ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.6 by burkett, Thu Oct 4 20:16:07 2012 UTC vs.
Revision 1.13 by vimartin, Tue Oct 9 14:00:42 2012 UTC

# Line 1 | Line 1
1   %\section{Systematics Uncertainties on the Background Prediction}
2   %\label{sec:systematics}
3  
4 < [ADD INTRODUCTORY BLURB ON UNCERTAINTIES \\
5 < ADD COMPARISONS OF ALL THE ALTERNATIVE SAMPLES FOR ALL THE SIGNAL
6 < REGIONS \\
7 < LIST ALL THE UNCERTAINTIES INCLUDED AND THEIR VALUES]
4 > [DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET
5 > FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS
6 > AND
7 > WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL
8 > UNCERTAINTIES
9 > CORRECTLY THROUGH.  WE WILL DO IT ONCE WE HAVE SETTLED ON THE
10 > INDIVIDUAL PIECES WHICH ARE STILL IN FLUX]
11 >
12 > In this Section we discuss the systematic uncertainty on the BG
13 > prediction.  This prediction is assembled from the event
14 > counts in the peak region of the transverse mass distribution as
15 > well as Monte Carlo
16 > with a number of correction factors, as described previously.
17 > The
18 > final uncertainty on the prediction is built up from the uncertainties in these
19 > individual
20 > components.
21 > The calculation is done for each signal
22 > region,
23 > for electrons and muons separately.
24 >
25 > The choice to normalizing to the peak region of $M_T$ has the
26 > advantage that some uncertainties, e.g., luminosity, cancel.
27 > It does however introduce complications because it couples
28 > some of the uncertainties in non-trivial ways.  For example,
29 > the primary effect of an uncertainty on the rare MC cross-section
30 > is to introduce an uncertainty in the rare MC background estimate
31 > which comes entirely from MC.   But this uncertainty also affects,
32 > for example,
33 > the $t\bar{t} \to$ dilepton BG estimate because it changes the
34 > $t\bar{t}$ normalization to the peak region (because some of the
35 > events in the peak region are from rare processes).  These effects
36 > are carefully accounted for.  The contribution to the overall
37 > uncertainty from each BG source is tabulated in
38 > Section~\ref{sec:bgunc-bottomline}.
39 > First, however, we discuss the uncertainties one-by-one and we comment
40 > on their impact on the overall result, at least to first order.
41 > Second order effects, such as the one described, are also included.
42 >
43 > \subsection{Statistical uncertainties on the event counts in the $M_T$
44 > peak regions}
45 > These vary between XX and XX \%, depending on the signal region
46 > (different
47 > signal regions have different \met\ requirements, thus they also have
48 > different $M_T$ regions used as control.
49 > Since
50 > the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
51 > fractional uncertainty is pretty much carried through all the way to
52 > the end.  There is also an uncertainty from the finite MC event counts
53 > in the $M_T$ peak regions.  This is also included, but it is smaller.
54 >
55 > \subsection{Uncertainty from the choice of $M_T$ peak region}
56 > IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT
57 > LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY.  WE NEED TO LOOK
58 > INTO THIS AGAIN
59 >
60 > \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
61 > These are taken as 50\%, uncorrelated.  
62 > The primary effect is to introduce a 50\%
63 > uncertainty
64 > on the $W +$ jets and rare BG
65 > background predictions, respectively.  However they also
66 > have an effect on the other BGs via the $M_T$ peak normalization
67 > in a way that tends to reduce the uncertainty.  This is easy
68 > to understand: if the $W$ cross-section is increased by 50\%, then
69 > the $W$ background goes up.  But the number of $M_T$ peak events
70 > attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
71 > scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
72 > BG goes down.  
73 >
74 > \subsection{Scale factors for the tail-to-peak ratios for lepton +
75 >  jets top and W events}
76 > These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
77 > They are studied in CR1 and CR2.  The studies are described
78 > in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
79 > we also give the uncertainty on the scale factors.
80 >
81 > \subsection{Uncertainty on extra jet radiation for dilepton
82 >  background}
83 > As discussed in Section~\ref{sec:jetmultiplicity}, the
84 > jet distribution in
85 > $t\bar{t} \to$
86 > dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
87 > it agree with the data.  The XX\% uncertainties on $K_3$ and $K_4$
88 > comes from data/MC statistics.  This  
89 > result directly in a XX\% uncertainty on the dilepton BG, which is by far
90 > the most important one.
91 >
92  
93   \subsection{Uncertainty on the \ttll\ Acceptance}
94  
# Line 60 | Line 144 | The variations considered are
144            alternative sample predictions are indicated by the
145            datapoints. The uncertainties on the alternative predictions
146            correspond to the uncorrelated statistical uncertainty from
147 <          the size of the alternative sample only.}
147 >          the size of the alternative sample only.
148 >        [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
149        \end{center}
150      \end{figure}
151  
152 <
152 > \clearpage
153  
154   %
155   %
# Line 200 | Line 285 | The variations considered are
285   %\end{center}
286   %\end{table}
287  
288 + \subsection{Uncertainty from the isolated track veto}
289 + This is the uncertainty associated with how well the isolated track
290 + veto performance is modeled by the Monte Carlo.  This uncertainty
291 + only applies to the fraction of dilepton BG events that have
292 + a second e/$\mu$ or a one prong $\tau \to h$, with
293 + $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is 1/3 (THIS WAS THE
294 + 7 TEV NUMBER, CHECK).  The uncertainty for these events
295 + is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
296  
297 < \subsection{Isolated Track Veto: Tag and Probe Studies}
297 > \subsubsection{Isolated Track Veto: Tag and Probe Studies}
298 > \label{sec:trkveto}
299  
300   [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
301   ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
302  
303 + \begin{table}[!h]
304 + \begin{center}
305 + {\footnotesize
306 + \begin{tabular}{l||c|c|c|c|c}
307 + \hline
308 + Sample              & SRA & SRB & SRC & SRD & SRE\\
309 + \hline
310 + \hline
311 + Muon Frac. \ttdl\ with true iso. trk.    & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$  \\
312 + \hline
313 + \hline
314 + Electron Frac. \ttdl\ with true iso. trk.        & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$  \\
315 + \hline
316 + \end{tabular}}
317 + \caption{ Fraction of \ttdl\ events with a true isolated track.
318 + \label{tab:trueisotrk}}
319 + \end{center}
320 + \end{table}
321 +
322 +
323   In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
324   with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
325   to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
# Line 250 | Line 364 | The specific criteria for tags and probe
364  
365        \begin{itemize}
366        \item Electron passes full analysis ID/iso selection
367 <      \item \pt\ $>$ 30 GeV, $|\eta|<2.5$
368 <
255 <      \item Matched to 1 of the 2 electron tag-and-probe triggers
256 <        \begin{itemize}
257 <        \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8_Mass30_v*=
258 <        \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_Ele8_Mass30_v*=
259 <        \end{itemize}
367 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
368 >      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
369        \end{itemize}
370  
371      \item{Probe criteria}
# Line 271 | Line 380 | The specific criteria for tags and probe
380        \begin{itemize}
381        \item Muon passes full analysis ID/iso selection
382        \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
383 <      \item Matched to 1 of the 2 electron tag-and-probe triggers
383 >      \item Matched to 1 of the 2 single muon triggers
384          \begin{itemize}
385          \item \verb=HLT_IsoMu30_v*=
386          \item \verb=HLT_IsoMu30_eta2p1_v*=
# Line 289 | Line 398 | The absolute track isolation distributio
398   good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
399   absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
400   In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
401 < efficiencies agree within 7\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
401 > efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
402   For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
403   a data vs. MC discrepancy in the isolated track veto efficiency.
