ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.6 by burkett, Thu Oct 4 20:16:07 2012 UTC vs.
Revision 1.14 by vimartin, Wed Oct 10 04:03:33 2012 UTC

# Line 1 | Line 1
1   %\section{Systematics Uncertainties on the Background Prediction}
2   %\label{sec:systematics}
3  
4 < [ADD INTRODUCTORY BLURB ON UNCERTAINTIES \\
5 < ADD COMPARISONS OF ALL THE ALTERNATIVE SAMPLES FOR ALL THE SIGNAL
6 < REGIONS \\
7 < LIST ALL THE UNCERTAINTIES INCLUDED AND THEIR VALUES]
4 > [DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET
5 > FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS
6 > AND
7 > WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL
8 > UNCERTAINTIES
9 > CORRECTLY THROUGH.  WE WILL DO IT ONCE WE HAVE SETTLED ON THE
10 > INDIVIDUAL PIECES WHICH ARE STILL IN FLUX]
11 >
12 > In this Section we discuss the systematic uncertainty on the BG
13 > prediction.  This prediction is assembled from the event
14 > counts in the peak region of the transverse mass distribution as
15 > well as Monte Carlo
16 > with a number of correction factors, as described previously.
17 > The
18 > final uncertainty on the prediction is built up from the uncertainties in these
19 > individual
20 > components.
21 > The calculation is done for each signal
22 > region,
23 > for electrons and muons separately.
24 >
25 > The choice to normalizing to the peak region of $M_T$ has the
26 > advantage that some uncertainties, e.g., luminosity, cancel.
27 > It does however introduce complications because it couples
28 > some of the uncertainties in non-trivial ways.  For example,
29 > the primary effect of an uncertainty on the rare MC cross-section
30 > is to introduce an uncertainty in the rare MC background estimate
31 > which comes entirely from MC.   But this uncertainty also affects,
32 > for example,
33 > the $t\bar{t} \to$ dilepton BG estimate because it changes the
34 > $t\bar{t}$ normalization to the peak region (because some of the
35 > events in the peak region are from rare processes).  These effects
36 > are carefully accounted for.  The contribution to the overall
37 > uncertainty from each BG source is tabulated in
38 > Section~\ref{sec:bgunc-bottomline}.
39 > First, however, we discuss the uncertainties one-by-one and we comment
40 > on their impact on the overall result, at least to first order.
41 > Second order effects, such as the one described, are also included.
42 >
43 > \subsection{Statistical uncertainties on the event counts in the $M_T$
44 > peak regions}
45 > These vary between XX and XX \%, depending on the signal region
46 > (different
47 > signal regions have different \met\ requirements, thus they also have
48 > different $M_T$ regions used as control.
49 > Since
50 > the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
51 > fractional uncertainty is pretty much carried through all the way to
52 > the end.  There is also an uncertainty from the finite MC event counts
53 > in the $M_T$ peak regions.  This is also included, but it is smaller.
54 >
55 > \subsection{Uncertainty from the choice of $M_T$ peak region}
56 > IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT
57 > LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY.  WE NEED TO LOOK
58 > INTO THIS AGAIN
59 >
60 > \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
61 > These are taken as 50\%, uncorrelated.  
62 > The primary effect is to introduce a 50\%
63 > uncertainty
64 > on the $W +$ jets and rare BG
65 > background predictions, respectively.  However they also
66 > have an effect on the other BGs via the $M_T$ peak normalization
67 > in a way that tends to reduce the uncertainty.  This is easy
68 > to understand: if the $W$ cross-section is increased by 50\%, then
69 > the $W$ background goes up.  But the number of $M_T$ peak events
70 > attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
71 > scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
72 > BG goes down.  
73 >
74 > \subsection{Scale factors for the tail-to-peak ratios for lepton +
75 >  jets top and W events}
76 > These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
77 > They are studied in CR1 and CR2.  The studies are described
78 > in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
79 > we also give the uncertainty on the scale factors.
80 >
81 > \subsection{Uncertainty on extra jet radiation for dilepton
82 >  background}
83 > As discussed in Section~\ref{sec:jetmultiplicity}, the
84 > jet distribution in
85 > $t\bar{t} \to$
86 > dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
87 > it agree with the data.  The XX\% uncertainties on $K_3$ and $K_4$
88 > comes from data/MC statistics.  This  
89 > result directly in a XX\% uncertainty on the dilepton BG, which is by far
90 > the most important one.
91 >
92  
93   \subsection{Uncertainty on the \ttll\ Acceptance}
94  
# Line 49 | Line 133 | The variations considered are
133    \end{itemize}
134  
135  
136 + \begin{table}[!h]
137 + \begin{center}
138 + {\footnotesize
139 + \begin{tabular}{l||c||c|c|c|c|c|c|c}
140 + \hline
141 + Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
142 + Match Up & Match Down \\
143 + \hline
144 + \hline
145 + SRA      & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
146 + \hline
147 + SRB      & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
148 + \hline
149 + SRC      & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
150 + \hline
151 + SRD      & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
152 + \hline
153 + SRE      & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
154 + \hline
155 + \end{tabular}}
156 + \caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
157 + \label{tab:ttdlalt}}
158 + \end{center}
159 + \end{table}
160 +
161 +
162 + \begin{table}[!h]
163 + \begin{center}
164 + {\footnotesize
165 + \begin{tabular}{l||c|c|c|c|c|c|c}
166 + \hline
167 + $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
168 + Match Up & Match Down \\
169 + \hline
170 + \hline
171 + SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
172 + \hline
173 + SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
174 + \hline
175 + SRC      & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
176 + \hline
177 + SRD      & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
178 + \hline
179 + SRE      & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
180 + \hline
181 + \end{tabular}}
182 + \caption{ Relative difference in \ttdl\ predictions for alternative MC samples.
183 + \label{tab:fracdiff}}
184 + \end{center}
185 + \end{table}
186 +
187 +
188 + \begin{table}[!h]
189 + \begin{center}
190 + {\footnotesize
191 + \begin{tabular}{l||c|c|c|c|c|c|c}
192 + \hline
193 + $N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
194 + Match Up & Match Down \\
195 + \hline
196 + \hline
197 + SRA      & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
198 + \hline
199 + SRB      & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
200 + \hline
201 + SRC      & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
202 + \hline
203 + SRD      & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
204 + \hline
205 + SRE      & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
206 + \hline
207 + \end{tabular}}
208 + \caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
209 + \label{tab:nsig}}
210 + \end{center}
211 + \end{table}
212 +
213 +
214 + \begin{table}[!h]
215 + \begin{center}
216 + \begin{tabular}{l||c|c|c|c}
217 + \hline
218 + Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
219 + & $\Delta$ Match \\
220 + \hline
221 + \hline
222 + SRA      & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
223 + \hline
224 + SRB      & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
225 + \hline
226 + SRC      & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
227 + \hline
228 + SRD      & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
229 + \hline
230 + SRE      & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
231 + \hline
232 + \end{tabular}
233 + \caption{ Av. difference in \ttdl\ events for alternative sample pairs.
234 + \label{tab:devt}}
235 + \end{center}
236 + \end{table}
237 +
238 +
239   \begin{figure}[hbt]
240    \begin{center}
241 <        \includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png}
241 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
242 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
243 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
244 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
245 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
246          \caption{
247 <          \label{fig:ttllsyst}%\protect
247 >          \label{fig:ttllsyst}\protect
248            Comparison of the \ttll\ central prediction with those using
249            alternative MC samples. The blue band corresponds to the
250            total statistical error for all data and MC samples. The
251            alternative sample predictions are indicated by the
252            datapoints. The uncertainties on the alternative predictions
253            correspond to the uncorrelated statistical uncertainty from
254 <          the size of the alternative sample only.}
254 >          the size of the alternative sample only.
255 >        [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
256        \end{center}
257      \end{figure}
258  
259 <
259 > \clearpage
260  
261   %
262   %
# Line 200 | Line 392 | The variations considered are
392   %\end{center}
393   %\end{table}
394  
395 + \subsection{Uncertainty from the isolated track veto}
396 + This is the uncertainty associated with how well the isolated track
397 + veto performance is modeled by the Monte Carlo.  This uncertainty
398 + only applies to the fraction of dilepton BG events that have
399 + a second e/$\mu$ or a one prong $\tau \to h$, with
400 + $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is 1/3 (THIS WAS THE
401 + 7 TEV NUMBER, CHECK).  The uncertainty for these events
402 + is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
403  
404 < \subsection{Isolated Track Veto: Tag and Probe Studies}
404 > \subsubsection{Isolated Track Veto: Tag and Probe Studies}
405 > \label{sec:trkveto}
406  
407   [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
408   ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
409  
410 + \begin{table}[!h]
411 + \begin{center}
412 + {\footnotesize
413 + \begin{tabular}{l||c|c|c|c|c|c|c}
414 + \hline
415 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
416 + \hline
417 + \hline
418 + $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
419 + \hline
420 + \hline
421 + e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
422 + \hline
423 + \end{tabular}}
424 + \caption{ Fraction of \ttdl\ events with a true isolated track.
425 + \label{tab:trueisotrk}}
426 + \end{center}
427 + \end{table}
428 +
429 +
430   In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
431   with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
432   to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
# Line 250 | Line 471 | The specific criteria for tags and probe
471  
472        \begin{itemize}
473        \item Electron passes full analysis ID/iso selection
474 <      \item \pt\ $>$ 30 GeV, $|\eta|<2.5$
475 <
255 <      \item Matched to 1 of the 2 electron tag-and-probe triggers
256 <        \begin{itemize}
257 <        \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8_Mass30_v*=
258 <        \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_Ele8_Mass30_v*=
259 <        \end{itemize}
474 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
475 >      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
476        \end{itemize}
477  
478      \item{Probe criteria}
# Line 271 | Line 487 | The specific criteria for tags and probe
487        \begin{itemize}
488        \item Muon passes full analysis ID/iso selection
489        \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
490 <      \item Matched to 1 of the 2 electron tag-and-probe triggers
490 >      \item Matched to 1 of the 2 single muon triggers
491          \begin{itemize}
492          \item \verb=HLT_IsoMu30_v*=
493          \item \verb=HLT_IsoMu30_eta2p1_v*=
# Line 289 | Line 505 | The absolute track isolation distributio
505   good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
506   absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
507   In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
508 < efficiencies agree within 7\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
508 > efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
509   For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
510   a data vs. MC discrepancy in the isolated track veto efficiency.
511  
# Line 300 | Line 516 | a data vs. MC discrepancy in the isolate
516  
517   \begin{figure}[hbt]
518    \begin{center}
519 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
520 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
521 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
522 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
523 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
524 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
525 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
526 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
527 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
528 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
519 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
520 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
521 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
522 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
523 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
524 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
525 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
526 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
527 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
528 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
529          \caption{
530            \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
531   for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
# Line 324 | Line 540 | for events with the \njets\ requirement
540   \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
541   on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
542   jet multiplicity requirements.}
543 < \begin{tabular}{l|l|c|c|c|c|c}
543 > \begin{tabular}{l|c|c|c|c|c}
544 >
545 > %Electrons:
546 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
547 > %Total MC yields        : 2497277
548 > %Total DATA yields      : 2649453
549 > %Muons:
550 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
551 > %Total MC yields        : 3749863
552 > %Total DATA yields      : 4210022
553 > %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
554 > %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
555 >
556   \hline
557   \hline
558 < e + $\geq$0 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
558 > e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
559   \hline
560 <      data   &  0.088 $\pm$ 0.0003   &  0.030 $\pm$ 0.0002   &  0.013 $\pm$ 0.0001   &  0.007 $\pm$ 0.0001   &  0.005 $\pm$ 0.0001  \\
561 <        mc   &  0.087 $\pm$ 0.0001   &  0.030 $\pm$ 0.0001   &  0.014 $\pm$ 0.0001   &  0.008 $\pm$ 0.0000   &  0.005 $\pm$ 0.0000  \\
562 <   data/mc   &     1.01 $\pm$ 0.00   &     0.99 $\pm$ 0.01   &     0.97 $\pm$ 0.01   &     0.95 $\pm$ 0.01   &     0.93 $\pm$ 0.01  \\
560 >      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
561 >        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
562 >   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
563 >
564   \hline
565   \hline
566 < $\mu$ + $\geq$0 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
566 > $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
567   \hline
568 <      data   &  0.087 $\pm$ 0.0002   &  0.031 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.008 $\pm$ 0.0001   &  0.005 $\pm$ 0.0001  \\
569 <        mc   &  0.085 $\pm$ 0.0001   &  0.030 $\pm$ 0.0001   &  0.014 $\pm$ 0.0000   &  0.008 $\pm$ 0.0000   &  0.005 $\pm$ 0.0000  \\
570 <   data/mc   &     1.02 $\pm$ 0.00   &     1.06 $\pm$ 0.00   &     1.06 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
568 >      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
569 >        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
570 >   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
571 >
572   \hline
343 \hline
344 e + $\geq$1 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
573   \hline
574 <      data   &  0.099 $\pm$ 0.0008   &  0.038 $\pm$ 0.0005   &  0.019 $\pm$ 0.0004   &  0.011 $\pm$ 0.0003   &  0.008 $\pm$ 0.0002  \\
347 <        mc   &  0.100 $\pm$ 0.0004   &  0.038 $\pm$ 0.0003   &  0.019 $\pm$ 0.0002   &  0.012 $\pm$ 0.0002   &  0.008 $\pm$ 0.0001  \\
348 <   data/mc   &     0.99 $\pm$ 0.01   &     1.00 $\pm$ 0.02   &     0.99 $\pm$ 0.02   &     0.98 $\pm$ 0.03   &     0.97 $\pm$ 0.03  \\
574 > e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
575   \hline
576 +      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
577 +        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
578 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
579 +
580   \hline
351 $\mu$ + $\geq$1 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
581   \hline
582 <      data   &  0.100 $\pm$ 0.0006   &  0.041 $\pm$ 0.0004   &  0.022 $\pm$ 0.0003   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0002  \\
354 <        mc   &  0.099 $\pm$ 0.0004   &  0.039 $\pm$ 0.0002   &  0.020 $\pm$ 0.0002   &  0.013 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001  \\
355 <   data/mc   &     1.01 $\pm$ 0.01   &     1.05 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.06 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
582 > $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
583   \hline
584 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
585 +        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
586 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
587 +
588   \hline
358 e + $\geq$2 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
589   \hline
590 <      data   &  0.105 $\pm$ 0.0020   &  0.042 $\pm$ 0.0013   &  0.021 $\pm$ 0.0009   &  0.013 $\pm$ 0.0007   &  0.009 $\pm$ 0.0006  \\
361 <        mc   &  0.109 $\pm$ 0.0011   &  0.043 $\pm$ 0.0007   &  0.021 $\pm$ 0.0005   &  0.013 $\pm$ 0.0004   &  0.009 $\pm$ 0.0003  \\
362 <   data/mc   &     0.96 $\pm$ 0.02   &     0.97 $\pm$ 0.03   &     1.00 $\pm$ 0.05   &     1.01 $\pm$ 0.06   &     0.97 $\pm$ 0.08  \\
590 > e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
591   \hline
592 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
593 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
594 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
595 +
596   \hline
365 $\mu$ + $\geq$2 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
597   \hline
598 <      data   &  0.106 $\pm$ 0.0016   &  0.045 $\pm$ 0.0011   &  0.025 $\pm$ 0.0008   &  0.016 $\pm$ 0.0007   &  0.012 $\pm$ 0.0006  \\
368 <        mc   &  0.108 $\pm$ 0.0009   &  0.044 $\pm$ 0.0006   &  0.024 $\pm$ 0.0004   &  0.016 $\pm$ 0.0004   &  0.011 $\pm$ 0.0003  \\
369 <   data/mc   &     0.98 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.04 $\pm$ 0.04   &     1.04 $\pm$ 0.05   &     1.06 $\pm$ 0.06  \\
598 > $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
599   \hline
600 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
601 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
602 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
603 +
604   \hline
372 e + $\geq$3 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
605   \hline
606 <      data   &  0.117 $\pm$ 0.0055   &  0.051 $\pm$ 0.0038   &  0.029 $\pm$ 0.0029   &  0.018 $\pm$ 0.0023   &  0.012 $\pm$ 0.0019  \\
607 <        mc   &  0.120 $\pm$ 0.0031   &  0.052 $\pm$ 0.0021   &  0.027 $\pm$ 0.0015   &  0.018 $\pm$ 0.0012   &  0.013 $\pm$ 0.0011  \\
608 <   data/mc   &     0.97 $\pm$ 0.05   &     0.99 $\pm$ 0.08   &     1.10 $\pm$ 0.13   &     1.03 $\pm$ 0.15   &     0.91 $\pm$ 0.16  \\
606 > e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
607 > \hline
608 >      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
609 >        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
610 >   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
611 >
612   \hline
613   \hline
614 < $\mu$ + $\geq$3 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
614 > $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
615   \hline
616 <      data   &  0.111 $\pm$ 0.0044   &  0.050 $\pm$ 0.0030   &  0.029 $\pm$ 0.0024   &  0.019 $\pm$ 0.0019   &  0.014 $\pm$ 0.0017  \\
617 <        mc   &  0.115 $\pm$ 0.0025   &  0.051 $\pm$ 0.0017   &  0.030 $\pm$ 0.0013   &  0.020 $\pm$ 0.0011   &  0.015 $\pm$ 0.0009  \\
618 <   data/mc   &     0.97 $\pm$ 0.04   &     0.97 $\pm$ 0.07   &     0.95 $\pm$ 0.09   &     0.97 $\pm$ 0.11   &     0.99 $\pm$ 0.13  \\
616 >      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
617 >        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
618 >   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
619 >
620   \hline
621   \hline
622 < e + $\geq$4 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
622 > e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
623   \hline
624 <      data   &  0.113 $\pm$ 0.0148   &  0.048 $\pm$ 0.0100   &  0.033 $\pm$ 0.0083   &  0.020 $\pm$ 0.0065   &  0.017 $\pm$ 0.0062  \\
625 <        mc   &  0.146 $\pm$ 0.0092   &  0.064 $\pm$ 0.0064   &  0.034 $\pm$ 0.0048   &  0.024 $\pm$ 0.0040   &  0.021 $\pm$ 0.0037  \\
626 <   data/mc   &     0.78 $\pm$ 0.11   &     0.74 $\pm$ 0.17   &     0.96 $\pm$ 0.28   &     0.82 $\pm$ 0.30   &     0.85 $\pm$ 0.34  \\
624 >      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
625 >        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
626 >   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
627 >
628   \hline
629   \hline
630 < $\mu$ + $\geq$4 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
630 > $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
631   \hline
632 <      data   &  0.130 $\pm$ 0.0128   &  0.052 $\pm$ 0.0085   &  0.028 $\pm$ 0.0063   &  0.019 $\pm$ 0.0052   &  0.019 $\pm$ 0.0052  \\
633 <        mc   &  0.105 $\pm$ 0.0064   &  0.045 $\pm$ 0.0043   &  0.027 $\pm$ 0.0034   &  0.019 $\pm$ 0.0028   &  0.014 $\pm$ 0.0024  \\
634 <   data/mc   &     1.23 $\pm$ 0.14   &     1.18 $\pm$ 0.22   &     1.03 $\pm$ 0.27   &     1.01 $\pm$ 0.32   &     1.37 $\pm$ 0.45  \\
632 >      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
633 >        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
634 >   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
635 >
636   \hline
637   \hline
638  
# Line 403 | Line 641 | jet multiplicity requirements.}
641   \end{table}
642  
643  
406
644   %Figure.~\ref{fig:reliso} compares the relative track isolation
645   %for events with a track with $\pt > 10~\GeV$ in addition to a selected
646   %muon for $\Z+4$ jet events and various \ttll\ components. The
# Line 483 | Line 720 | Why not measure $\epsilon_{fake}$ in the
720   %      \end{center}
721   %\end{figure}
722  
723 + \subsection{Summary of uncertainties}
724 + \label{sec:bgunc-bottomline}.
725 +
726 + THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines