ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.5 by vimartin, Wed Oct 3 05:48:26 2012 UTC vs.
Revision 1.28 by benhoob, Wed Oct 31 17:45:34 2012 UTC

# Line 1 | Line 1
1   %\section{Systematics Uncertainties on the Background Prediction}
2   %\label{sec:systematics}
3  
4 < [ADD INTRODUCTORY BLURB ON UNCERTAINTIES \\
5 < ADD COMPARISONS OF ALL THE ALTERNATIVE SAMPLES FOR ALL THE SIGNAL
6 < REGIONS \\
7 < LIST ALL THE UNCERTAINTIES INCLUDED AND THEIR VALUES]
4 > In this Section we discuss the systematic uncertainty on the BG
5 > prediction.  This prediction is assembled from the event
6 > counts in the peak region of the transverse mass distribution as
7 > well as Monte Carlo
8 > with a number of correction factors, as described previously.
9 > The
10 > final uncertainty on the prediction is built up from the uncertainties in these
11 > individual
12 > components.
13 > The calculation is done for each signal
14 > region,
15 > for electrons and muons separately.
16 >
17 > The choice to normalize to the peak region of $M_T$ has the
18 > advantage that some uncertainties, e.g., luminosity, cancel.
19 > It does however introduce complications because it couples
20 > some of the uncertainties in non-trivial ways.  For example,
21 > the primary effect of an uncertainty on the rare MC cross-section
22 > is to introduce an uncertainty in the rare MC background estimate
23 > which comes entirely from MC.   But this uncertainty also affects,
24 > for example,
25 > the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 > $t\bar{t}$ normalization to the peak region (because some of the
27 > events in the peak region are from rare processes).  These effects
28 > are carefully accounted for. The contribution to the overall
29 > uncertainty from each background source is tabulated in
30 > Section~\ref{sec:bgunc-bottomline}.
31 > Here we discuss the uncertainties one-by-one and comment
32 > on their impact on the overall result, at least to first order.
33 > Second order effects, such as the one described, are also included.
34 >
35 > \subsection{Statistical uncertainties on the event counts in the $M_T$
36 > peak regions}
37 > These vary between 2\% and 20\%, depending on the signal region
38 > (different
39 > signal regions have different \met\ requirements, thus they also have
40 > different $M_T$ regions used as control).
41 > Since
42 > the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
43 > fractional uncertainty is pretty much carried through all the way to
44 > the end.  There is also an uncertainty from the finite MC event counts
45 > in the $M_T$ peak regions.  This is also included, but it is smaller.
46 >
47 > Normalizing to the $M_T$ peak has the distinct advantages that
48 > uncertainties on luminosity, cross-sections, trigger efficiency,
49 > lepton ID, cancel out.
50 > For the low statistics regions with high \met\ requirements, the
51 > price to pay in terms of event count is that statistical uncertainties start
52 > to become significant.  In the future we may consider a different
53 > normalization startegy in the low statistics regions.
54 >
55 > \subsection{Uncertainty from the choice of $M_T$ peak region}
56 >
57 > This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
58 > If the $M_T$ peak region is not well modelled, this would introduce an
59 > uncertainty.
60 >
61 > We have tested this possibility by recalculating the post-veto scale factors for a different
62 > choice
63 > of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 > $50 < M_T < 80$ GeV).  This is shown in Table~\ref{tab:mtpeaksf2}.  
65 > The two results for the scale factors are very compatible.
66 > We do not take any systematic uncertainty for this possible effect.
67  
68 < \subsection{Uncertainty on the \ttll\ Acceptance}
68 > \begin{table}[!h]
69 > \begin{center}
70 > {\footnotesize
71 > \begin{tabular}{l||c|c|c|c|c|c|c}
72 > \hline
73 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 > \hline
75 > \hline
76 > \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 > \hline
78 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 > \hline
81 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 > \hline
83 > \hline
84 > e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 > e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 > \hline
87 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 > \hline
89 > \hline
90 > \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 > \hline
92 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 > \hline
95 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 > \hline
97 > \hline
98 > e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 > e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 > \hline
101 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 > \hline
103 > \end{tabular}}
104 > \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 >  \ttdl\ sample, while the post-veto SFs are applied to the single
106 >  lepton samples. The veto SF is shown for comparison across channels.
107 >  The raw MC is used for backgrounds from rare processes.
108 >  The uncertainties are statistical only.
109 > \label{tab:mtpeaksf2}}
110 > \end{center}
111 > \end{table}
112  
113 +
114 + \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
115 + These are taken as 50\%, uncorrelated.  
116 + The primary effect is to introduce a 50\%
117 + uncertainty
118 + on the $W +$ jets and rare BG
119 + background predictions, respectively.  However they also
120 + have an effect on the other BGs via the $M_T$ peak normalization
121 + in a way that tends to reduce the uncertainty.  This is easy
122 + to understand: if the $W$ cross-section is increased by 50\%, then
123 + the $W$ background goes up.  But the number of $M_T$ peak events
124 + attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125 + scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126 + BG goes down.  
127 +
128 + \subsection{Tail-to-peak ratios for lepton +
129 +  jets top and W events}
130 + The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131 + The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132 + Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its
133 + uncertainty is given in Table~\ref{tab:cr1yields}.
134 + This uncertainty affects both $R_{wjet}$ and $R_{top}$.