404  
# Line 300 | Line 409 | a data vs. MC discrepancy in the isolate
409  
410   \begin{figure}[hbt]
411    \begin{center}
412 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
413 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
414 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
415 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
416 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
417 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
418 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
419 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
420 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
421 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
412 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
413 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
414 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
415 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
416 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
417 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
418 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
419 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
420 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
421 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
422          \caption{
423            \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
424   for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
# Line 324 | Line 433 | for events with the \njets\ requirement
433   \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
434   on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
435   jet multiplicity requirements.}
436 < \begin{tabular}{l|l|c|c|c|c|c}
436 > \begin{tabular}{l|c|c|c|c|c}
437 >
438 > %Electrons:
439 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
440 > %Total MC yields        : 2497277
441 > %Total DATA yields      : 2649453
442 > %Muons:
443 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
444 > %Total MC yields        : 3749863
445 > %Total DATA yields      : 4210022
446 > %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
447 > %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
448 >
449   \hline
450   \hline
451 < e + $\geq$0 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
451 > e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
452   \hline
453 <      data   &  0.088 $\pm$ 0.0003   &  0.030 $\pm$ 0.0002   &  0.013 $\pm$ 0.0001   &  0.007 $\pm$ 0.0001   &  0.005 $\pm$ 0.0001  \\
454 <        mc   &  0.087 $\pm$ 0.0001   &  0.030 $\pm$ 0.0001   &  0.014 $\pm$ 0.0001   &  0.008 $\pm$ 0.0000   &  0.005 $\pm$ 0.0000  \\
455 <   data/mc   &     1.01 $\pm$ 0.00   &     0.99 $\pm$ 0.01   &     0.97 $\pm$ 0.01   &     0.95 $\pm$ 0.01   &     0.93 $\pm$ 0.01  \\
453 >      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
454 >        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
455 >   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
456 >
457   \hline
458   \hline
459 < $\mu$ + $\geq$0 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
459 > $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
460   \hline
461 <      data   &  0.087 $\pm$ 0.0002   &  0.031 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.008 $\pm$ 0.0001   &  0.005 $\pm$ 0.0001  \\
462 <        mc   &  0.085 $\pm$ 0.0001   &  0.030 $\pm$ 0.0001   &  0.014 $\pm$ 0.0000   &  0.008 $\pm$ 0.0000   &  0.005 $\pm$ 0.0000  \\
463 <   data/mc   &     1.02 $\pm$ 0.00   &     1.06 $\pm$ 0.00   &     1.06 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
461 >      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
462 >        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
463 >   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
464 >
465   \hline
343 \hline
344 e + $\geq$1 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
466   \hline
467 <      data   &  0.099 $\pm$ 0.0008   &  0.038 $\pm$ 0.0005   &  0.019 $\pm$ 0.0004   &  0.011 $\pm$ 0.0003   &  0.008 $\pm$ 0.0002  \\
347 <        mc   &  0.100 $\pm$ 0.0004   &  0.038 $\pm$ 0.0003   &  0.019 $\pm$ 0.0002   &  0.012 $\pm$ 0.0002   &  0.008 $\pm$ 0.0001  \\
348 <   data/mc   &     0.99 $\pm$ 0.01   &     1.00 $\pm$ 0.02   &     0.99 $\pm$ 0.02   &     0.98 $\pm$ 0.03   &     0.97 $\pm$ 0.03  \\
467 > e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
468   \hline
469 +      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
470 +        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
471 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
472 +
473   \hline
351 $\mu$ + $\geq$1 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
474   \hline
475 <      data   &  0.100 $\pm$ 0.0006   &  0.041 $\pm$ 0.0004   &  0.022 $\pm$ 0.0003   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0002  \\
354 <        mc   &  0.099 $\pm$ 0.0004   &  0.039 $\pm$ 0.0002   &  0.020 $\pm$ 0.0002   &  0.013 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001  \\
355 <   data/mc   &     1.01 $\pm$ 0.01   &     1.05 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.06 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
475 > $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
476   \hline
477 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
478 +        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
479 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
480 +
481   \hline
358 e + $\geq$2 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
482   \hline
483 <      data   &  0.105 $\pm$ 0.0020   &  0.042 $\pm$ 0.0013   &  0.021 $\pm$ 0.0009   &  0.013 $\pm$ 0.0007   &  0.009 $\pm$ 0.0006  \\
361 <        mc   &  0.109 $\pm$ 0.0011   &  0.043 $\pm$ 0.0007   &  0.021 $\pm$ 0.0005   &  0.013 $\pm$ 0.0004   &  0.009 $\pm$ 0.0003  \\
362 <   data/mc   &     0.96 $\pm$ 0.02   &     0.97 $\pm$ 0.03   &     1.00 $\pm$ 0.05   &     1.01 $\pm$ 0.06   &     0.97 $\pm$ 0.08  \\
483 > e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
484   \hline
485 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
486 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
487 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
488 +
489   \hline
365 $\mu$ + $\geq$2 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
490   \hline
491 <      data   &  0.106 $\pm$ 0.0016   &  0.045 $\pm$ 0.0011   &  0.025 $\pm$ 0.0008   &  0.016 $\pm$ 0.0007   &  0.012 $\pm$ 0.0006  \\
368 <        mc   &  0.108 $\pm$ 0.0009   &  0.044 $\pm$ 0.0006   &  0.024 $\pm$ 0.0004   &  0.016 $\pm$ 0.0004   &  0.011 $\pm$ 0.0003  \\
369 <   data/mc   &     0.98 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.04 $\pm$ 0.04   &     1.04 $\pm$ 0.05   &     1.06 $\pm$ 0.06  \\
491 > $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
492   \hline
493 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
494 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
495 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
496 +
497   \hline
372 e + $\geq$3 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
498   \hline
499 <      data   &  0.117 $\pm$ 0.0055   &  0.051 $\pm$ 0.0038   &  0.029 $\pm$ 0.0029   &  0.018 $\pm$ 0.0023   &  0.012 $\pm$ 0.0019  \\
375 <        mc   &  0.120 $\pm$ 0.0031   &  0.052 $\pm$ 0.0021   &  0.027 $\pm$ 0.0015   &  0.018 $\pm$ 0.0012   &  0.013 $\pm$ 0.0011  \\
376 <   data/mc   &     0.97 $\pm$ 0.05   &     0.99 $\pm$ 0.08   &     1.10 $\pm$ 0.13   &     1.03 $\pm$ 0.15   &     0.91 $\pm$ 0.16  \\
499 > e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
500   \hline
501 +      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
502 +        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
503 +   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
504 +
505   \hline
379 $\mu$ + $\geq$3 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
506   \hline
507 <      data   &  0.111 $\pm$ 0.0044   &  0.050 $\pm$ 0.0030   &  0.029 $\pm$ 0.0024   &  0.019 $\pm$ 0.0019   &  0.014 $\pm$ 0.0017  \\
382 <        mc   &  0.115 $\pm$ 0.0025   &  0.051 $\pm$ 0.0017   &  0.030 $\pm$ 0.0013   &  0.020 $\pm$ 0.0011   &  0.015 $\pm$ 0.0009  \\
383 <   data/mc   &     0.97 $\pm$ 0.04   &     0.97 $\pm$ 0.07   &     0.95 $\pm$ 0.09   &     0.97 $\pm$ 0.11   &     0.99 $\pm$ 0.13  \\
507 > $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
508   \hline
509 +      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
510 +        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
511 +   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
512 +
513   \hline
386 e + $\geq$4 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
514   \hline
515 <      data   &  0.113 $\pm$ 0.0148   &  0.048 $\pm$ 0.0100   &  0.033 $\pm$ 0.0083   &  0.020 $\pm$ 0.0065   &  0.017 $\pm$ 0.0062  \\
389 <        mc   &  0.146 $\pm$ 0.0092   &  0.064 $\pm$ 0.0064   &  0.034 $\pm$ 0.0048   &  0.024 $\pm$ 0.0040   &  0.021 $\pm$ 0.0037  \\
390 <   data/mc   &     0.78 $\pm$ 0.11   &     0.74 $\pm$ 0.17   &     0.96 $\pm$ 0.28   &     0.82 $\pm$ 0.30   &     0.85 $\pm$ 0.34  \\
515 > e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
516   \hline
517 +      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
518 +        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
519 +   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
520 +
521   \hline
393 $\mu$ + $\geq$4 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
522   \hline
523 <      data   &  0.130 $\pm$ 0.0128   &  0.052 $\pm$ 0.0085   &  0.028 $\pm$ 0.0063   &  0.019 $\pm$ 0.0052   &  0.019 $\pm$ 0.0052  \\
524 <        mc   &  0.105 $\pm$ 0.0064   &  0.045 $\pm$ 0.0043   &  0.027 $\pm$ 0.0034   &  0.019 $\pm$ 0.0028   &  0.014 $\pm$ 0.0024  \\
525 <   data/mc   &     1.23 $\pm$ 0.14   &     1.18 $\pm$ 0.22   &     1.03 $\pm$ 0.27   &     1.01 $\pm$ 0.32   &     1.37 $\pm$ 0.45  \\
523 > $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
524 > \hline
525 >      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
526 >        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
527 >   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
528 >
529   \hline
530   \hline
531  
# Line 403 | Line 534 | jet multiplicity requirements.}
534   \end{table}
535  
536  
406
537   %Figure.~\ref{fig:reliso} compares the relative track isolation
538   %for events with a track with $\pt > 10~\GeV$ in addition to a selected
539   %muon for $\Z+4$ jet events and various \ttll\ components. The
# Line 483 | Line 613 | Why not measure $\epsilon_{fake}$ in the
613   %      \end{center}
614   %\end{figure}
615  
616 + \subsection{Summary of uncertainties}
617 + \label{sec:bgunc-bottomline}.
618 +
619 + THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines