1 |
|
%\section{Systematics Uncertainties on the Background Prediction} |
2 |
|
%\label{sec:systematics} |
3 |
|
|
4 |
– |
[DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET |
5 |
– |
FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS |
6 |
– |
AND |
7 |
– |
WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL |
8 |
– |
UNCERTAINTIES |
9 |
– |
CORRECTLY THROUGH. WE WILL DO IT ONCE WE HAVE SETTLED ON THE |
10 |
– |
INDIVIDUAL PIECES WHICH ARE STILL IN FLUX] |
11 |
– |
|
4 |
|
In this Section we discuss the systematic uncertainty on the BG |
5 |
|
prediction. This prediction is assembled from the event |
6 |
|
counts in the peak region of the transverse mass distribution as |
14 |
|
region, |
15 |
|
for electrons and muons separately. |
16 |
|
|
17 |
< |
The choice to normalizing to the peak region of $M_T$ has the |
17 |
> |
The choice to normalize to the peak region of $M_T$ has the |
18 |
|
advantage that some uncertainties, e.g., luminosity, cancel. |
19 |
|
It does however introduce complications because it couples |
20 |
|
some of the uncertainties in non-trivial ways. For example, |
25 |
|
the $t\bar{t} \to$ dilepton BG estimate because it changes the |
26 |
|
$t\bar{t}$ normalization to the peak region (because some of the |
27 |
|
events in the peak region are from rare processes). These effects |
28 |
< |
are carefully accounted for. The contribution to the overall |
29 |
< |
uncertainty from each BG source is tabulated in |
28 |
> |
are carefully accounted for. The contribution to the overall |
29 |
> |
uncertainty from each background source is tabulated in |
30 |
|
Section~\ref{sec:bgunc-bottomline}. |
31 |
< |
First, however, we discuss the uncertainties one-by-one and we comment |
31 |
> |
Here we discuss the uncertainties one-by-one and comment |
32 |
|
on their impact on the overall result, at least to first order. |
33 |
|
Second order effects, such as the one described, are also included. |
34 |
|
|
35 |
|
\subsection{Statistical uncertainties on the event counts in the $M_T$ |
36 |
|
peak regions} |
37 |
< |
These vary between XX and XX \%, depending on the signal region |
37 |
> |
These vary between 2\% and 20\%, depending on the signal region |
38 |
|
(different |
39 |
|
signal regions have different \met\ requirements, thus they also have |
40 |
< |
different $M_T$ regions used as control. |
40 |
> |
different $M_T$ regions used as control). |
41 |
|
Since |
42 |
< |
the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this |
42 |
> |
the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this |
43 |
|
fractional uncertainty is pretty much carried through all the way to |
44 |
|
the end. There is also an uncertainty from the finite MC event counts |
45 |
|
in the $M_T$ peak regions. This is also included, but it is smaller. |
46 |
|
|
47 |
+ |
Normalizing to the $M_T$ peak has the distinct advantages that |
48 |
+ |
uncertainties on luminosity, cross-sections, trigger efficiency, |
49 |
+ |
lepton ID, cancel out. |
50 |
+ |
For the low statistics regions with high \met\ requirements, the |
51 |
+ |
price to pay in terms of event count is that statistical uncertainties start |
52 |
+ |
to become significant. In the future we may consider a different |
53 |
+ |
normalization startegy in the low statistics regions. |
54 |
+ |
|
55 |
|
\subsection{Uncertainty from the choice of $M_T$ peak region} |
56 |
– |
IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT |
57 |
– |
LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY. WE NEED TO LOOK |