135 + The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
136 +
137 +
138 + \subsection{Uncertainty on extra jet radiation for dilepton
139 +  background}
140 + As discussed in Section~\ref{sec:jetmultiplicity}, the
141 + jet distribution in
142 + $t\bar{t} \to$
143 + dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
144 + it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
145 + comes from data/MC statistics.  This  
146 + results directly in a 3\% uncertainty on the dilepton background, which is by far
147 + the most important one.
148 +
149 + \subsection{Uncertainty from MC statistics}
150 + This affects mostly the \ttll\ background estimate, which is taken
151 + from
152 + Monte Carlo with appropriate correction factors.  This uncertainty
153 + is negligible in the low \met\ signal regions, and grows to about
154 + 15\% in SRG.
155 +
156 +
157 + \subsection{Uncertainty on the \ttll\ Background}
158 + \label{sec:ttdilbkgunc}
159   The \ttbar\ background prediction is obtained from MC, with corrections
160   derived from control samples in data. The uncertainty associated with
161 < the theoretical modeling of the \ttbar\ production and decay is
162 < estimated by comparing the background predictions obtained using
161 > the \ttbar\ background is derived from the level of closure of the
162 > background prediction in CR4 (Table~\ref{tab:cr4yields}) and
163 > CR5 (Table~\ref{tab:cr5yields}). The results from these control region
164 > checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned
165 > to the \ttdl\ background prediction based on these tests are
166 > 5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G).
167 >
168 > \begin{figure}[hbt]
169 >  \begin{center}
170 >        \includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf}
171 >        \caption{
172 >          \label{fig:ttdlunc}%\protect
173 >          Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after
174 >          applying SFs) to data for CR4 and CR5 for all the signal
175 >          region requirements considered (A-G). The bands indicate the
176 >          systematic uncertainties assigned based on these tests,
177 >          ranging from $5\%$ for SRA to $40\%$ for SRE-G.}
178 >      \end{center}
179 > \end{figure}
180 >
181 > \clearpage
182 > \subsubsection{Check of the impact of Signal Contamination}
183 >
184 > We examine the contribution of possible signal events in the \ttll\
185 > control regions (CR4 and CR5). It should be emphasized that these
186 > regions are not used to apply data/MC SFs. They are used only to quantify
187 > the level of data/MC agreement and assign a corresponding uncertainty.
188 > As a result, if signal events were to populate these control regions
189 > this would not lead to an increase in the predicted background.
190 >
191 > To illustrate how much signal is expected to populate these control
192 > regions, we examine signal points near the edge of the analysis
193 > sensitivity (m(stop) = 450 m($\chi^0$) = 0 for T2tt, m(stop) = 450
194 > m($\chi^0$) = 0 for T2bw with x=0.75 and m(stop) = 350
195 > m($\chi^0$) = 0 for T2bw with x=0.5).
196 > Table~\ref{tab:signalcontamination} compares the expected signal
197 > yields and the raw total MC background prediction in the control
198 > regions with the \met\ and \mt\ requirements corresponding to SRB, SRC
199 > and SRD (these are the signal regions that dominate the
200 > sensitivity). The signal contamination is smaller than the uncertainty
201 > on the dilepton background and smaller than the signal/background in
202 > the signal regions, with the exception of the T2bw scenario with x=0.5.
203 > However, based on the fact that the CR4 and CR5 are not used to extract
204 > data/MC scale factors and that we do not observe evidence for signal
205 > contamination in these control regions (CR5, the control region with
206 > larger statistical precision, actually shows a slight deficit of data w.r.t. MC), we
207 > do not assign a correction for signal contamination in these control regions.
208 >
209 > \begin{table}[!h]
210 > \begin{center}
211 > {\small
212 > \begin{tabular}{l l||c|c|c}
213 > \hline
214 > \multicolumn{2}{c||}{Sample}              & CR B & CR C & CR D \\
215 > \hline
216 > \hline
217 > \multirow{4}{*}{CR4} & Raw MC            & $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$ \\
218 > %\hline
219 > & T2tt m(stop) = 450 m($\chi^0$) = 0  & $2.6 \pm 0.3$ $(2\%)$ & $2.0 \pm 0.2$ $(4\%)$ & $1.4 \pm 0.2$ $(7\%)$ \\
220 > & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $10.5 \pm 0.4$ $(6\%)$ &$6.1 \pm 0.3$ $(12\%)$ & $3.1 \pm 0.2$ $(16\%)$ \\
221 > & T2bw x=0.5  m(stop) = 350 m($\chi^0$) = 0     & $32.1 \pm 1.5$ $(19\%)$ & $14.7 \pm 1.0$ $(29\%)$ & $5.5 \pm 0.6$ $(28\%)$ \\
222 > \hline
223 > \hline
224 > \multirow{4}{*}{CR5} & Raw MC            & $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$ \\
225 > %\hline
226 > & T2tt m(stop) = 450 m($\chi^0$) = 0  & $10.6 \pm 0.6$ $(3\%)$ & $7.8 \pm 0.5$ $(8\%)$ & $5.4 \pm 0.4$ $(14\%)$ \\
227 > & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $17.3 \pm 0.5$ $(6\%)$ &$11.3 \pm 0.4$ $(11\%)$ & $6.2 \pm 0.3$ $(16\%)$\\
228 > & T2bw x=0.5  m(stop) = 350 m($\chi^0$) = 0     & $33.0 \pm 1.5$ $(11\%)$& $14.4 \pm 1.0$ $(14\%)$& $5.7 \pm 0.6$ $(15\%)$ \\
229 > \hline
230 > \hline
231 > \hline
232 > \multirow{4}{*}{SIGNAL} & Raw MC                 & $486.3 \pm 7.8$& $164.3 \pm 4.5$& $61.5 \pm 2.8$ \\
233 > & T2tt m(stop) = 450 m($\chi^0$) = 0    & $65.3 \pm 1.4$ $(13\%)$& $48.8 \pm 1.2$ $(30\%)$& $32.9 \pm 1.0$ $(53\%)$ \\
234 > & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0     & $69.3 \pm 1.0$ $(14\%)$& $47.3 \pm 0.8$ $(29\%)$& $27.3 \pm 0.6$ $(44\%)$ \\
235 > & T2bw x=0.5  m(stop) = 350 m($\chi^0$) = 0     & $105.5 \pm 2.8$ $(22\%)$& $44.6 \pm 1.8$ $(27\%)$& $15.9 \pm 1.1$ $(26\%)$ \\
236 > \hline
237 > \end{tabular}}
238 > \caption{ Yields in \mt\ tail comparing the raw SM MC prediction to the
239 >  yields for a few signal points on the edge of our sensitivity in the \ttll\
240 >  control regions CR4, CR5 and in the corresponding signal region.
241 >  The numbers in parenthesis are the expected signal yield divided by
242 >  the total background. The uncertainties are statistical only.
243 > \label{tab:signalcontamination}}
244 > \end{center}
245 > \end{table}
246 >
247 > %CR5 DUMP
248 > %Total           & $880.3 \pm 10.4$& $560.0 \pm 8.3$& $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$& $16.4 \pm 1.4$& $8.2 \pm 1.0$& $4.6 \pm 0.8$ \\
249 > %\hline
250 > %\hline
251 > %Data            & $941$& $559$& $287$& $95$& $26$& $8$& $5$& $3$ \\
252 > %\hline
253 > %T2tt m(stop) = 250 m($\chi^0$) = 0     & $84.3 \pm 9.2$& $61.9 \pm 7.9$& $35.7 \pm 6.0$& $5.9 \pm 2.4$& $1.0 \pm 1.0$& $1.0 \pm 1.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
254 > %\hline
255 > %T2tt m(stop) = 300 m($\chi^0$) = 50    & $61.4 \pm 4.7$& $53.6 \pm 4.4$& $42.0 \pm 3.9$& $14.3 \pm 2.3$& $7.2 \pm 1.6$& $1.8 \pm 0.8$& $0.7 \pm 0.5$& $0.0 \pm 0.0$ \\
256 > %\hline
257 > %T2tt m(stop) = 300 m($\chi^0$) = 100   & $33.3 \pm 3.5$& $28.6 \pm 3.2$& $19.2 \pm 2.6$& $6.1 \pm 1.5$& $1.8 \pm 0.8$& $0.4 \pm 0.4$& $0.4 \pm 0.4$& $0.4 \pm 0.4$ \\
258 > %\hline
259 > %T2tt m(stop) = 350 m($\chi^0$) = 0     & $33.4 \pm 2.2$& $29.8 \pm 2.1$& $27.3 \pm 2.0$& $15.3 \pm 1.5$& $5.6 \pm 0.9$& $1.9 \pm 0.5$& $0.3 \pm 0.2$& $0.0 \pm 0.0$ \\
260 > %\hline
261 > %T2tt m(stop) = 450 m($\chi^0$) = 0     & $12.0 \pm 0.6$& $11.3 \pm 0.6$& $10.6 \pm 0.6$& $7.8 \pm 0.5$& $5.4 \pm 0.4$& $3.1 \pm 0.3$& $1.8 \pm 0.2$& $0.6 \pm 0.1$ \\
262 > %\hline
263 > %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0       & $48.5 \pm 1.9$& $40.2 \pm 1.7$& $33.0 \pm 1.5$& $14.4 \pm 1.0$& $5.7 \pm 0.6$& $2.7 \pm 0.4$& $1.3 \pm 0.3$& $0.5 \pm 0.2$ \\
264 > %\hline
265 > %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0      & $22.3 \pm 0.6$& $20.2 \pm 0.6$& $17.3 \pm 0.5$& $11.3 \pm 0.4$& $6.2 \pm 0.3$& $3.1 \pm 0.2$& $1.3 \pm 0.1$& $0.7 \pm 0.1$ \\
266 > %\hline
267 >
268 > %CR4 DUMP
269 > %\hline
270 > %Total           & $510.1 \pm 8.0$& $324.2 \pm 6.3$& $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$& $7.8 \pm 1.0$& $2.6 \pm 0.6$& $1.1 \pm 0.3$ \\
271 > %\hline
272 > %\hline
273 > %Data            & $462$& $289$& $169$& $45$& $10$& $7$& $5$& $3$ \\
274 > %\hline
275 > %T2tt m(stop) = 250 m($\chi^0$) = 0     & $37.7 \pm 6.1$& $30.9 \pm 5.5$& $18.0 \pm 4.2$& $6.0 \pm 2.5$& $2.0 \pm 1.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
276 > %\hline
277 > %T2tt m(stop) = 300 m($\chi^0$) = 50    & $16.6 \pm 2.4$& $14.4 \pm 2.3$& $11.3 \pm 2.0$& $5.6 \pm 1.4$& $3.2 \pm 1.1$& $1.8 \pm 0.8$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
278 > %\hline
279 > %T2tt m(stop) = 300 m($\chi^0$) = 100   & $9.6 \pm 1.8$& $6.4 \pm 1.5$& $4.6 \pm 1.3$& $0.7 \pm 0.5$& $0.4 \pm 0.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
280 > %\hline
281 > %T2tt m(stop) = 350 m($\chi^0$) = 0     & $8.2 \pm 1.1$& $7.6 \pm 1.0$& $5.7 \pm 0.9$& $3.4 \pm 0.7$& $1.9 \pm 0.5$& $0.6 \pm 0.3$& $0.3 \pm 0.2$& $0.1 \pm 0.1$ \\
282 > %\hline
283 > %T2tt m(stop) = 450 m($\chi^0$) = 0     & $3.1 \pm 0.3$& $2.9 \pm 0.3$& $2.6 \pm 0.3$& $2.0 \pm 0.2$& $1.4 \pm 0.2$& $1.0 \pm 0.2$& $0.4 \pm 0.1$& $0.2 \pm 0.1$ \\
284 > %\hline
285 > %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0       & $52.6 \pm 1.9$& $42.6 \pm 1.7$& $32.1 \pm 1.5$& $14.7 \pm 1.0$& $5.5 \pm 0.6$& $1.9 \pm 0.4$& $0.6 \pm 0.2$& $0.3 \pm 0.1$ \\
286 > %\hline
287 > %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0      & $16.9 \pm 0.5$& $14.9 \pm 0.5$& $10.5 \pm 0.4$& $6.1 \pm 0.3$& $3.1 \pm 0.2$& $1.5 \pm 0.1$& $0.6 \pm 0.1$& $0.3 \pm 0.1$ \\
288 > %\hline
289 >
290 >
291 > \subsubsection{Check of the uncertainty on the \ttll\ Background}
292 >
293 > We check that the systematic uncertainty assigned to the \ttll\ background prediction
294 > covers the uncertainty associated with
295 > the theoretical modeling of the \ttbar\ production and decay
296 > by comparing the background predictions obtained using
297   alternative MC samples. It should be noted that the full analysis is
298   performed with the alternative samples under consideration,
299   including the derivation of the various data-to-MC scale factors.
# Line 19 | Line 301 | The variations considered are
301  
302   \begin{itemize}
303   \item Top mass: The alternative values for the top mass differ
304 <  from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
304 >  from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
305    = 166.5~\GeV$.
306   \item Jet-parton matching scale: This corresponds to variations in the
307    scale at which the Matrix Element partons from Madgraph are matched
# Line 31 | Line 313 | The variations considered are
313    value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
314    \sum_{\mathrm{jets}} \pt^2$.
315   \item Alternative generators: Samples produced with different
316 <  generators include MC@NLO and Powheg (NLO generators) and
35 <  Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
36 <  hadronisation, while POWHEG uses Pythia6.
316 >  generators, Powheg (our default) and Madgraph.
317   \item Modeling of taus: The alternative sample does not include
318 <  Tauola and is otherwise identical to the Powheg sample.  [DONE AT
319 <  7TEV AND FOUND TO BE NEGLIGIBLE]
318 >  Tauola and is otherwise identical to the Powheg sample.
319 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
320   \item The PDF uncertainty is estimated following the PDF4LHC
321 <  recommendations[CITE]. The events are reweighted using alternative
321 >  recommendations. The events are reweighted using alternative
322    PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
323 <  alternative eigenvector variations and the ``master equation''. In
324 <  addition, the NNPDF2.1 set with 100 replicas. The central value is
323 >  alternative eigenvector variations and the ``master equation''.
324 >  The NNPDF2.1 set with 100 replicas is also used. The central value is
325    determined from the mean and the uncertainty is derived from the
326    $1\sigma$ range. The overall uncertainty is derived from the envelope of the
327 <  alternative predictions and their uncertainties. [DONE AT 7 TEV AND
328 <  FOUND TO BE NEGLIGIBLE]
329 < \end{itemize}
50 <
327 >  alternative predictions and their uncertainties.
328 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
329 >  \end{itemize}
330  
331   \begin{figure}[hbt]
332    \begin{center}
333 <        \includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png}
333 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
334 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
335 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
336 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
337 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
338          \caption{
339 <          \label{fig:ttllsyst}%\protect
339 >          \label{fig:ttllsyst}\protect
340            Comparison of the \ttll\ central prediction with those using
341            alternative MC samples. The blue band corresponds to the
342            total statistical error for all data and MC samples. The
343            alternative sample predictions are indicated by the
344            datapoints. The uncertainties on the alternative predictions
345            correspond to the uncorrelated statistical uncertainty from
346 <          the size of the alternative sample only.}
346 >          the size of the alternative sample only.  Note the
347 >          suppressed vertical scales.}
348        \end{center}
349      \end{figure}
350  
351  
352 + \begin{table}[!h]
353 + \begin{center}
354 + {\footnotesize
355 + \begin{tabular}{l||c|c|c|c|c|c|c}
356 + \hline
357 + $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
358 + Match Up & Match Down \\
359 + \hline
360 + \hline
361 + SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
362 + \hline
363 + SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
364 + \hline
365 + % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
366 + % \hline
367 + % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
368 + % \hline
369 + % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
370 + \hline
371 + \end{tabular}}
372 + \caption{ Relative difference in \ttdl\ predictions for alternative MC
373 +  samples in
374 + the higher statistics regions SRA and SRB.  These differences
375 + are based on the central values of the predictions.  For a fuller
376 + picture
377 + of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
378 + \label{tab:fracdiff}}
379 + \end{center}
380 + \end{table}
381 +
382 +
383 + In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
384 + for regions A through E.  We can make the following observations based
385 + on this Figure.
386 +
387 + \begin{itemize}
388 + \item In the tighter signal regions we are running out of
389 +  statistics.    
390 + \item Within the limited statistics, there is no evidence that the
391 +  situation changes as we go from signal region A to signal region E.
392 + %Therefore, we assess a systematic based on the relatively high
393 + %statistics
394 + %test in signal region A, and apply the same systematic uncertainty
395 + %to all other regions.
396 + \item In signal regions B and above, the uncertainties assigned in Section~\ref{sec:ttdilbkgunc}
397 + fully cover the alternative MC variations.
398 + \item In order to fully (as opposed as 1$\sigma$) cover the
399 + alternative MC variations in region A we would have to take a
400 + systematic
401 + uncertainty of $\approx 10\%$ instead of $5\%$.  This would be driven by the
402 + scale up/scale down variations, see Table~\ref{tab:fracdiff}.
403 + \end{itemize}
404 +
405 + \begin{table}[!ht]
406 + \begin{center}
407 + \begin{tabular}{l|c|c}
408 + \hline
409 +            Sample
410 +            &                K3   & K4\\
411 + \hline
412 + \hline
413 + Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
414 + Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
415 + Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
416 + Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
417 + Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
418 + Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
419 + Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
420 + Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
421 + \hline
422 + \end{tabular}
423 + \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
424 +  fraction of events with additional hard jets from radiation in
425 +  \ttll\ events. \label{tab:njetskfactors_met100}}
426 + \end{center}
427 + \end{table}
428 +
429 +
430 + However, we have two pieces of information indicating that the
431 + scale up/scale down variations are inconsistent with the data.
432 + These are described below.
433 +
434 + The first piece of information is that the jet multiplicity in the scale
435 + up/scale down sample is the most inconsistent with the data.  This is shown
436 + in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
437 + $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
438 + different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
439 + distribution
440 + for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
441 + and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
442 + equivalent $N_{jets}$ plots for the default Powheg MC, see
443 + Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
444 +
445 + \begin{figure}[hbt]
446 +  \begin{center}
447 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
448 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
449 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
450 +        \caption{
451 +          \label{fig:dileptonnjets_scaleup}%\protect
452 +          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
453 +          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
454 +      \end{center}
455 + \end{figure}
456 +
457 + \begin{figure}[hbt]
458 +  \begin{center}
459 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
460 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
461 +        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
462 +        \caption{
463 +          \label{fig:dileptonnjets_scaledw}%\protect
464 +          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
465 +          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
466 +      \end{center}
467 + \end{figure}
468 +
469 +
470 + \clearpage
471 +
472 + The second piece of information is that we have performed closure
473 + tests in CR5 using the alternative MC samples.  These are exactly
474 + the same tests as the one performed in Section~\ref{sec:CR5} on the
475 + Powheg sample.  As we argued previously, this is a very powerful
476 + test of the background calculation.
477 + The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
478 + Concentrating on the relatively high statistics CR5A region, we see
479 + for all \ttbar\ MC samples except scale up/scale down we obtain
480 + closure within 1$\sigma$.  The scale up/scale down tests closes
481 + worse, only within 2$\sigma$.  This again is evidence that the
482 + scale up/scale down variations are in disagreement with the data.
483 +
484 + \input{hugeCR5Table.tex}
485 +
486 + Based on the two observations above, we argue that the MC
487 + scale up/scale down variations are too extreme.  We feel that
488 + a reasonable choice would be to take one-half of the scale up/scale
489 + down variations in our MC.  This factor of 1/2 would then bring
490 + the discrepancy in the closure test of
491 + Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
492 + from about 2$\sigma$ to about 1$\sigma$.
493 +
494 + Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
495 + up/scale
496 + down variations by a factor 2, we can see that a systematic
497 + uncertainty
498 + of 5\% covers the range of reasonable variations from different MC
499 + models in SRA and SRB.
500 + %The alternative MC models indicate that a 6\% systematic uncertainty
501 + %covers the range of reasonable variations.
502 + Note that this 5\% is also consistent with the level at which we are
503 + able to test the closure of the method with alternative samples in CR5 for the high statistics
504 + regions (Table~\ref{tab:hugecr5yields}).
505 + The range of reasonable variations obtained with the alternative
506 + samples are consistent with the uncertainties assigned for
507 + the \ttll\ background based on the closure of the background
508 + predictions and data in CR4 and CR5.
509 +
510 +
511 +
512 +
513 +
514 + %\begin{table}[!h]
515 + %\begin{center}
516 + %{\footnotesize
517 + %\begin{tabular}{l||c||c|c|c|c|c|c|c}
518 + %\hline
519 + %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
520 + %Up & Scale Down &
521 + %Match Up & Match Down \\
522 + %\hline
523 + %\hline
524 + %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
525 + %\hline
526 + %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
527 + %\hline
528 + %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
529 + %\hline
530 + %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
531 + %\hline
532 + %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
533 + %\hline
534 + %\end{tabular}}
535 + %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
536 + %\label{tab:ttdlalt}}
537 + %\end{center}
538 + %\end{table}
539 +
540 +
541 +
542 +
543 + %\begin{table}[!h]
544 + %\begin{center}
545 + %{\footnotesize
546 + %\begin{tabular}{l||c|c|c|c|c|c|c}
547 + %\hline
548 + %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
549 + %Match Up & Match Down \\
550 + %\hline
551 + %\hline
552 + %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
553 + %\hline
554 + %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
555 + %\hline
556 + %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
557 + %\hline
558 + %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
559 + %\hline
560 + %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
561 + %\hline
562 + %\end{tabular}}
563 + %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
564 + %\label{tab:nsig}}
565 + %\end{center}
566 + %\end{table}
567 +
568 +
569 + %\begin{table}[!h]
570 + %\begin{center}
571 + %\begin{tabular}{l||c|c|c|c}
572 + %\hline
573 + %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
574 + %& $\Delta$ Match \\
575 + %\hline
576 + %\hline
577 + %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
578 + %\hline
579 + %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
580 + %\hline
581 + %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
582 + %\hline
583 + %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
584 + %\hline
585 + %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
586 + %\hline
587 + %\end{tabular}
588 + %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
589 + %\label{tab:devt}}
590 + %\end{center}
591 + %\end{table}
592 +
593 +
594 +
595 + \clearpage
596  
597   %
598   %
# Line 200 | Line 728 | The variations considered are
728   %\end{center}
729   %\end{table}
730  
731 + \subsection{Uncertainty from the isolated track veto}
732 + This is the uncertainty associated with how well the isolated track
733 + veto performance is modeled by the Monte Carlo.  This uncertainty
734 + only applies to the fraction of dilepton BG events that have
735 + a second e/$\mu$ or a one prong $\tau \to h$, with
736 + $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
737 + Table~\ref{tab:trueisotrk}.
738 + The uncertainty for these events
739 + is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
740  
741 < \subsection{Isolated Track Veto: Tag and Probe Studies}
741 > \begin{table}[!h]
742 > \begin{center}
743 > {\footnotesize
744 > \begin{tabular}{l||c|c|c|c|c|c|c}
745 > \hline
746 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
747 > \hline
748 > \hline
749 > $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
750 > \hline
751 > \hline
752 > e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
753 > \hline
754 > \end{tabular}}
755 > \caption{ Fraction of \ttdl\ events with a true isolated track.
756 > \label{tab:trueisotrk}}
757 > \end{center}
758 > \end{table}
759 >
760 > \subsubsection{Isolated Track Veto: Tag and Probe Studies}
761 > \label{sec:trkveto}
762  
206 [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
207 ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
763  
764   In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
765   with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
766   to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
767 < we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
767 > we would need to apply a data-to-MC scale factor in order to correctly
768 > predict the \ttll\ background.
769 >
770 > This study
771   addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
772   second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
773   in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
774   procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
775 +
776   Furthermore, we test the data and MC
777   isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
778   directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
# Line 226 | Line 785 | decays are well-understood, we currently
785   Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
786   As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
787   leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
788 < due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
788 > due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
789  
790 < The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
790 > The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
791   All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
792   We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
793   this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
# Line 250 | Line 809 | The specific criteria for tags and probe
809  
810        \begin{itemize}
811        \item Electron passes full analysis ID/iso selection
812 <      \item \pt\ $>$ 30 GeV, $|\eta|<2.5$
813 <
255 <      \item Matched to 1 of the 2 electron tag-and-probe triggers
256 <        \begin{itemize}
257 <        \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8_Mass30_v*=
258 <        \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_Ele8_Mass30_v*=
259 <        \end{itemize}
812 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
813 >      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
814        \end{itemize}
815  
816      \item{Probe criteria}
# Line 271 | Line 825 | The specific criteria for tags and probe
825        \begin{itemize}
826        \item Muon passes full analysis ID/iso selection
827        \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
828 <      \item Matched to 1 of the 2 electron tag-and-probe triggers
828 >      \item Matched to 1 of the 2 single muon triggers
829          \begin{itemize}
830          \item \verb=HLT_IsoMu30_v*=
831          \item \verb=HLT_IsoMu30_eta2p1_v*=
# Line 288 | Line 842 | The specific criteria for tags and probe
842   The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
843   good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
844   absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
845 < In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
846 < efficiencies agree within 7\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
845 > In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
846 > efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
847   For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
848   a data vs. MC discrepancy in the isolated track veto efficiency.
849  
# Line 300 | Line 854 | a data vs. MC discrepancy in the isolate
854  
855   \begin{figure}[hbt]
856    \begin{center}
857 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
858 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
859 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
860 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
861 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
862 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
863 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
864 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
865 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
866 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
857 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
858 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
859 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
860 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
861 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
862 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
863 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
864 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
865 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
866 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
867          \caption{
868            \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
869   for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
# Line 321 | Line 875 | for events with the \njets\ requirement
875  
876   \begin{table}[!ht]
877   \begin{center}
878 < \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
879 < on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
880 < jet multiplicity requirements.}
881 < \begin{tabular}{l|l|c|c|c|c|c}
878 > \begin{tabular}{l|c|c|c|c|c}
879 >
880 > %Electrons:
881 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
882 > %Total MC yields        : 2497277
883 > %Total DATA yields      : 2649453
884 > %Muons:
885 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
886 > %Total MC yields        : 3749863
887 > %Total DATA yields      : 4210022
888 > %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
889 > %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
890 >
891   \hline
892   \hline
893 < e + $\geq$0 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
893 > e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
894   \hline
895 <      data   &  0.088 $\pm$ 0.0003   &  0.030 $\pm$ 0.0002   &  0.013 $\pm$ 0.0001   &  0.007 $\pm$ 0.0001   &  0.005 $\pm$ 0.0001  \\
896 <        mc   &  0.087 $\pm$ 0.0001   &  0.030 $\pm$ 0.0001   &  0.014 $\pm$ 0.0001   &  0.008 $\pm$ 0.0000   &  0.005 $\pm$ 0.0000  \\
897 <   data/mc   &     1.01 $\pm$ 0.00   &     0.99 $\pm$ 0.01   &     0.97 $\pm$ 0.01   &     0.95 $\pm$ 0.01   &     0.93 $\pm$ 0.01  \\
895 >      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
896 >        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
897 >   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
898 >
899   \hline
900   \hline
901 < $\mu$ + $\geq$0 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
901 > $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
902   \hline
903 <      data   &  0.087 $\pm$ 0.0002   &  0.031 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.008 $\pm$ 0.0001   &  0.005 $\pm$ 0.0001  \\
904 <        mc   &  0.085 $\pm$ 0.0001   &  0.030 $\pm$ 0.0001   &  0.014 $\pm$ 0.0000   &  0.008 $\pm$ 0.0000   &  0.005 $\pm$ 0.0000  \\
905 <   data/mc   &     1.02 $\pm$ 0.00   &     1.06 $\pm$ 0.00   &     1.06 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
903 >      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
904 >        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
905 >   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
906 >
907   \hline
343 \hline
344 e + $\geq$1 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
908   \hline
909 <      data   &  0.099 $\pm$ 0.0008   &  0.038 $\pm$ 0.0005   &  0.019 $\pm$ 0.0004   &  0.011 $\pm$ 0.0003   &  0.008 $\pm$ 0.0002  \\
347 <        mc   &  0.100 $\pm$ 0.0004   &  0.038 $\pm$ 0.0003   &  0.019 $\pm$ 0.0002   &  0.012 $\pm$ 0.0002   &  0.008 $\pm$ 0.0001  \\
348 <   data/mc   &     0.99 $\pm$ 0.01   &     1.00 $\pm$ 0.02   &     0.99 $\pm$ 0.02   &     0.98 $\pm$ 0.03   &     0.97 $\pm$ 0.03  \\
909 > e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
910   \hline
911 +      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
912 +        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
913 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
914 +
915   \hline
351 $\mu$ + $\geq$1 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
916   \hline
917 <      data   &  0.100 $\pm$ 0.0006   &  0.041 $\pm$ 0.0004   &  0.022 $\pm$ 0.0003   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0002  \\
354 <        mc   &  0.099 $\pm$ 0.0004   &  0.039 $\pm$ 0.0002   &  0.020 $\pm$ 0.0002   &  0.013 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001  \\
355 <   data/mc   &     1.01 $\pm$ 0.01   &     1.05 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.06 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
917 > $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
918   \hline
919 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
920 +        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
921 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
922 +
923   \hline
358 e + $\geq$2 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
924   \hline
925 <      data   &  0.105 $\pm$ 0.0020   &  0.042 $\pm$ 0.0013   &  0.021 $\pm$ 0.0009   &  0.013 $\pm$ 0.0007   &  0.009 $\pm$ 0.0006  \\
361 <        mc   &  0.109 $\pm$ 0.0011   &  0.043 $\pm$ 0.0007   &  0.021 $\pm$ 0.0005   &  0.013 $\pm$ 0.0004   &  0.009 $\pm$ 0.0003  \\
362 <   data/mc   &     0.96 $\pm$ 0.02   &     0.97 $\pm$ 0.03   &     1.00 $\pm$ 0.05   &     1.01 $\pm$ 0.06   &     0.97 $\pm$ 0.08  \\
925 > e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
926   \hline
927 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
928 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
929 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
930 +
931   \hline
365 $\mu$ + $\geq$2 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
932   \hline
933 <      data   &  0.106 $\pm$ 0.0016   &  0.045 $\pm$ 0.0011   &  0.025 $\pm$ 0.0008   &  0.016 $\pm$ 0.0007   &  0.012 $\pm$ 0.0006  \\
368 <        mc   &  0.108 $\pm$ 0.0009   &  0.044 $\pm$ 0.0006   &  0.024 $\pm$ 0.0004   &  0.016 $\pm$ 0.0004   &  0.011 $\pm$ 0.0003  \\
369 <   data/mc   &     0.98 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.04 $\pm$ 0.04   &     1.04 $\pm$ 0.05   &     1.06 $\pm$ 0.06  \\
933 > $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
934   \hline
935 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
936 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
937 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
938 +
939   \hline
372 e + $\geq$3 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
940   \hline
941 <      data   &  0.117 $\pm$ 0.0055   &  0.051 $\pm$ 0.0038   &  0.029 $\pm$ 0.0029   &  0.018 $\pm$ 0.0023   &  0.012 $\pm$ 0.0019  \\
375 <        mc   &  0.120 $\pm$ 0.0031   &  0.052 $\pm$ 0.0021   &  0.027 $\pm$ 0.0015   &  0.018 $\pm$ 0.0012   &  0.013 $\pm$ 0.0011  \\
376 <   data/mc   &     0.97 $\pm$ 0.05   &     0.99 $\pm$ 0.08   &     1.10 $\pm$ 0.13   &     1.03 $\pm$ 0.15   &     0.91 $\pm$ 0.16  \\
941 > e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
942   \hline
943 +      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
944 +        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
945 +   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
946 +
947   \hline
379 $\mu$ + $\geq$3 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
948   \hline
949 <      data   &  0.111 $\pm$ 0.0044   &  0.050 $\pm$ 0.0030   &  0.029 $\pm$ 0.0024   &  0.019 $\pm$ 0.0019   &  0.014 $\pm$ 0.0017  \\
382 <        mc   &  0.115 $\pm$ 0.0025   &  0.051 $\pm$ 0.0017   &  0.030 $\pm$ 0.0013   &  0.020 $\pm$ 0.0011   &  0.015 $\pm$ 0.0009  \\
383 <   data/mc   &     0.97 $\pm$ 0.04   &     0.97 $\pm$ 0.07   &     0.95 $\pm$ 0.09   &     0.97 $\pm$ 0.11   &     0.99 $\pm$ 0.13  \\
949 > $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
950   \hline
951 +      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
952 +        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
953 +   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
954 +
955   \hline
386 e + $\geq$4 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
956   \hline
957 <      data   &  0.113 $\pm$ 0.0148   &  0.048 $\pm$ 0.0100   &  0.033 $\pm$ 0.0083   &  0.020 $\pm$ 0.0065   &  0.017 $\pm$ 0.0062  \\
389 <        mc   &  0.146 $\pm$ 0.0092   &  0.064 $\pm$ 0.0064   &  0.034 $\pm$ 0.0048   &  0.024 $\pm$ 0.0040   &  0.021 $\pm$ 0.0037  \\
390 <   data/mc   &     0.78 $\pm$ 0.11   &     0.74 $\pm$ 0.17   &     0.96 $\pm$ 0.28   &     0.82 $\pm$ 0.30   &     0.85 $\pm$ 0.34  \\
957 > e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
958   \hline
959 +      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
960 +        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
961 +   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
962 +
963   \hline
393 $\mu$ + $\geq$4 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
964   \hline
965 <      data   &  0.130 $\pm$ 0.0128   &  0.052 $\pm$ 0.0085   &  0.028 $\pm$ 0.0063   &  0.019 $\pm$ 0.0052   &  0.019 $\pm$ 0.0052  \\
966 <        mc   &  0.105 $\pm$ 0.0064   &  0.045 $\pm$ 0.0043   &  0.027 $\pm$ 0.0034   &  0.019 $\pm$ 0.0028   &  0.014 $\pm$ 0.0024  \\
967 <   data/mc   &     1.23 $\pm$ 0.14   &     1.18 $\pm$ 0.22   &     1.03 $\pm$ 0.27   &     1.01 $\pm$ 0.32   &     1.37 $\pm$ 0.45  \\
965 > $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
966 > \hline
967 >      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
968 >        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
969 >   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
970 >
971   \hline
972   \hline
973  
974   \end{tabular}
975 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
976 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
977 + jet multiplicity requirements.}
978   \end{center}
979   \end{table}
980  
981 + \clearpage
982 + \subsection{Summary of uncertainties}
983 + \label{sec:bgunc-bottomline}
984 +
985 + The contribution from each source to the total uncertainty on the background yield is given in Tables~\ref{tab:relativeuncertaintycomponents} and~\ref{tab:uncertaintycomponents} for the relative and absolute uncertainties, respectively. In the low-\met\ regions the dominant uncertainty comes from the top tail-to-peak ratio, $R_{top}$ (Section~\ref{sec:ttp}), while in the high-\met\ regions the \ttll\ systematic uncertainty dominates (Section~\ref{sec:ttdilbkgunc}).
986 +
987 + \input{uncertainties_table.tex}
988 +
989 +
990 +
991  
992  
993   %Figure.~\ref{fig:reliso} compares the relative track isolation
# Line 454 | Line 1040 | jet multiplicity requirements.}
1040   %END SECTION TO WRITE OUT
1041  
1042  
1043 < {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
1044 < Why not measure $\epsilon_{fake}$ in the b-veto region?}
1043 > %{\bf fix me: What you have written in the next paragraph does not
1044 > %explain how $\epsilon_{fake}$ is measured.
1045 > %Why not measure $\epsilon_{fake}$ in the b-veto region?}
1046  
1047   %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
1048   %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
# Line 483 | Line 1070 | Why not measure $\epsilon_{fake}$ in the
1070   %      \end{center}
1071   %\end{figure}
1072  
1073 +
1074 +
1075 + % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines