1 |
|
%\section{Systematics Uncertainties on the Background Prediction} |
2 |
|
%\label{sec:systematics} |
3 |
|
|
4 |
< |
[ADD INTRODUCTORY BLURB ON UNCERTAINTIES \\ |
5 |
< |
ADD COMPARISONS OF ALL THE ALTERNATIVE SAMPLES FOR ALL THE SIGNAL |
6 |
< |
REGIONS \\ |
7 |
< |
LIST ALL THE UNCERTAINTIES INCLUDED AND THEIR VALUES] |
4 |
> |
[DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET |
5 |
> |
FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS |
6 |
> |
AND |
7 |
> |
WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL |
8 |
> |
UNCERTAINTIES |
9 |
> |
CORRECTLY THROUGH. WE WILL DO IT ONCE WE HAVE SETTLED ON THE |
10 |
> |
INDIVIDUAL PIECES WHICH ARE STILL IN FLUX] |
11 |
> |
|
12 |
> |
In this Section we discuss the systematic uncertainty on the BG |
13 |
> |
prediction. This prediction is assembled from the event |
14 |
> |
counts in the peak region of the transverse mass distribution as |
15 |
> |
well as Monte Carlo |
16 |
> |
with a number of correction factors, as described previously. |
17 |
> |
The |
18 |
> |
final uncertainty on the prediction is built up from the uncertainties in these |
19 |
> |
individual |
20 |
> |
components. |
21 |
> |
The calculation is done for each signal |
22 |
> |
region, |
23 |
> |
for electrons and muons separately. |
24 |
> |
|
25 |
> |
The choice to normalizing to the peak region of $M_T$ has the |
26 |
> |
advantage that some uncertainties, e.g., luminosity, cancel. |
27 |
> |
It does however introduce complications because it couples |
28 |
> |
some of the uncertainties in non-trivial ways. For example, |
29 |
> |
the primary effect of an uncertainty on the rare MC cross-section |
30 |
> |
is to introduce an uncertainty in the rare MC background estimate |
31 |
> |
which comes entirely from MC. But this uncertainty also affects, |
32 |
> |
for example, |
33 |
> |
the $t\bar{t} \to$ dilepton BG estimate because it changes the |
34 |
> |
$t\bar{t}$ normalization to the peak region (because some of the |
35 |
> |
events in the peak region are from rare processes). These effects |
36 |
> |
are carefully accounted for. The contribution to the overall |
37 |
> |
uncertainty from each BG source is tabulated in |
38 |
> |
Section~\ref{sec:bgunc-bottomline}. |
39 |
> |
First, however, we discuss the uncertainties one-by-one and we comment |
40 |
> |
on their impact on the overall result, at least to first order. |
41 |
> |
Second order effects, such as the one described, are also included. |
42 |
> |
|
43 |
> |
\subsection{Statistical uncertainties on the event counts in the $M_T$ |
44 |
> |
peak regions} |
45 |
> |
These vary between XX and XX \%, depending on the signal region |
46 |
> |
(different |
47 |
> |
signal regions have different \met\ requirements, thus they also have |
48 |
> |
different $M_T$ regions used as control. |
49 |
> |
Since |
50 |
> |
the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this |
51 |
> |
fractional uncertainty is pretty much carried through all the way to |
52 |
> |
the end. There is also an uncertainty from the finite MC event counts |
53 |
> |
in the $M_T$ peak regions. This is also included, but it is smaller. |
54 |
> |
|
55 |
> |
\subsection{Uncertainty from the choice of $M_T$ peak region} |
56 |
> |
IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT |
57 |
> |
LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY. WE NEED TO LOOK |
58 |
> |
INTO THIS AGAIN |
59 |
> |
|
60 |
> |
\subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections} |
61 |
> |
These are taken as 50\%, uncorrelated. |
62 |
> |
The primary effect is to introduce a 50\% |
63 |
> |
uncertainty |
64 |
> |
on the $W +$ jets and rare BG |
65 |
> |
background predictions, respectively. However they also |
66 |
> |
have an effect on the other BGs via the $M_T$ peak normalization |
67 |
> |
in a way that tends to reduce the uncertainty. This is easy |
68 |
> |
to understand: if the $W$ cross-section is increased by 50\%, then |
69 |
> |
the $W$ background goes up. But the number of $M_T$ peak events |
70 |
> |
attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is |
71 |
> |
scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$ |
72 |
> |
BG goes down. |
73 |
> |
|
74 |
> |
\subsection{Scale factors for the tail-to-peak ratios for lepton + |
75 |
> |
jets top and W events} |
76 |
> |
These tail-to-peak ratios are described in Section~\ref{sec:ttp}. |
77 |
> |
They are studied in CR1 and CR2. The studies are described |
78 |
> |
in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where |
79 |
> |
we also give the uncertainty on the scale factors. |
80 |
> |
|
81 |
> |
\subsection{Uncertainty on extra jet radiation for dilepton |
82 |
> |
background} |
83 |
> |
As discussed in Section~\ref{sec:jetmultiplicity}, the |
84 |
> |
jet distribution in |
85 |
> |
$t\bar{t} \to$ |
86 |
> |
dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make |
87 |
> |
it agree with the data. The XX\% uncertainties on $K_3$ and $K_4$ |
88 |
> |
comes from data/MC statistics. This |
89 |
> |
result directly in a XX\% uncertainty on the dilepton BG, which is by far |
90 |
> |
the most important one. |
91 |
> |
|
92 |
|
|
93 |
|
\subsection{Uncertainty on the \ttll\ Acceptance} |
94 |
|
|
144 |
|
alternative sample predictions are indicated by the |
145 |
|
datapoints. The uncertainties on the alternative predictions |
146 |
|
correspond to the uncorrelated statistical uncertainty from |
147 |
< |
the size of the alternative sample only.} |
147 |
> |
the size of the alternative sample only. |
148 |
> |
[TO BE UPDATED WITH THE LATEST SELECTION AND SFS]} |
149 |
|
\end{center} |
150 |
|
\end{figure} |
151 |
|
|
152 |
< |
|
152 |
> |
\clearpage |
153 |
|
|
154 |
|
% |
155 |
|
% |
285 |
|
%\end{center} |
286 |
|
%\end{table} |
287 |
|
|
288 |
+ |
\subsection{Uncertainty from the isolated track veto} |
289 |
+ |
This is the uncertainty associated with how well the isolated track |
290 |
+ |
veto performance is modeled by the Monte Carlo. This uncertainty |
291 |
+ |
only applies to the fraction of dilepton BG events that have |
292 |
+ |
a second e/$\mu$ or a one prong $\tau \to h$, with |
293 |
+ |
$P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is 1/3 (THIS WAS THE |
294 |
+ |
7 TEV NUMBER, CHECK). The uncertainty for these events |
295 |
+ |
is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto} |
296 |
|
|
297 |
< |
\subsection{Isolated Track Veto: Tag and Probe Studies} |
297 |
> |
\subsubsection{Isolated Track Veto: Tag and Probe Studies} |
298 |
> |
\label{sec:trkveto} |
299 |
|
|
300 |
|
[EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\ |
301 |
|
ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK] |
302 |
|
|
303 |
+ |
\begin{table}[!h] |
304 |
+ |
\begin{center} |
305 |
+ |
{\footnotesize |
306 |
+ |
\begin{tabular}{l||c|c|c|c|c} |
307 |
+ |
\hline |
308 |
+ |
Sample & SRA & SRB & SRC & SRD & SRE\\ |
309 |
+ |
\hline |
310 |
+ |
\hline |
311 |
+ |
Muon Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ \\ |
312 |
+ |
\hline |
313 |
+ |
\hline |
314 |
+ |
Electron Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ \\ |
315 |
+ |
\hline |
316 |
+ |
\end{tabular}} |
317 |
+ |
\caption{ Fraction of \ttdl\ events with a true isolated track. |
318 |
+ |
\label{tab:trueisotrk}} |
319 |
+ |
\end{center} |
320 |
+ |
\end{table} |
321 |
+ |
|
322 |
+ |
|
323 |
|
In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies |
324 |
|
with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency |
325 |
|
to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case |
364 |
|
|
365 |
|
\begin{itemize} |
366 |
|
\item Electron passes full analysis ID/iso selection |
367 |
< |
\item \pt\ $>$ 30 GeV, $|\eta|<2.5$ |
368 |
< |
|
255 |
< |
\item Matched to 1 of the 2 electron tag-and-probe triggers |
256 |
< |
\begin{itemize} |
257 |
< |
\item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8_Mass30_v*= |
258 |
< |
\item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_Ele8_Mass30_v*= |
259 |
< |
\end{itemize} |
367 |
> |
\item \pt\ $>$ 30 GeV, $|\eta|<2.1$ |
368 |
> |
\item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*= |
369 |
|
\end{itemize} |
370 |
|
|
371 |
|
\item{Probe criteria} |
380 |
|
\begin{itemize} |
381 |
|
\item Muon passes full analysis ID/iso selection |
382 |
|
\item \pt\ $>$ 30 GeV, $|\eta|<2.1$ |
383 |
< |
\item Matched to 1 of the 2 electron tag-and-probe triggers |
383 |
> |
\item Matched to 1 of the 2 single muon triggers |
384 |
|
\begin{itemize} |
385 |
|
\item \verb=HLT_IsoMu30_v*= |
386 |
|
\item \verb=HLT_IsoMu30_eta2p1_v*= |
398 |
|
good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy |
399 |
|
absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}. |
400 |
|
In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC |
401 |
< |
efficiencies agree within 7\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency. |
401 |
> |
efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency. |
402 |
|
For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for |
403 |
|
a data vs. MC discrepancy in the isolated track veto efficiency. |
404 |
|
|
409 |
|
|
410 |
|
\begin{figure}[hbt] |
411 |
|
\begin{center} |
412 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}% |
413 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf} |
414 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}% |
415 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf} |
416 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}% |
417 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf} |
418 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}% |
419 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf} |
420 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}% |
421 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf} |
412 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}% |
413 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf} |
414 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}% |
415 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf} |
416 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}% |
417 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf} |
418 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}% |
419 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf} |
420 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}% |
421 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf} |
422 |
|
\caption{ |
423 |
|
\label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right) |
424 |
|
for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4. |
433 |
|
\caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements |
434 |
|
on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various |
435 |
|
jet multiplicity requirements.} |
436 |
< |
\begin{tabular}{l|l|c|c|c|c|c} |
436 |
> |
\begin{tabular}{l|c|c|c|c|c} |
437 |
> |
|
438 |
> |
%Electrons: |
439 |
> |
%Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05) |
440 |
> |
%Total MC yields : 2497277 |
441 |
> |
%Total DATA yields : 2649453 |
442 |
> |
%Muons: |
443 |
> |
%Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05) |
444 |
> |
%Total MC yields : 3749863 |
445 |
> |
%Total DATA yields : 4210022 |
446 |
> |
%Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1 |
447 |
> |
%Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created |
448 |
> |
|
449 |
|
\hline |
450 |
|
\hline |
451 |
< |
e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
451 |
> |
e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
452 |
|
\hline |
453 |
< |
data & 0.088 $\pm$ 0.0003 & 0.030 $\pm$ 0.0002 & 0.013 $\pm$ 0.0001 & 0.007 $\pm$ 0.0001 & 0.005 $\pm$ 0.0001 \\ |
454 |
< |
mc & 0.087 $\pm$ 0.0001 & 0.030 $\pm$ 0.0001 & 0.014 $\pm$ 0.0001 & 0.008 $\pm$ 0.0000 & 0.005 $\pm$ 0.0000 \\ |
455 |
< |
data/mc & 1.01 $\pm$ 0.00 & 0.99 $\pm$ 0.01 & 0.97 $\pm$ 0.01 & 0.95 $\pm$ 0.01 & 0.93 $\pm$ 0.01 \\ |
453 |
> |
data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\ |
454 |
> |
mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\ |
455 |
> |
data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\ |
456 |
> |
|
457 |
|
\hline |
458 |
|
\hline |
459 |
< |
$\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
459 |
> |
$\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
460 |
|
\hline |
461 |
< |
data & 0.087 $\pm$ 0.0002 & 0.031 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.008 $\pm$ 0.0001 & 0.005 $\pm$ 0.0001 \\ |
462 |
< |
mc & 0.085 $\pm$ 0.0001 & 0.030 $\pm$ 0.0001 & 0.014 $\pm$ 0.0000 & 0.008 $\pm$ 0.0000 & 0.005 $\pm$ 0.0000 \\ |
463 |
< |
data/mc & 1.02 $\pm$ 0.00 & 1.06 $\pm$ 0.00 & 1.06 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\ |
461 |
> |
data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\ |
462 |
> |
mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\ |
463 |
> |
data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\ |
464 |
> |
|
465 |
|
\hline |
343 |
– |
\hline |
344 |
– |
e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
466 |
|
\hline |
467 |
< |
data & 0.099 $\pm$ 0.0008 & 0.038 $\pm$ 0.0005 & 0.019 $\pm$ 0.0004 & 0.011 $\pm$ 0.0003 & 0.008 $\pm$ 0.0002 \\ |
347 |
< |
mc & 0.100 $\pm$ 0.0004 & 0.038 $\pm$ 0.0003 & 0.019 $\pm$ 0.0002 & 0.012 $\pm$ 0.0002 & 0.008 $\pm$ 0.0001 \\ |
348 |
< |
data/mc & 0.99 $\pm$ 0.01 & 1.00 $\pm$ 0.02 & 0.99 $\pm$ 0.02 & 0.98 $\pm$ 0.03 & 0.97 $\pm$ 0.03 \\ |
467 |
> |
e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
468 |
|
\hline |
469 |
+ |
data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\ |
470 |
+ |
mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\ |
471 |
+ |
data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\ |
472 |
+ |
|
473 |
|
\hline |
351 |
– |
$\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
474 |
|
\hline |
475 |
< |
data & 0.100 $\pm$ 0.0006 & 0.041 $\pm$ 0.0004 & 0.022 $\pm$ 0.0003 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0002 \\ |
354 |
< |
mc & 0.099 $\pm$ 0.0004 & 0.039 $\pm$ 0.0002 & 0.020 $\pm$ 0.0002 & 0.013 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 \\ |
355 |
< |
data/mc & 1.01 $\pm$ 0.01 & 1.05 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.06 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\ |
475 |
> |
$\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
476 |
|
\hline |
477 |
+ |
data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\ |
478 |
+ |
mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\ |
479 |
+ |
data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\ |
480 |
+ |
|
481 |
|
\hline |
358 |
– |
e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
482 |
|
\hline |
483 |
< |
data & 0.105 $\pm$ 0.0020 & 0.042 $\pm$ 0.0013 & 0.021 $\pm$ 0.0009 & 0.013 $\pm$ 0.0007 & 0.009 $\pm$ 0.0006 \\ |
361 |
< |
mc & 0.109 $\pm$ 0.0011 & 0.043 $\pm$ 0.0007 & 0.021 $\pm$ 0.0005 & 0.013 $\pm$ 0.0004 & 0.009 $\pm$ 0.0003 \\ |
362 |
< |
data/mc & 0.96 $\pm$ 0.02 & 0.97 $\pm$ 0.03 & 1.00 $\pm$ 0.05 & 1.01 $\pm$ 0.06 & 0.97 $\pm$ 0.08 \\ |
483 |
> |
e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
484 |
|
\hline |
485 |
+ |
data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\ |
486 |
+ |
mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\ |
487 |
+ |
data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\ |
488 |
+ |
|
489 |
|
\hline |
365 |
– |
$\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
490 |
|
\hline |
491 |
< |
data & 0.106 $\pm$ 0.0016 & 0.045 $\pm$ 0.0011 & 0.025 $\pm$ 0.0008 & 0.016 $\pm$ 0.0007 & 0.012 $\pm$ 0.0006 \\ |
368 |
< |
mc & 0.108 $\pm$ 0.0009 & 0.044 $\pm$ 0.0006 & 0.024 $\pm$ 0.0004 & 0.016 $\pm$ 0.0004 & 0.011 $\pm$ 0.0003 \\ |
369 |
< |
data/mc & 0.98 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.04 $\pm$ 0.04 & 1.04 $\pm$ 0.05 & 1.06 $\pm$ 0.06 \\ |
491 |
> |
$\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
492 |
|
\hline |
493 |
+ |
data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\ |
494 |
+ |
mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\ |
495 |
+ |
data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\ |
496 |
+ |
|
497 |
|
\hline |
372 |
– |
e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
498 |
|
\hline |
499 |
< |
data & 0.117 $\pm$ 0.0055 & 0.051 $\pm$ 0.0038 & 0.029 $\pm$ 0.0029 & 0.018 $\pm$ 0.0023 & 0.012 $\pm$ 0.0019 \\ |
375 |
< |
mc & 0.120 $\pm$ 0.0031 & 0.052 $\pm$ 0.0021 & 0.027 $\pm$ 0.0015 & 0.018 $\pm$ 0.0012 & 0.013 $\pm$ 0.0011 \\ |
376 |
< |
data/mc & 0.97 $\pm$ 0.05 & 0.99 $\pm$ 0.08 & 1.10 $\pm$ 0.13 & 1.03 $\pm$ 0.15 & 0.91 $\pm$ 0.16 \\ |
499 |
> |
e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
500 |
|
\hline |
501 |
+ |
data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\ |
502 |
+ |
mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\ |
503 |
+ |
data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\ |
504 |
+ |
|
505 |
|
\hline |
379 |
– |
$\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
506 |
|
\hline |
507 |
< |
data & 0.111 $\pm$ 0.0044 & 0.050 $\pm$ 0.0030 & 0.029 $\pm$ 0.0024 & 0.019 $\pm$ 0.0019 & 0.014 $\pm$ 0.0017 \\ |
382 |
< |
mc & 0.115 $\pm$ 0.0025 & 0.051 $\pm$ 0.0017 & 0.030 $\pm$ 0.0013 & 0.020 $\pm$ 0.0011 & 0.015 $\pm$ 0.0009 \\ |
383 |
< |
data/mc & 0.97 $\pm$ 0.04 & 0.97 $\pm$ 0.07 & 0.95 $\pm$ 0.09 & 0.97 $\pm$ 0.11 & 0.99 $\pm$ 0.13 \\ |
507 |
> |
$\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
508 |
|
\hline |
509 |
+ |
data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\ |
510 |
+ |
mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\ |
511 |
+ |
data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\ |
512 |
+ |
|
513 |
|
\hline |
386 |
– |
e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
514 |
|
\hline |
515 |
< |
data & 0.113 $\pm$ 0.0148 & 0.048 $\pm$ 0.0100 & 0.033 $\pm$ 0.0083 & 0.020 $\pm$ 0.0065 & 0.017 $\pm$ 0.0062 \\ |
389 |
< |
mc & 0.146 $\pm$ 0.0092 & 0.064 $\pm$ 0.0064 & 0.034 $\pm$ 0.0048 & 0.024 $\pm$ 0.0040 & 0.021 $\pm$ 0.0037 \\ |
390 |
< |
data/mc & 0.78 $\pm$ 0.11 & 0.74 $\pm$ 0.17 & 0.96 $\pm$ 0.28 & 0.82 $\pm$ 0.30 & 0.85 $\pm$ 0.34 \\ |
515 |
> |
e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
516 |
|
\hline |
517 |
+ |
data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\ |
518 |
+ |
mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\ |
519 |
+ |
data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\ |
520 |
+ |
|
521 |
|
\hline |
393 |
– |
$\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
522 |
|
\hline |
523 |
< |
data & 0.130 $\pm$ 0.0128 & 0.052 $\pm$ 0.0085 & 0.028 $\pm$ 0.0063 & 0.019 $\pm$ 0.0052 & 0.019 $\pm$ 0.0052 \\ |
524 |
< |
mc & 0.105 $\pm$ 0.0064 & 0.045 $\pm$ 0.0043 & 0.027 $\pm$ 0.0034 & 0.019 $\pm$ 0.0028 & 0.014 $\pm$ 0.0024 \\ |
525 |
< |
data/mc & 1.23 $\pm$ 0.14 & 1.18 $\pm$ 0.22 & 1.03 $\pm$ 0.27 & 1.01 $\pm$ 0.32 & 1.37 $\pm$ 0.45 \\ |
523 |
> |
$\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
524 |
> |
\hline |
525 |
> |
data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\ |
526 |
> |
mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\ |
527 |
> |
data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\ |
528 |
> |
|
529 |
|
\hline |
530 |
|
\hline |
531 |
|
|
534 |
|
\end{table} |
535 |
|
|
536 |
|
|
406 |
– |
|
537 |
|
%Figure.~\ref{fig:reliso} compares the relative track isolation |
538 |
|
%for events with a track with $\pt > 10~\GeV$ in addition to a selected |
539 |
|
%muon for $\Z+4$ jet events and various \ttll\ components. The |
613 |
|
% \end{center} |
614 |
|
%\end{figure} |
615 |
|
|
616 |
+ |
\subsection{Summary of uncertainties} |
617 |
+ |
\label{sec:bgunc-bottomline}. |
618 |
+ |
|
619 |
+ |
THIS NEEDS TO BE WRITTEN |