ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.2 by vimartin, Fri Jun 29 02:57:07 2012 UTC vs.
Revision 1.5 by vimartin, Wed Oct 3 05:48:26 2012 UTC

# Line 1 | Line 1
1   %\section{Systematics Uncertainties on the Background Prediction}
2   %\label{sec:systematics}
3  
4 + [ADD INTRODUCTORY BLURB ON UNCERTAINTIES \\
5 + ADD COMPARISONS OF ALL THE ALTERNATIVE SAMPLES FOR ALL THE SIGNAL
6 + REGIONS \\
7 + LIST ALL THE UNCERTAINTIES INCLUDED AND THEIR VALUES]
8 +
9   \subsection{Uncertainty on the \ttll\ Acceptance}
10  
11   The \ttbar\ background prediction is obtained from MC, with corrections
# Line 30 | Line 35 | The variations considered are
35    Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
36    hadronisation, while POWHEG uses Pythia6.
37   \item Modeling of taus: The alternative sample does not include
38 <  Tauola and is otherwise identical to the Powheg sample.
38 >  Tauola and is otherwise identical to the Powheg sample.  [DONE AT
39 >  7TEV AND FOUND TO BE NEGLIGIBLE]
40   \item The PDF uncertainty is estimated following the PDF4LHC
41    recommendations[CITE]. The events are reweighted using alternative
42    PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
# Line 38 | Line 44 | The variations considered are
44    addition, the NNPDF2.1 set with 100 replicas. The central value is
45    determined from the mean and the uncertainty is derived from the
46    $1\sigma$ range. The overall uncertainty is derived from the envelope of the
47 <  alternative predictions and their uncertainties.
47 >  alternative predictions and their uncertainties. [DONE AT 7 TEV AND
48 >  FOUND TO BE NEGLIGIBLE]
49   \end{itemize}
50  
51  
# Line 47 | Line 54 | The variations considered are
54          \includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png}
55          \caption{
56            \label{fig:ttllsyst}%\protect
57 <          Central Prediction
58 <          Band:
59 <          - total stat. error for all Data and MC samples
60 <          - N jets scaling uncertainty (ISR/FSR)
61 <          Alternative Sample Predictions
62 <          Error bars: uncorrelated stat. error from alternative ttbar sample only}
57 >          Comparison of the \ttll\ central prediction with those using
58 >          alternative MC samples. The blue band corresponds to the
59 >          total statistical error for all data and MC samples. The
60 >          alternative sample predictions are indicated by the
61 >          datapoints. The uncertainties on the alternative predictions
62 >          correspond to the uncorrelated statistical uncertainty from
63 >          the size of the alternative sample only.}
64        \end{center}
65      \end{figure}
66  
# Line 191 | Line 199 | The variations considered are
199   %\end{tabular}
200   %\end{center}
201   %\end{table}
202 +
203 +
204 + \subsection{Isolated Track Veto: Tag and Probe Studies}
205 +
206 + [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
207 + ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
208 +
209 + In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
210 + with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
211 + to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
212 + we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
213 + addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
214 + second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
215 + in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
216 + procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
217 + Furthermore, we test the data and MC
218 + isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
219 + directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
220 + may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
221 + or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
222 + the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
223 + consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
224 + $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
225 + decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
226 + Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
227 + As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
228 + leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
229 + due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
230 +
231 + The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
232 + All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
233 + We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
234 + this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
235 + not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
236 + fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
237 + \met\ $<$ 30 GeV and 0 b-tagged events.
238 + The specific criteria for tags and probes for electrons and muons are:
239 +
240 + %We study the isolated track veto efficiency in bins of \njets.
241 + %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
242 + %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
243 +
244 +
245 + \begin{itemize}
246 +  \item{Electrons}
247 +
248 +    \begin{itemize}
249 +    \item{Tag criteria}
250 +
251 +      \begin{itemize}
252 +      \item Electron passes full analysis ID/iso selection
253 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.5$
254 +
255 +      \item Matched to 1 of the 2 electron tag-and-probe triggers
256 +        \begin{itemize}
257 +        \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8_Mass30_v*=
258 +        \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_Ele8_Mass30_v*=
259 +        \end{itemize}
260 +      \end{itemize}
261 +
262 +    \item{Probe criteria}
263 +      \begin{itemize}
264 +      \item Electron passes full analysis ID selection
265 +      \item \pt\ $>$ 30 GeV
266 +      \end{itemize}
267 +      \end{itemize}
268 +  \item{Muons}
269 +    \begin{itemize}
270 +    \item{Tag criteria}
271 +      \begin{itemize}
272 +      \item Muon passes full analysis ID/iso selection
273 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
274 +      \item Matched to 1 of the 2 electron tag-and-probe triggers
275 +        \begin{itemize}
276 +        \item \verb=HLT_IsoMu30_v*=
277 +        \item \verb=HLT_IsoMu30_eta2p1_v*=
278 +        \end{itemize}
279 +      \end{itemize}
280 +    \item{Probe criteria}
281 +      \begin{itemize}
282 +      \item Muon passes full analysis ID selection
283 +      \item \pt\ $>$ 30 GeV
284 +      \end{itemize}
285 +    \end{itemize}
286 + \end{itemize}
287 +
288 + The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
289 + good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
290 + absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
291 + In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
292 + efficiencies agree within 7\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
293 + For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
294 + a data vs. MC discrepancy in the isolated track veto efficiency.
295 +
296 +
297 + %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
298 + %This requirement is chosen because most of the tracks rejected by the isolated
299 + %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
300 +
301 + \begin{figure}[hbt]
302 +  \begin{center}
303 +        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
304 +        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
305 +        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
306 +        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
307 +        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
308 +        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
309 +        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
310 +        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
311 +        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
312 +        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
313 +        \caption{
314 +          \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
315 + for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
316 + }  
317 +      \end{center}
318 + \end{figure}
319 +
320 + \clearpage
321 +
322 + \begin{table}[!ht]
323 + \begin{center}
324 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
325 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
326 + jet multiplicity requirements.}
327 + \begin{tabular}{l|l|c|c|c|c|c}
328 + \hline
329 + \hline
330 + e + $\geq$0 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
331 + \hline
332 +      data   &  0.088 $\pm$ 0.0003   &  0.030 $\pm$ 0.0002   &  0.013 $\pm$ 0.0001   &  0.007 $\pm$ 0.0001   &  0.005 $\pm$ 0.0001  \\
333 +        mc   &  0.087 $\pm$ 0.0001   &  0.030 $\pm$ 0.0001   &  0.014 $\pm$ 0.0001   &  0.008 $\pm$ 0.0000   &  0.005 $\pm$ 0.0000  \\
334 +   data/mc   &     1.01 $\pm$ 0.00   &     0.99 $\pm$ 0.01   &     0.97 $\pm$ 0.01   &     0.95 $\pm$ 0.01   &     0.93 $\pm$ 0.01  \\
335 + \hline
336 + \hline
337 + $\mu$ + $\geq$0 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
338 + \hline
339 +      data   &  0.087 $\pm$ 0.0002   &  0.031 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.008 $\pm$ 0.0001   &  0.005 $\pm$ 0.0001  \\
340 +        mc   &  0.085 $\pm$ 0.0001   &  0.030 $\pm$ 0.0001   &  0.014 $\pm$ 0.0000   &  0.008 $\pm$ 0.0000   &  0.005 $\pm$ 0.0000  \\
341 +   data/mc   &     1.02 $\pm$ 0.00   &     1.06 $\pm$ 0.00   &     1.06 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
342 + \hline
343 + \hline
344 + e + $\geq$1 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
345 + \hline
346 +      data   &  0.099 $\pm$ 0.0008   &  0.038 $\pm$ 0.0005   &  0.019 $\pm$ 0.0004   &  0.011 $\pm$ 0.0003   &  0.008 $\pm$ 0.0002  \\
347 +        mc   &  0.100 $\pm$ 0.0004   &  0.038 $\pm$ 0.0003   &  0.019 $\pm$ 0.0002   &  0.012 $\pm$ 0.0002   &  0.008 $\pm$ 0.0001  \\
348 +   data/mc   &     0.99 $\pm$ 0.01   &     1.00 $\pm$ 0.02   &     0.99 $\pm$ 0.02   &     0.98 $\pm$ 0.03   &     0.97 $\pm$ 0.03  \\
349 + \hline
350 + \hline
351 + $\mu$ + $\geq$1 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
352 + \hline
353 +      data   &  0.100 $\pm$ 0.0006   &  0.041 $\pm$ 0.0004   &  0.022 $\pm$ 0.0003   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0002  \\
354 +        mc   &  0.099 $\pm$ 0.0004   &  0.039 $\pm$ 0.0002   &  0.020 $\pm$ 0.0002   &  0.013 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001  \\
355 +   data/mc   &     1.01 $\pm$ 0.01   &     1.05 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.06 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
356 + \hline
357 + \hline
358 + e + $\geq$2 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
359 + \hline
360 +      data   &  0.105 $\pm$ 0.0020   &  0.042 $\pm$ 0.0013   &  0.021 $\pm$ 0.0009   &  0.013 $\pm$ 0.0007   &  0.009 $\pm$ 0.0006  \\
361 +        mc   &  0.109 $\pm$ 0.0011   &  0.043 $\pm$ 0.0007   &  0.021 $\pm$ 0.0005   &  0.013 $\pm$ 0.0004   &  0.009 $\pm$ 0.0003  \\
362 +   data/mc   &     0.96 $\pm$ 0.02   &     0.97 $\pm$ 0.03   &     1.00 $\pm$ 0.05   &     1.01 $\pm$ 0.06   &     0.97 $\pm$ 0.08  \\
363 + \hline
364 + \hline
365 + $\mu$ + $\geq$2 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
366 + \hline
367 +      data   &  0.106 $\pm$ 0.0016   &  0.045 $\pm$ 0.0011   &  0.025 $\pm$ 0.0008   &  0.016 $\pm$ 0.0007   &  0.012 $\pm$ 0.0006  \\
368 +        mc   &  0.108 $\pm$ 0.0009   &  0.044 $\pm$ 0.0006   &  0.024 $\pm$ 0.0004   &  0.016 $\pm$ 0.0004   &  0.011 $\pm$ 0.0003  \\
369 +   data/mc   &     0.98 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.04 $\pm$ 0.04   &     1.04 $\pm$ 0.05   &     1.06 $\pm$ 0.06  \\
370 + \hline
371 + \hline
372 + e + $\geq$3 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
373 + \hline
374 +      data   &  0.117 $\pm$ 0.0055   &  0.051 $\pm$ 0.0038   &  0.029 $\pm$ 0.0029   &  0.018 $\pm$ 0.0023   &  0.012 $\pm$ 0.0019  \\
375 +        mc   &  0.120 $\pm$ 0.0031   &  0.052 $\pm$ 0.0021   &  0.027 $\pm$ 0.0015   &  0.018 $\pm$ 0.0012   &  0.013 $\pm$ 0.0011  \\
376 +   data/mc   &     0.97 $\pm$ 0.05   &     0.99 $\pm$ 0.08   &     1.10 $\pm$ 0.13   &     1.03 $\pm$ 0.15   &     0.91 $\pm$ 0.16  \\
377 + \hline
378 + \hline
379 + $\mu$ + $\geq$3 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
380 + \hline
381 +      data   &  0.111 $\pm$ 0.0044   &  0.050 $\pm$ 0.0030   &  0.029 $\pm$ 0.0024   &  0.019 $\pm$ 0.0019   &  0.014 $\pm$ 0.0017  \\
382 +        mc   &  0.115 $\pm$ 0.0025   &  0.051 $\pm$ 0.0017   &  0.030 $\pm$ 0.0013   &  0.020 $\pm$ 0.0011   &  0.015 $\pm$ 0.0009  \\
383 +   data/mc   &     0.97 $\pm$ 0.04   &     0.97 $\pm$ 0.07   &     0.95 $\pm$ 0.09   &     0.97 $\pm$ 0.11   &     0.99 $\pm$ 0.13  \\
384 + \hline
385 + \hline
386 + e + $\geq$4 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
387 + \hline
388 +      data   &  0.113 $\pm$ 0.0148   &  0.048 $\pm$ 0.0100   &  0.033 $\pm$ 0.0083   &  0.020 $\pm$ 0.0065   &  0.017 $\pm$ 0.0062  \\
389 +        mc   &  0.146 $\pm$ 0.0092   &  0.064 $\pm$ 0.0064   &  0.034 $\pm$ 0.0048   &  0.024 $\pm$ 0.0040   &  0.021 $\pm$ 0.0037  \\
390 +   data/mc   &     0.78 $\pm$ 0.11   &     0.74 $\pm$ 0.17   &     0.96 $\pm$ 0.28   &     0.82 $\pm$ 0.30   &     0.85 $\pm$ 0.34  \\
391 + \hline
392 + \hline
393 + $\mu$ + $\geq$4 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
394 + \hline
395 +      data   &  0.130 $\pm$ 0.0128   &  0.052 $\pm$ 0.0085   &  0.028 $\pm$ 0.0063   &  0.019 $\pm$ 0.0052   &  0.019 $\pm$ 0.0052  \\
396 +        mc   &  0.105 $\pm$ 0.0064   &  0.045 $\pm$ 0.0043   &  0.027 $\pm$ 0.0034   &  0.019 $\pm$ 0.0028   &  0.014 $\pm$ 0.0024  \\
397 +   data/mc   &     1.23 $\pm$ 0.14   &     1.18 $\pm$ 0.22   &     1.03 $\pm$ 0.27   &     1.01 $\pm$ 0.32   &     1.37 $\pm$ 0.45  \\
398 + \hline
399 + \hline
400 +
401 + \end{tabular}
402 + \end{center}
403 + \end{table}
404 +
405 +
406 +
407 + %Figure.~\ref{fig:reliso} compares the relative track isolation
408 + %for events with a track with $\pt > 10~\GeV$ in addition to a selected
409 + %muon for $\Z+4$ jet events and various \ttll\ components. The
410 + %isolation distributions show significant differences, particularly
411 + %between the leptons from a \W\ or \Z\ decay and the tracks arising
412 + %from $\tau$ decays. As can also be seen in the figure, the \pt\
413 + %distribution for the various categories of tracks is different, where
414 + %the decay products from $\tau$s are significantly softer. Since the
415 + %\pt\ enters the denominator of the isolation definition and hence
416 + %alters the isolation variable...
417 +
418 + %\begin{figure}[hbt]
419 + %  \begin{center}
420 + %       \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
421 + %       \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
422 + %       \caption{
423 + %         \label{fig:reliso}%\protect
424 + %          Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
425 + %          Z+Jets and ttbar dilepton have similar isolation distributions
426 + %          ttbar with leptonic and single prong taus tend to be less
427 + %          isolated. The difference in the isolation can be attributed
428 + %          to the different \pt\ distribution of the samples, since
429 + %          $\tau$ decay products tend to be softer than leptons arising
430 + %          from \W\ or \Z\ decays.}  
431 + %      \end{center}
432 + %\end{figure}
433 +
434 + %       \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
435 +
436 +
437 + %BEGIN SECTION TO WRITE OUT
438 + %In detail, the procedure to correct the dilepton background is:
439 +
440 + %\begin{itemize}
441 + %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
442 + %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
443 + %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
444 + %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
445 + %the lepton \pt {\bf TODO: verify this in data and MC.}.
446 + %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
447 + %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
448 + %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
449 + %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
450 + %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
451 + %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
452 + %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
453 + %\end{itemize}
454 + %END SECTION TO WRITE OUT
455 +
456 +
457 + {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
458 + Why not measure $\epsilon_{fake}$ in the b-veto region?}
459 +
460 + %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
461 + %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
462 + %applying an additional scale factor for the single lepton background
463 + %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
464 + %veto and after subtracting the \ttll\ component, corrected for the
465 + %isolation efficiency derived previously.
466 + %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
467 + %isolated track in single lepton events is independent of \mt\, so the use of
468 + %an overall scale factor is justified to estimate the contribution in
469 + %the \mt\ tail.
470 + %
471 + %\begin{figure}[hbt]
472 + %  \begin{center}
473 + %       \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
474 + %       \caption{
475 + %         \label{fig:vetoeffcomp}%\protect
476 + %          Efficiency for selecting an isolated track comparing
477 + %          single lepton \ttlj\ and dilepton \ttll\ events in MC and
478 + %          data as a function of \mt. The
479 + %          efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
480 + %          \mt\, while the data ranges between the two. This behavior
481 + %          is expected since the low \mt\ region is predominantly \ttlj, while the
482 + %          high \mt\ region contains mostly \ttll\ events.}  
483 + %      \end{center}
484 + %\end{figure}
485 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines