |
< |
generators include MC@NLO and Powheg (NLO generators) and |
119 |
< |
Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the |
120 |
< |
hadronisation, while POWHEG uses Pythia6. |
174 |
> |
generators, Powheg (our default) and Madgraph. |
175 |
|
\item Modeling of taus: The alternative sample does not include |
176 |
|
Tauola and is otherwise identical to the Powheg sample. |
177 |
|
This effect was studied earlier using 7~TeV samples and found to be negligible. |
186 |
|
This effect was studied earlier using 7~TeV samples and found to be negligible. |
187 |
|
\end{itemize} |
188 |
|
|
135 |
– |
|
189 |
|
\begin{figure}[hbt] |
190 |
|
\begin{center} |
191 |
< |
\includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png} |
191 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}% |
192 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf} |
193 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}% |
194 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf} |
195 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf} |
196 |
|
\caption{ |
197 |
< |
\label{fig:ttllsyst}%\protect |
197 |
> |
\label{fig:ttllsyst}\protect |
198 |
|
Comparison of the \ttll\ central prediction with those using |
199 |
|
alternative MC samples. The blue band corresponds to the |
200 |
|
total statistical error for all data and MC samples. The |
201 |
|
alternative sample predictions are indicated by the |
202 |
|
datapoints. The uncertainties on the alternative predictions |
203 |
|
correspond to the uncorrelated statistical uncertainty from |
204 |
< |
the size of the alternative sample only. |
205 |
< |
[TO BE UPDATED WITH THE LATEST SELECTION AND SFS]} |
204 |
> |
the size of the alternative sample only. Note the |
205 |
> |
suppressed vertical scales.} |
206 |
|
\end{center} |
207 |
|
\end{figure} |
208 |
|
|
209 |
+ |
|
210 |
+ |
\begin{table}[!h] |
211 |
+ |
\begin{center} |
212 |
+ |
{\footnotesize |
213 |
+ |
\begin{tabular}{l||c|c|c|c|c|c|c} |
214 |
+ |
\hline |
215 |
+ |
$\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down & |
216 |
+ |
Match Up & Match Down \\ |
217 |
+ |
\hline |
218 |
+ |
\hline |
219 |
+ |
SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\ |
220 |
+ |
\hline |
221 |
+ |
SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\ |
222 |
+ |
\hline |
223 |
+ |
% SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\ |
224 |
+ |
% \hline |
225 |
+ |
% SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\ |
226 |
+ |
% \hline |
227 |
+ |
% SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\ |
228 |
+ |
\hline |
229 |
+ |
\end{tabular}} |
230 |
+ |
\caption{ Relative difference in \ttdl\ predictions for alternative MC |
231 |
+ |
samples in |
232 |
+ |
the higher statistics regions SRA and SRB. These differences |
233 |
+ |
are based on the central values of the predictions. For a fuller |
234 |
+ |
picture |
235 |
+ |
of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}. |
236 |
+ |
\label{tab:fracdiff}} |
237 |
+ |
\end{center} |
238 |
+ |
\end{table} |
239 |
+ |
|
240 |
+ |
|
241 |
+ |
In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions |
242 |
+ |
for regions A through E. We can make the following observations based |
243 |
+ |
on this Figure. |
244 |
+ |
|
245 |
+ |
\begin{itemize} |
246 |
+ |
\item In the tighter signal regions we are running out of |
247 |
+ |
statistics. |
248 |
+ |
\item Within the limited statistics, there is no evidence that the |
249 |
+ |
situation changes as we go from signal region A to signal region E. |
250 |
+ |
Therefore, we assess a systematic based on the relatively high |
251 |
+ |
statistics |
252 |
+ |
test in signal region A, and apply the same systematic uncertainty |
253 |
+ |
to all other regions. |
254 |
+ |
\item In order to fully (as opposed as 1$\sigma$) cover the |
255 |
+ |
alternative MC variations in region A we would have to take a |
256 |
+ |
systematic |
257 |
+ |
uncertainty of $\approx 10\%$. This would be driven by the |
258 |
+ |
scale up/scale down variations, see Table~\ref{tab:fracdiff}. |
259 |
+ |
\end{itemize} |
260 |
+ |
|
261 |
+ |
\begin{table}[!ht] |
262 |
+ |
\begin{center} |
263 |
+ |
\begin{tabular}{l|c|c} |
264 |
+ |
\hline |
265 |
+ |
Sample |
266 |
+ |
& K3 & K4\\ |
267 |
+ |
\hline |
268 |
+ |
\hline |
269 |
+ |
Powheg & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\ |
270 |
+ |
Madgraph & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\ |
271 |
+ |
Mass Up & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\ |
272 |
+ |
Mass Down & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\ |
273 |
+ |
Scale Up & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\ |
274 |
+ |
Scale Down & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\ |
275 |
+ |
Match Up & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\ |
276 |
+ |
Match Down & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\ |
277 |
+ |
\hline |
278 |
+ |
\end{tabular} |
279 |
+ |
\caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the |
280 |
+ |
fraction of events with additional hard jets from radiation in |
281 |
+ |
\ttll\ events. \label{tab:njetskfactors_met100}} |
282 |
+ |
\end{center} |
283 |
+ |
\end{table} |
284 |
+ |
|
285 |
+ |
|
286 |
+ |
However, we have two pieces of information indicating that the |
287 |
+ |
scale up/scale down variations are inconsistent with the data. |
288 |
+ |
These are described below. |
289 |
+ |
|
290 |
+ |
The first piece of information is that the jet multiplicity in the scale |
291 |
+ |
up/scale down sample is the most inconsistent with the data. This can be shown |
292 |
+ |
in Table~\ref{tab:njetskfactors_met100}, where we tabulate the |
293 |
+ |
$K_3$ and $K_4$ factors of Section~\ref{tab:njetskfactors_met100} for |
294 |
+ |
different \ttbar\ MC samples. The data/MC disagreement in the $N_{jets}$ |
295 |
+ |
distribution |
296 |
+ |
for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup} |
297 |
+ |
and~\ref{fig:dileptonnjets_scaledw}. This should be compared with the |
298 |
+ |
equivalent $N_{jets}$ plots for the default Powheg MC, see |
299 |
+ |
Fig.~\ref{fig:dileptonnjets}, which agrees much better with data. |
300 |
+ |
|
301 |
+ |
\begin{figure}[hbt] |
302 |
+ |
\begin{center} |
303 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf} |
304 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}% |
305 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf} |
306 |
+ |
\caption{ |
307 |
+ |
\label{fig:dileptonnjets_scaleup}%\protect |
308 |
+ |
SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\ |
309 |
+ |
(top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.} |
310 |
+ |
\end{center} |
311 |
+ |
\end{figure} |
312 |
+ |
|
313 |
+ |
\begin{figure}[hbt] |
314 |
+ |
\begin{center} |
315 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf} |
316 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}% |
317 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf} |
318 |
+ |
\caption{ |
319 |
+ |
\label{fig:dileptonnjets_scaledw}%\protect |
320 |
+ |
SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\ |
321 |
+ |
(top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.} |
322 |
+ |
\end{center} |
323 |
+ |
\end{figure} |
324 |
+ |
|
325 |
+ |
|
326 |
+ |
\clearpage |
327 |
+ |
|
328 |
+ |
The second piece of information is that we have performed closure |
329 |
+ |
tests in CR5 using the alternative MC samples. These are exactly |
330 |
+ |
the same tests as the one performed in Section~\ref{sec:CR5} on the |
331 |
+ |
Powheg sample. As we argued previously, this is a very powerful |
332 |
+ |
test of the background calculation. |
333 |
+ |
The results of this test are summarized in Table~\ref{tab:hugecr5yields}. |
334 |
+ |
Concentrating on the relatively high statistics CR5A region, we see |
335 |
+ |
for all \ttbar\ MC samples except scale up/scale down we obtain |
336 |
+ |
closure within 1$\sigma$. The scale up/scale down tests closes |
337 |
+ |
worse, only within 2$\sigma$. This again is evidence that the |
338 |
+ |
scale up/scale down variations are in disagreement with the data. |
339 |
+ |
|
340 |
+ |
\input{hugeCR5Table.tex} |
341 |
+ |
|
342 |
+ |
Based on the two observations above, we argue that the MC |
343 |
+ |
scale up/scale down variations are too extreme. We feel that |
344 |
+ |
a reasonable choice would be to take one-half of the scale up/scale |
345 |
+ |
down variations in our MC. This factor of 1/2 would then bring |
346 |
+ |
the discrepancy in the closure test of |
347 |
+ |
Table~\ref{tab:hugecr5yields} for the scale up/scale down variations |
348 |
+ |
from about 2$\sigma$ to about 1$\sigma$. |
349 |
+ |
|
350 |
+ |
Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale |
351 |
+ |
up/scale |
352 |
+ |
down variations by a factor 2, we can see that a systematic |
353 |
+ |
uncertainty |
354 |
+ |
of 6\% would fully cover all of the variations from different MC |
355 |
+ |
samples in SRA and SRB. |
356 |
+ |
{\bf Thus, we take a 6\% systematic uncertainty, constant as a |
357 |
+ |
function of signal region, as the systematic due to alternative MC |
358 |
+ |
models.}. |
359 |
+ |
Note that this 6\% is also consistent with the level at which we are |
360 |
+ |
able |
361 |
+ |
to test the closure of the method in CR5 for the high statistics |
362 |
+ |
regions |
363 |
+ |
(Table~\ref{tab:hugecr5yields}). |
364 |
+ |
|
365 |
+ |
|
366 |
+ |
|
367 |
+ |
|
368 |
+ |
|
369 |
+ |
|
370 |
+ |
%\begin{table}[!h] |
371 |
+ |
%\begin{center} |
372 |
+ |
%{\footnotesize |
373 |
+ |
%\begin{tabular}{l||c||c|c|c|c|c|c|c} |
374 |
+ |
%\hline |
375 |
+ |
%Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale |
376 |
+ |
%Up & Scale Down & |
377 |
+ |
%Match Up & Match Down \\ |
378 |
+ |
%\hline |
379 |
+ |
%\hline |
380 |
+ |
%SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\ |
381 |
+ |
%\hline |
382 |
+ |
%SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\ |
383 |
+ |
%\hline |
384 |
+ |
%SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\ |
385 |
+ |
%\hline |
386 |
+ |
%SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\ |
387 |
+ |
%\hline |
388 |
+ |
%SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\ |
389 |
+ |
%\hline |
390 |
+ |
%\end{tabular}} |
391 |
+ |
%\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only. |
392 |
+ |
%\label{tab:ttdlalt}} |
393 |
+ |
%\end{center} |
394 |
+ |
%\end{table} |
395 |
+ |
|
396 |
+ |
|
397 |
+ |
|
398 |
+ |
|
399 |
+ |
%\begin{table}[!h] |
400 |
+ |
%\begin{center} |
401 |
+ |
%{\footnotesize |
402 |
+ |
%\begin{tabular}{l||c|c|c|c|c|c|c} |
403 |
+ |
%\hline |
404 |
+ |
%$N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down & |
405 |
+ |
%Match Up & Match Down \\ |
406 |
+ |
%\hline |
407 |
+ |
%\hline |
408 |
+ |
%SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\ |
409 |
+ |
%\hline |
410 |
+ |
%SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\ |
411 |
+ |
%\hline |
412 |
+ |
%SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\ |
413 |
+ |
%\hline |
414 |
+ |
%SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\ |
415 |
+ |
%\hline |
416 |
+ |
%SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\ |
417 |
+ |
%\hline |
418 |
+ |
%\end{tabular}} |
419 |
+ |
%\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples. |
420 |
+ |
%\label{tab:nsig}} |
421 |
+ |
%\end{center} |
422 |
+ |
%\end{table} |
423 |
+ |
|
424 |
+ |
|
425 |
+ |
%\begin{table}[!h] |
426 |
+ |
%\begin{center} |
427 |
+ |
%\begin{tabular}{l||c|c|c|c} |
428 |
+ |
%\hline |
429 |
+ |
%Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale |
430 |
+ |
%& $\Delta$ Match \\ |
431 |
+ |
%\hline |
432 |
+ |
%\hline |
433 |
+ |
%SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\ |
434 |
+ |
%\hline |
435 |
+ |
%SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\ |
436 |
+ |
%\hline |
437 |
+ |
%SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\ |
438 |
+ |
%\hline |
439 |
+ |
%SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\ |
440 |
+ |
%\hline |
441 |
+ |
%SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\ |
442 |
+ |
%\hline |
443 |
+ |
%\end{tabular} |
444 |
+ |
%\caption{ Av. difference in \ttdl\ events for alternative sample pairs. |
445 |
+ |
%\label{tab:devt}} |
446 |
+ |
%\end{center} |
447 |
+ |
%\end{table} |
448 |
+ |
|
449 |
+ |
|
450 |
+ |
|
451 |
|
\clearpage |
452 |
|
|
453 |
|
% |
589 |
|
veto performance is modeled by the Monte Carlo. This uncertainty |
590 |
|
only applies to the fraction of dilepton BG events that have |
591 |
|
a second e/$\mu$ or a one prong $\tau \to h$, with |
592 |
< |
$P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is 1/3 (THIS WAS THE |
593 |
< |
7 TEV NUMBER, CHECK). The uncertainty for these events |
594 |
< |
is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto} |
592 |
> |
$P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see |
593 |
> |
Table~\ref{tab:trueisotrk}. |
594 |
> |
The uncertainty for these events |
595 |
> |
is 6\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto} |
596 |
> |
|
597 |
> |
\begin{table}[!h] |
598 |
> |
\begin{center} |
599 |
> |
{\footnotesize |
600 |
> |
\begin{tabular}{l||c|c|c|c|c|c|c} |
601 |
> |
\hline |
602 |
> |
Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\ |
603 |
> |
\hline |
604 |
> |
\hline |
605 |
> |
$\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\ |
606 |
> |
\hline |
607 |
> |
\hline |
608 |
> |
e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\ |
609 |
> |
\hline |
610 |
> |
\end{tabular}} |
611 |
> |
\caption{ Fraction of \ttdl\ events with a true isolated track. |
612 |
> |
\label{tab:trueisotrk}} |
613 |
> |
\end{center} |
614 |
> |
\end{table} |
615 |
|
|
616 |
|
\subsubsection{Isolated Track Veto: Tag and Probe Studies} |
617 |
|
\label{sec:trkveto} |
618 |
|
|
300 |
– |
[EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\ |
301 |
– |
ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK] |
619 |
|
|
620 |
|
In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies |
621 |
|
with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency |
622 |
|
to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case |
623 |
< |
we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study |
623 |
> |
we would need to apply a data-to-MC scale factor in order to correctly |
624 |
> |
predict the \ttll\ background. |
625 |
> |
|
626 |
> |
This study |
627 |
|
addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a |
628 |
|
second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies |
629 |
|
in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization |
630 |
|
procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto. |
631 |
+ |
|
632 |
|
Furthermore, we test the data and MC |
633 |
|
isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not |
634 |
|
directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products |
643 |
|
leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background |
644 |
|
due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible. |
645 |
|
|
646 |
< |
The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample. |
646 |
> |
The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample. |
647 |
|
All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV. |
648 |
|
We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to |
649 |
|
this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do |
665 |
|
|
666 |
|
\begin{itemize} |
667 |
|
\item Electron passes full analysis ID/iso selection |
668 |
< |
\item \pt\ $>$ 30 GeV, $|\eta|<2.5$ |
669 |
< |
|
349 |
< |
\item Matched to 1 of the 2 electron tag-and-probe triggers |
350 |
< |
\begin{itemize} |
351 |
< |
\item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8_Mass30_v*= |
352 |
< |
\item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_Ele8_Mass30_v*= |
353 |
< |
\end{itemize} |
668 |
> |
\item \pt\ $>$ 30 GeV, $|\eta|<2.1$ |
669 |
> |
\item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*= |
670 |
|
\end{itemize} |
671 |
|
|
672 |
|
\item{Probe criteria} |
681 |
|
\begin{itemize} |
682 |
|
\item Muon passes full analysis ID/iso selection |
683 |
|
\item \pt\ $>$ 30 GeV, $|\eta|<2.1$ |
684 |
< |
\item Matched to 1 of the 2 electron tag-and-probe triggers |
684 |
> |
\item Matched to 1 of the 2 single muon triggers |
685 |
|
\begin{itemize} |
686 |
|
\item \verb=HLT_IsoMu30_v*= |
687 |
|
\item \verb=HLT_IsoMu30_eta2p1_v*= |
699 |
|
good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy |
700 |
|
absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}. |
701 |
|
In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC |
702 |
< |
efficiencies agree within 7\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency. |
702 |
> |
efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency. |
703 |
|
For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for |
704 |
|
a data vs. MC discrepancy in the isolated track veto efficiency. |
705 |
|
|
710 |
|
|
711 |
|
\begin{figure}[hbt] |
712 |
|
\begin{center} |
713 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}% |
714 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf} |
715 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}% |
716 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf} |
717 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}% |
718 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf} |
719 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}% |
720 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf} |
721 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}% |
722 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf} |
713 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}% |
714 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf} |
715 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}% |
716 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf} |
717 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}% |
718 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf} |
719 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}% |
720 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf} |
721 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}% |
722 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf} |
723 |
|
\caption{ |
724 |
|
\label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right) |
725 |
|
for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4. |
734 |
|
\caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements |
735 |
|
on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various |
736 |
|
jet multiplicity requirements.} |
737 |
< |
\begin{tabular}{l|l|c|c|c|c|c} |
737 |
> |
\begin{tabular}{l|c|c|c|c|c} |
738 |
> |
|
739 |
> |
%Electrons: |
740 |
> |
%Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05) |
741 |
> |
%Total MC yields : 2497277 |
742 |
> |
%Total DATA yields : 2649453 |
743 |
> |
%Muons: |
744 |
> |
%Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05) |
745 |
> |
%Total MC yields : 3749863 |
746 |
> |
%Total DATA yields : 4210022 |
747 |
> |
%Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1 |
748 |
> |
%Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created |
749 |
> |
|
750 |
|
\hline |
751 |
|
\hline |
752 |
< |
e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
752 |
> |
e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
753 |
|
\hline |
754 |
< |
data & 0.088 $\pm$ 0.0003 & 0.030 $\pm$ 0.0002 & 0.013 $\pm$ 0.0001 & 0.007 $\pm$ 0.0001 & 0.005 $\pm$ 0.0001 \\ |
755 |
< |
mc & 0.087 $\pm$ 0.0001 & 0.030 $\pm$ 0.0001 & 0.014 $\pm$ 0.0001 & 0.008 $\pm$ 0.0000 & 0.005 $\pm$ 0.0000 \\ |
756 |
< |
data/mc & 1.01 $\pm$ 0.00 & 0.99 $\pm$ 0.01 & 0.97 $\pm$ 0.01 & 0.95 $\pm$ 0.01 & 0.93 $\pm$ 0.01 \\ |
754 |
> |
data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\ |
755 |
> |
mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\ |
756 |
> |
data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\ |
757 |
> |
|
758 |
|
\hline |
759 |
|
\hline |
760 |
< |
$\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
760 |
> |
$\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
761 |
|
\hline |
762 |
< |
data & 0.087 $\pm$ 0.0002 & 0.031 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.008 $\pm$ 0.0001 & 0.005 $\pm$ 0.0001 \\ |
763 |
< |
mc & 0.085 $\pm$ 0.0001 & 0.030 $\pm$ 0.0001 & 0.014 $\pm$ 0.0000 & 0.008 $\pm$ 0.0000 & 0.005 $\pm$ 0.0000 \\ |
764 |
< |
data/mc & 1.02 $\pm$ 0.00 & 1.06 $\pm$ 0.00 & 1.06 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\ |
762 |
> |
data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\ |
763 |
> |
mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\ |
764 |
> |
data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\ |
765 |
> |
|
766 |
|
\hline |
437 |
– |
\hline |
438 |
– |
e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
767 |
|
\hline |
768 |
< |
data & 0.099 $\pm$ 0.0008 & 0.038 $\pm$ 0.0005 & 0.019 $\pm$ 0.0004 & 0.011 $\pm$ 0.0003 & 0.008 $\pm$ 0.0002 \\ |
441 |
< |
mc & 0.100 $\pm$ 0.0004 & 0.038 $\pm$ 0.0003 & 0.019 $\pm$ 0.0002 & 0.012 $\pm$ 0.0002 & 0.008 $\pm$ 0.0001 \\ |
442 |
< |
data/mc & 0.99 $\pm$ 0.01 & 1.00 $\pm$ 0.02 & 0.99 $\pm$ 0.02 & 0.98 $\pm$ 0.03 & 0.97 $\pm$ 0.03 \\ |
768 |
> |
e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
769 |
|
\hline |
770 |
+ |
data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\ |
771 |
+ |
mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\ |
772 |
+ |
data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\ |
773 |
+ |
|
774 |
|
\hline |
445 |
– |
$\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
775 |
|
\hline |
776 |
< |
data & 0.100 $\pm$ 0.0006 & 0.041 $\pm$ 0.0004 & 0.022 $\pm$ 0.0003 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0002 \\ |
448 |
< |
mc & 0.099 $\pm$ 0.0004 & 0.039 $\pm$ 0.0002 & 0.020 $\pm$ 0.0002 & 0.013 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 \\ |
449 |
< |
data/mc & 1.01 $\pm$ 0.01 & 1.05 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.06 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\ |
776 |
> |
$\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
777 |
|
\hline |
778 |
+ |
data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\ |
779 |
+ |
mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\ |
780 |
+ |
data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\ |
781 |
+ |
|
782 |
|
\hline |
452 |
– |
e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
783 |
|
\hline |
784 |
< |
data & 0.105 $\pm$ 0.0020 & 0.042 $\pm$ 0.0013 & 0.021 $\pm$ 0.0009 & 0.013 $\pm$ 0.0007 & 0.009 $\pm$ 0.0006 \\ |
785 |
< |
mc & 0.109 $\pm$ 0.0011 & 0.043 $\pm$ 0.0007 & 0.021 $\pm$ 0.0005 & 0.013 $\pm$ 0.0004 & 0.009 $\pm$ 0.0003 \\ |
786 |
< |
data/mc & 0.96 $\pm$ 0.02 & 0.97 $\pm$ 0.03 & 1.00 $\pm$ 0.05 & 1.01 $\pm$ 0.06 & 0.97 $\pm$ 0.08 \\ |
784 |
> |
e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
785 |
> |
\hline |
786 |
> |
data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\ |
787 |
> |
mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\ |
788 |
> |
data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\ |
789 |
> |
|
790 |
|
\hline |
791 |
|
\hline |
792 |
< |
$\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
792 |
> |
$\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
793 |
|
\hline |
794 |
< |
data & 0.106 $\pm$ 0.0016 & 0.045 $\pm$ 0.0011 & 0.025 $\pm$ 0.0008 & 0.016 $\pm$ 0.0007 & 0.012 $\pm$ 0.0006 \\ |
795 |
< |
mc & 0.108 $\pm$ 0.0009 & 0.044 $\pm$ 0.0006 & 0.024 $\pm$ 0.0004 & 0.016 $\pm$ 0.0004 & 0.011 $\pm$ 0.0003 \\ |
796 |
< |
data/mc & 0.98 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.04 $\pm$ 0.04 & 1.04 $\pm$ 0.05 & 1.06 $\pm$ 0.06 \\ |
794 |
> |
data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\ |
795 |
> |
mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\ |
796 |
> |
data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\ |
797 |
> |
|
798 |
|
\hline |
799 |
|
\hline |
800 |
< |
e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
800 |
> |
e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
801 |
|
\hline |
802 |
< |
data & 0.117 $\pm$ 0.0055 & 0.051 $\pm$ 0.0038 & 0.029 $\pm$ 0.0029 & 0.018 $\pm$ 0.0023 & 0.012 $\pm$ 0.0019 \\ |
803 |
< |
mc & 0.120 $\pm$ 0.0031 & 0.052 $\pm$ 0.0021 & 0.027 $\pm$ 0.0015 & 0.018 $\pm$ 0.0012 & 0.013 $\pm$ 0.0011 \\ |
804 |
< |
data/mc & 0.97 $\pm$ 0.05 & 0.99 $\pm$ 0.08 & 1.10 $\pm$ 0.13 & 1.03 $\pm$ 0.15 & 0.91 $\pm$ 0.16 \\ |
802 |
> |
data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\ |
803 |
> |
mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\ |
804 |
> |
data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\ |
805 |
> |
|
806 |
|
\hline |
807 |
|
\hline |
808 |
< |
$\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
808 |
> |
$\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
809 |
|
\hline |
810 |
< |
data & 0.111 $\pm$ 0.0044 & 0.050 $\pm$ 0.0030 & 0.029 $\pm$ 0.0024 & 0.019 $\pm$ 0.0019 & 0.014 $\pm$ 0.0017 \\ |
811 |
< |
mc & 0.115 $\pm$ 0.0025 & 0.051 $\pm$ 0.0017 & 0.030 $\pm$ 0.0013 & 0.020 $\pm$ 0.0011 & 0.015 $\pm$ 0.0009 \\ |
812 |
< |
data/mc & 0.97 $\pm$ 0.04 & 0.97 $\pm$ 0.07 & 0.95 $\pm$ 0.09 & 0.97 $\pm$ 0.11 & 0.99 $\pm$ 0.13 \\ |
810 |
> |
data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\ |
811 |
> |
mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\ |
812 |
> |
data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\ |
813 |
> |
|
814 |
|
\hline |
815 |
|
\hline |
816 |
< |
e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
816 |
> |
e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
817 |
|
\hline |
818 |
< |
data & 0.113 $\pm$ 0.0148 & 0.048 $\pm$ 0.0100 & 0.033 $\pm$ 0.0083 & 0.020 $\pm$ 0.0065 & 0.017 $\pm$ 0.0062 \\ |
819 |
< |
mc & 0.146 $\pm$ 0.0092 & 0.064 $\pm$ 0.0064 & 0.034 $\pm$ 0.0048 & 0.024 $\pm$ 0.0040 & 0.021 $\pm$ 0.0037 \\ |
820 |
< |
data/mc & 0.78 $\pm$ 0.11 & 0.74 $\pm$ 0.17 & 0.96 $\pm$ 0.28 & 0.82 $\pm$ 0.30 & 0.85 $\pm$ 0.34 \\ |
818 |
> |
data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\ |
819 |
> |
mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\ |
820 |
> |
data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\ |
821 |
> |
|
822 |
|
\hline |
823 |
|
\hline |
824 |
< |
$\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
824 |
> |
$\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
825 |
|
\hline |
826 |
< |
data & 0.130 $\pm$ 0.0128 & 0.052 $\pm$ 0.0085 & 0.028 $\pm$ 0.0063 & 0.019 $\pm$ 0.0052 & 0.019 $\pm$ 0.0052 \\ |
827 |
< |
mc & 0.105 $\pm$ 0.0064 & 0.045 $\pm$ 0.0043 & 0.027 $\pm$ 0.0034 & 0.019 $\pm$ 0.0028 & 0.014 $\pm$ 0.0024 \\ |
828 |
< |
data/mc & 1.23 $\pm$ 0.14 & 1.18 $\pm$ 0.22 & 1.03 $\pm$ 0.27 & 1.01 $\pm$ 0.32 & 1.37 $\pm$ 0.45 \\ |
826 |
> |
data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\ |
827 |
> |
mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\ |
828 |
> |
data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\ |
829 |
> |
|
830 |
|
\hline |
831 |
|
\hline |
832 |
|
|
835 |
|
\end{table} |
836 |
|
|
837 |
|
|
500 |
– |
|
838 |
|
%Figure.~\ref{fig:reliso} compares the relative track isolation |
839 |
|
%for events with a track with $\pt > 10~\GeV$ in addition to a selected |
840 |
|
%muon for $\Z+4$ jet events and various \ttll\ components. The |
885 |
|
%END SECTION TO WRITE OUT |
886 |
|
|
887 |
|
|
888 |
< |
{\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured. |
889 |
< |
Why not measure $\epsilon_{fake}$ in the b-veto region?} |
888 |
> |
%{\bf fix me: What you have written in the next paragraph does not |
889 |
> |
%explain how $\epsilon_{fake}$ is measured. |
890 |
> |
%Why not measure $\epsilon_{fake}$ in the b-veto region?} |
891 |
|
|
892 |
|
%A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is |
893 |
|
%possible to correct for differences in the $\epsilon_{fake}$ between data and MC by |
915 |
|
% \end{center} |
916 |
|
%\end{figure} |
917 |
|
|
918 |
< |
\subsection{Summary of uncertainties} |
919 |
< |
\label{sec:bgunc-bottomline}. |
918 |
> |
% \subsection{Summary of uncertainties} |
919 |
> |
% \label{sec:bgunc-bottomline}. |
920 |
|
|
921 |
< |
THIS NEEDS TO BE WRITTEN |
921 |
> |
% THIS NEEDS TO BE WRITTEN |