58 |
– |
INTO THIS AGAIN |
56 |
|
|
57 |
< |
\subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections} |
57 |
> |
This choice affects the scale factors of Table~\ref{tab:mtpeaksf}. |
58 |
> |
If the $M_T$ peak region is not well modelled, this would introduce an |
59 |
> |
uncertainty. |
60 |
> |
|
61 |
> |
We have tested this possibility by recalculating the post-veto scale factors for a different |
62 |
> |
choice |
63 |
> |
of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default |
64 |
> |
$50 < M_T < 80$ GeV). This is shown in Table~\ref{tab:mtpeaksf2}. |
65 |
> |
The two results for the scale factors are very compatible. |
66 |
> |
We do not take any systematic uncertainty for this possible effect. |
67 |
> |
|
68 |
> |
\begin{table}[!h] |
69 |
> |
\begin{center} |
70 |
> |
{\footnotesize |
71 |
> |
\begin{tabular}{l||c|c|c|c|c|c|c} |
72 |
> |
\hline |
73 |
> |
Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\ |
74 |
> |
\hline |
75 |
> |
\hline |
76 |
> |
\multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\ |
77 |
> |
\hline |
78 |
> |
$\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\ |
79 |
> |
$\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\ |
80 |
> |
\hline |
81 |
> |
$\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\ |
82 |
> |
\hline |
83 |
> |
\hline |
84 |
> |
e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\ |
85 |
> |
e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\ |
86 |
> |
\hline |
87 |
> |
e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\ |
88 |
> |
\hline |
89 |
> |
\hline |
90 |
> |
\multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\ |
91 |
> |
\hline |
92 |
> |
$\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\ |
93 |
> |
$\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\ |
94 |
> |
\hline |
95 |
> |
$\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\ |
96 |
> |
\hline |
97 |
> |
\hline |
98 |
> |
e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\ |
99 |
> |
e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\ |
100 |
> |
\hline |
101 |
> |
e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\ |
102 |
> |
\hline |
103 |
> |
\end{tabular}} |
104 |
> |
\caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the |
105 |
> |
\ttdl\ sample, while the post-veto SFs are applied to the single |
106 |
> |
lepton samples. The veto SF is shown for comparison across channels. |
107 |
> |
The raw MC is used for backgrounds from rare processes. |
108 |
> |
The uncertainties are statistical only. |
109 |
> |
\label{tab:mtpeaksf2}} |
110 |
> |
\end{center} |
111 |
> |
\end{table} |
112 |
> |
|
113 |
> |
|
114 |
> |
\subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections} |
115 |
|
These are taken as 50\%, uncorrelated. |
116 |
|
The primary effect is to introduce a 50\% |
117 |
|
uncertainty |
125 |
|
scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$ |
126 |
|
BG goes down. |
127 |
|
|
128 |
< |
\subsection{Scale factors for the tail-to-peak ratios for lepton + |
128 |
> |
\subsection{Tail-to-peak ratios for lepton + |
129 |
|
jets top and W events} |
130 |
< |
These tail-to-peak ratios are described in Section~\ref{sec:ttp}. |
131 |
< |
They are studied in CR1 and CR2. The studies are described |
132 |
< |
in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where |
133 |
< |
we also give the uncertainty on the scale factors. |
130 |
> |
The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}. |
131 |
> |
The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}). |
132 |
> |
Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its |
133 |
> |
uncertainty is given in Table~\ref{tab:cr1yields}. |
134 |
> |
This uncertainty affects both $R_{wjet}$ and $R_{top}$. |
135 |
> |
The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}. |
136 |
> |
|
137 |
|
|
138 |
|
\subsection{Uncertainty on extra jet radiation for dilepton |
139 |
|
background} |
141 |
|
jet distribution in |
142 |
|
$t\bar{t} \to$ |
143 |
|
dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make |
144 |
< |
it agree with the data. The XX\% uncertainties on $K_3$ and $K_4$ |
144 |
> |
it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$ |
145 |
|
comes from data/MC statistics. This |
146 |
< |
result directly in a XX\% uncertainty on the dilepton BG, which is by far |
146 |
> |
results directly in a 3\% uncertainty on the dilepton background, which is by far |
147 |
|
the most important one. |
148 |
|
|
149 |
+ |
\subsection{Uncertainty from MC statistics} |
150 |
+ |
This affects mostly the \ttll\ background estimate, which is taken |
151 |
+ |
from |
152 |
+ |
Monte Carlo with appropriate correction factors. This uncertainty |
153 |
+ |
is negligible in the low \met\ signal regions, and grows to about |
154 |
+ |
15\% in SRG. |
155 |
|
|
93 |
– |
\subsection{Uncertainty on the \ttll\ Acceptance} |
156 |
|
|
157 |
+ |
\subsection{Uncertainty on the \ttll\ Background} |
158 |
+ |
\label{sec:ttdilbkgunc} |
159 |
|
The \ttbar\ background prediction is obtained from MC, with corrections |
160 |
|
derived from control samples in data. The uncertainty associated with |
161 |
< |
the theoretical modeling of the \ttbar\ production and decay is |
162 |
< |
estimated by comparing the background predictions obtained using |
161 |
> |
the \ttbar\ background is derived from the level of closure of the |
162 |
> |
background prediction in CR4 (Table~\ref{tab:cr4yields}) and |
163 |
> |
CR5 (Table~\ref{tab:cr5yields}). The results from these control region |
164 |
> |
checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned |
165 |
> |
to the \ttdl\ background prediction based on these tests are |
166 |
> |
5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G). |
167 |
> |
|
168 |
> |
\begin{figure}[hbt] |
169 |
> |
\begin{center} |
170 |
> |
\includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf} |
171 |
> |
\caption{ |
172 |
> |
\label{fig:ttdlunc}%\protect |
173 |
> |
Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after |
174 |
> |
applying SFs) to data for CR4 and CR5 for all the signal |
175 |
> |
region requirements considered (A-G). The bands indicate the |
176 |
> |
systematic uncertainties assigned based on these tests, |
177 |
> |
ranging from $5\%$ for SRA to $40\%$ for SRE-G.} |
178 |
> |
\end{center} |
179 |
> |
\end{figure} |
180 |
> |
|
181 |
> |
\clearpage |
182 |
> |
\subsubsection{Check of the impact of Signal Contamination} |
183 |
> |
|
184 |
> |
We examine the contribution of possible signal events in the \ttll\ |
185 |
> |
control regions (CR4 and CR5). It should be emphasized that these |
186 |
> |
regions are not used to apply data/MC SFs. They are used to quantify |
187 |
> |
the level of data/MC agreement and assign a corresponding uncertainty. |
188 |
> |
|
189 |
> |
To illustrate how much signal is expected to populate these control |
190 |
> |
regions, we examine signal points near the edge of the analysis' |
191 |
> |
sensitivity (m(stop) = 450 m($\chi^0$) = 0 for T2tt, m(stop) = 450 |
192 |
> |
m($\chi^0$) = 0 for T2bw with x=0.75 and m(stop) = 350 |
193 |
> |
m($\chi^0$) = 0 for T2bw with x=0.5). |
194 |
> |
Table~\ref{tab:signalcontamination} compares the expected signal |
195 |
> |
yields and the raw total MC background prediction in the control |
196 |
> |
regions with the \met\ and \mt\ requirements corresponding to SRB, SRC |
197 |
> |
and SRD (these are the signal regions that dominate the |
198 |
> |
sensitivity). The signal contamination is smaller than the uncertainty |
199 |
> |
on the dilepton background and smaller than the signal/background in |
200 |
> |
the signal regions, with the exception of the T2bw scenario with x=0.5. |
201 |
> |
However, based on the fact that the CR4 and CR5 are not used to extract |
202 |
> |
data/MC SFs and that CR4 shows a slight deficit of data compared to |
203 |
> |
the MC prediction, indicating that we do not observe evidence of |
204 |
> |
signal contamination, we do not assign an additional uncertainty. |
205 |
> |
|
206 |
> |
\begin{table}[!h] |
207 |
> |
\begin{center} |
208 |
> |
{\small |
209 |
> |
\begin{tabular}{l l||c|c|c} |
210 |
> |
\hline |
211 |
> |
\multicolumn{2}{c||}{Sample} & CR B & CR C & CR D \\ |
212 |
> |
\hline |
213 |
> |
\hline |
214 |
> |
\multirow{4}{*}{CR4} & Raw MC & $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$ \\ |
215 |
> |
%\hline |
216 |
> |
& T2tt m(stop) = 450 m($\chi^0$) = 0 & $2.6 \pm 0.3$ $(2\%)$ & $2.0 \pm 0.2$ $(4\%)$ & $1.4 \pm 0.2$ $(7\%)$ \\ |
217 |
> |
& T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $10.5 \pm 0.4$ $(6\%)$ &$6.1 \pm 0.3$ $(12\%)$ & $3.1 \pm 0.2$ $(16\%)$ \\ |
218 |
> |
& T2bw x=0.5 m(stop) = 350 m($\chi^0$) = 0 & $32.1 \pm 1.5$ $(19\%)$ & $14.7 \pm 1.0$ $(29\%)$ & $5.5 \pm 0.6$ $(28\%)$ \\ |
219 |
> |
\hline |
220 |
> |
\hline |
221 |
> |
\multirow{4}{*}{CR5} & Raw MC & $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$ \\ |
222 |
> |
%\hline |
223 |
> |
& T2tt m(stop) = 450 m($\chi^0$) = 0 & $10.6 \pm 0.6$ $(3\%)$ & $7.8 \pm 0.5$ $(8\%)$ & $5.4 \pm 0.4$ $(14\%)$ \\ |
224 |
> |
& T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $17.3 \pm 0.5$ $(6\%)$ &$11.3 \pm 0.4$ $(11\%)$ & $6.2 \pm 0.3$ $(16\%)$\\ |
225 |
> |
& T2bw x=0.5 m(stop) = 350 m($\chi^0$) = 0 & $33.0 \pm 1.5$ $(11\%)$& $14.4 \pm 1.0$ $(14\%)$& $5.7 \pm 0.6$ $(15\%)$ \\ |
226 |
> |
\hline |
227 |
> |
\hline |
228 |
> |
\hline |
229 |
> |
\multirow{4}{*}{SIGNAL} & Raw MC & $486.3 \pm 7.8$& $164.3 \pm 4.5$& $61.5 \pm 2.8$ \\ |
230 |
> |
& T2tt m(stop) = 450 m($\chi^0$) = 0 & $65.3 \pm 1.4$ $(13\%)$& $48.8 \pm 1.2$ $(30\%)$& $32.9 \pm 1.0$ $(53\%)$ \\ |
231 |
> |
& T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $69.3 \pm 1.0$ $(14\%)$& $47.3 \pm 0.8$ $(29\%)$& $27.3 \pm 0.6$ $(44\%)$ \\ |
232 |
> |
& T2bw x=0.5 m(stop) = 350 m($\chi^0$) = 0 & $105.5 \pm 2.8$ $(22\%)$& $44.6 \pm 1.8$ $(27\%)$& $15.9 \pm 1.1$ $(26\%)$ \\ |
233 |
> |
\hline |
234 |
> |
\end{tabular}} |
235 |
> |
\caption{ Yields in \mt\ tail comparing the raw SM MC prediction to the |
236 |
> |
yields for a few signal points on the edge of our sensitivity in the \ttll\ |
237 |
> |
control regions CR4, CR5 and in the corresponding signal region. |
238 |
> |
The numbers in parenthesis are the expected signal yield divided by |
239 |
> |
the total background. The uncertainties are statistical only. |
240 |
> |
\label{tab:signalcontamination}} |
241 |
> |
\end{center} |
242 |
> |
\end{table} |
243 |
> |
|
244 |
> |
%CR5 DUMP |
245 |
> |
%Total & $880.3 \pm 10.4$& $560.0 \pm 8.3$& $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$& $16.4 \pm 1.4$& $8.2 \pm 1.0$& $4.6 \pm 0.8$ \\ |
246 |
> |
%\hline |
247 |
> |
%\hline |
248 |
> |
%Data & $941$& $559$& $287$& $95$& $26$& $8$& $5$& $3$ \\ |
249 |
> |
%\hline |
250 |
> |
%T2tt m(stop) = 250 m($\chi^0$) = 0 & $84.3 \pm 9.2$& $61.9 \pm 7.9$& $35.7 \pm 6.0$& $5.9 \pm 2.4$& $1.0 \pm 1.0$& $1.0 \pm 1.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\ |
251 |
> |
%\hline |
252 |
> |
%T2tt m(stop) = 300 m($\chi^0$) = 50 & $61.4 \pm 4.7$& $53.6 \pm 4.4$& $42.0 \pm 3.9$& $14.3 \pm 2.3$& $7.2 \pm 1.6$& $1.8 \pm 0.8$& $0.7 \pm 0.5$& $0.0 \pm 0.0$ \\ |
253 |
> |
%\hline |
254 |
> |
%T2tt m(stop) = 300 m($\chi^0$) = 100 & $33.3 \pm 3.5$& $28.6 \pm 3.2$& $19.2 \pm 2.6$& $6.1 \pm 1.5$& $1.8 \pm 0.8$& $0.4 \pm 0.4$& $0.4 \pm 0.4$& $0.4 \pm 0.4$ \\ |
255 |
> |
%\hline |
256 |
> |
%T2tt m(stop) = 350 m($\chi^0$) = 0 & $33.4 \pm 2.2$& $29.8 \pm 2.1$& $27.3 \pm 2.0$& $15.3 \pm 1.5$& $5.6 \pm 0.9$& $1.9 \pm 0.5$& $0.3 \pm 0.2$& $0.0 \pm 0.0$ \\ |
257 |
> |
%\hline |
258 |
> |
%T2tt m(stop) = 450 m($\chi^0$) = 0 & $12.0 \pm 0.6$& $11.3 \pm 0.6$& $10.6 \pm 0.6$& $7.8 \pm 0.5$& $5.4 \pm 0.4$& $3.1 \pm 0.3$& $1.8 \pm 0.2$& $0.6 \pm 0.1$ \\ |
259 |
> |
%\hline |
260 |
> |
%T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0 & $48.5 \pm 1.9$& $40.2 \pm 1.7$& $33.0 \pm 1.5$& $14.4 \pm 1.0$& $5.7 \pm 0.6$& $2.7 \pm 0.4$& $1.3 \pm 0.3$& $0.5 \pm 0.2$ \\ |
261 |
> |
%\hline |
262 |
> |
%T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0 & $22.3 \pm 0.6$& $20.2 \pm 0.6$& $17.3 \pm 0.5$& $11.3 \pm 0.4$& $6.2 \pm 0.3$& $3.1 \pm 0.2$& $1.3 \pm 0.1$& $0.7 \pm 0.1$ \\ |
263 |
> |
%\hline |
264 |
> |
|
265 |
> |
%CR4 DUMP |
266 |
> |
%\hline |
267 |
> |
%Total & $510.1 \pm 8.0$& $324.2 \pm 6.3$& $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$& $7.8 \pm 1.0$& $2.6 \pm 0.6$& $1.1 \pm 0.3$ \\ |
268 |
> |
%\hline |
269 |
> |
%\hline |
270 |
> |
%Data & $462$& $289$& $169$& $45$& $10$& $7$& $5$& $3$ \\ |
271 |
> |
%\hline |
272 |
> |
%T2tt m(stop) = 250 m($\chi^0$) = 0 & $37.7 \pm 6.1$& $30.9 \pm 5.5$& $18.0 \pm 4.2$& $6.0 \pm 2.5$& $2.0 \pm 1.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\ |
273 |
> |
%\hline |
274 |
> |
%T2tt m(stop) = 300 m($\chi^0$) = 50 & $16.6 \pm 2.4$& $14.4 \pm 2.3$& $11.3 \pm 2.0$& $5.6 \pm 1.4$& $3.2 \pm 1.1$& $1.8 \pm 0.8$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\ |
275 |
> |
%\hline |
276 |
> |
%T2tt m(stop) = 300 m($\chi^0$) = 100 & $9.6 \pm 1.8$& $6.4 \pm 1.5$& $4.6 \pm 1.3$& $0.7 \pm 0.5$& $0.4 \pm 0.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\ |
277 |
> |
%\hline |
278 |
> |
%T2tt m(stop) = 350 m($\chi^0$) = 0 & $8.2 \pm 1.1$& $7.6 \pm 1.0$& $5.7 \pm 0.9$& $3.4 \pm 0.7$& $1.9 \pm 0.5$& $0.6 \pm 0.3$& $0.3 \pm 0.2$& $0.1 \pm 0.1$ \\ |
279 |
> |
%\hline |
280 |
> |
%T2tt m(stop) = 450 m($\chi^0$) = 0 & $3.1 \pm 0.3$& $2.9 \pm 0.3$& $2.6 \pm 0.3$& $2.0 \pm 0.2$& $1.4 \pm 0.2$& $1.0 \pm 0.2$& $0.4 \pm 0.1$& $0.2 \pm 0.1$ \\ |
281 |
> |
%\hline |
282 |
> |
%T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0 & $52.6 \pm 1.9$& $42.6 \pm 1.7$& $32.1 \pm 1.5$& $14.7 \pm 1.0$& $5.5 \pm 0.6$& $1.9 \pm 0.4$& $0.6 \pm 0.2$& $0.3 \pm 0.1$ \\ |
283 |
> |
%\hline |
284 |
> |
%T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0 & $16.9 \pm 0.5$& $14.9 \pm 0.5$& $10.5 \pm 0.4$& $6.1 \pm 0.3$& $3.1 \pm 0.2$& $1.5 \pm 0.1$& $0.6 \pm 0.1$& $0.3 \pm 0.1$ \\ |
285 |
> |
%\hline |
286 |
> |
|
287 |
> |
|
288 |
> |
\subsubsection{Check of the uncertainty on the \ttll\ Background} |
289 |
> |
|
290 |
> |
We check that the systematic uncertainty assigned to the \ttll\ background prediction |
291 |
> |
covers the uncertainty associated with |
292 |
> |
the theoretical modeling of the \ttbar\ production and decay |
293 |
> |
by comparing the background predictions obtained using |
294 |
|
alternative MC samples. It should be noted that the full analysis is |
295 |
|
performed with the alternative samples under consideration, |
296 |
|
including the derivation of the various data-to-MC scale factors. |
298 |
|
|
299 |
|
\begin{itemize} |
300 |
|
\item Top mass: The alternative values for the top mass differ |
301 |
< |
from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}} |
301 |
> |
from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}} |
302 |
|
= 166.5~\GeV$. |
303 |
|
\item Jet-parton matching scale: This corresponds to variations in the |
304 |
|
scale at which the Matrix Element partons from Madgraph are matched |
310 |
|
value for the scale used is $Q^2 = m_{\mathrm{top}}^2 + |
311 |
|
\sum_{\mathrm{jets}} \pt^2$. |
312 |
|
\item Alternative generators: Samples produced with different |
313 |
< |
generators include MC@NLO and Powheg (NLO generators) and |
119 |
< |
Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the |
120 |
< |
hadronisation, while POWHEG uses Pythia6. |
313 |
> |
generators, Powheg (our default) and Madgraph. |
314 |
|
\item Modeling of taus: The alternative sample does not include |
315 |
|
Tauola and is otherwise identical to the Powheg sample. |
316 |
|
This effect was studied earlier using 7~TeV samples and found to be negligible. |
317 |
|
\item The PDF uncertainty is estimated following the PDF4LHC |
318 |
< |
recommendations[CITE]. The events are reweighted using alternative |
318 |
> |
recommendations. The events are reweighted using alternative |
319 |
|
PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the |
320 |
< |
alternative eigenvector variations and the ``master equation''. In |
321 |
< |
addition, the NNPDF2.1 set with 100 replicas. The central value is |
320 |
> |
alternative eigenvector variations and the ``master equation''. |
321 |
> |
The NNPDF2.1 set with 100 replicas is also used. The central value is |
322 |
|
determined from the mean and the uncertainty is derived from the |
323 |
|
$1\sigma$ range. The overall uncertainty is derived from the envelope of the |
324 |
|
alternative predictions and their uncertainties. |
325 |
|
This effect was studied earlier using 7~TeV samples and found to be negligible. |
326 |
|
\end{itemize} |
327 |
|
|
135 |
– |
|
328 |
|
\begin{figure}[hbt] |
329 |
|
\begin{center} |
330 |
< |
\includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png} |
330 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}% |
331 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf} |
332 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}% |
333 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf} |
334 |
> |
\includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf} |
335 |
|
\caption{ |
336 |
< |
\label{fig:ttllsyst}%\protect |
336 |
> |
\label{fig:ttllsyst}\protect |
337 |
|
Comparison of the \ttll\ central prediction with those using |
338 |
|
alternative MC samples. The blue band corresponds to the |
339 |
|
total statistical error for all data and MC samples. The |
340 |
|
alternative sample predictions are indicated by the |
341 |
|
datapoints. The uncertainties on the alternative predictions |
342 |
|
correspond to the uncorrelated statistical uncertainty from |
343 |
< |
the size of the alternative sample only. |
344 |
< |
[TO BE UPDATED WITH THE LATEST SELECTION AND SFS]} |
343 |
> |
the size of the alternative sample only. Note the |
344 |
> |
suppressed vertical scales.} |
345 |
|
\end{center} |
346 |
|
\end{figure} |
347 |
|
|
348 |
+ |
|
349 |
+ |
\begin{table}[!h] |
350 |
+ |
\begin{center} |
351 |
+ |
{\footnotesize |
352 |
+ |
\begin{tabular}{l||c|c|c|c|c|c|c} |
353 |
+ |
\hline |
354 |
+ |
$\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down & |
355 |
+ |
Match Up & Match Down \\ |
356 |
+ |
\hline |
357 |
+ |
\hline |
358 |
+ |
SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\ |
359 |
+ |
\hline |
360 |
+ |
SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\ |
361 |
+ |
\hline |
362 |
+ |
% SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\ |
363 |
+ |
% \hline |
364 |
+ |
% SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\ |
365 |
+ |
% \hline |
366 |
+ |
% SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\ |
367 |
+ |
\hline |
368 |
+ |
\end{tabular}} |
369 |
+ |
\caption{ Relative difference in \ttdl\ predictions for alternative MC |
370 |
+ |
samples in |
371 |
+ |
the higher statistics regions SRA and SRB. These differences |
372 |
+ |
are based on the central values of the predictions. For a fuller |
373 |
+ |
picture |
374 |
+ |
of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}. |
375 |
+ |
\label{tab:fracdiff}} |
376 |
+ |
\end{center} |
377 |
+ |
\end{table} |
378 |
+ |
|
379 |
+ |
|
380 |
+ |
In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions |
381 |
+ |
for regions A through E. We can make the following observations based |
382 |
+ |
on this Figure. |
383 |
+ |
|
384 |
+ |
\begin{itemize} |
385 |
+ |
\item In the tighter signal regions we are running out of |
386 |
+ |
statistics. |
387 |
+ |
\item Within the limited statistics, there is no evidence that the |
388 |
+ |
situation changes as we go from signal region A to signal region E. |
389 |
+ |
%Therefore, we assess a systematic based on the relatively high |
390 |
+ |
%statistics |
391 |
+ |
%test in signal region A, and apply the same systematic uncertainty |
392 |
+ |
%to all other regions. |
393 |
+ |
\item In signal regions B and above, the uncertainties assigned in Section~\ref{sec:ttdilbkgunc} |
394 |
+ |
fully cover the alternative MC variations. |
395 |
+ |
\item In order to fully (as opposed as 1$\sigma$) cover the |
396 |
+ |
alternative MC variations in region A we would have to take a |
397 |
+ |
systematic |
398 |
+ |
uncertainty of $\approx 10\%$ instead of $5\%$. This would be driven by the |
399 |
+ |
scale up/scale down variations, see Table~\ref{tab:fracdiff}. |
400 |
+ |
\end{itemize} |
401 |
+ |
|
402 |
+ |
\begin{table}[!ht] |
403 |
+ |
\begin{center} |
404 |
+ |
\begin{tabular}{l|c|c} |
405 |
+ |
\hline |
406 |
+ |
Sample |
407 |
+ |
& K3 & K4\\ |
408 |
+ |
\hline |
409 |
+ |
\hline |
410 |
+ |
Powheg & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\ |
411 |
+ |
Madgraph & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\ |
412 |
+ |
Mass Up & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\ |
413 |
+ |
Mass Down & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\ |
414 |
+ |
Scale Up & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\ |
415 |
+ |
Scale Down & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\ |
416 |
+ |
Match Up & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\ |
417 |
+ |
Match Down & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\ |
418 |
+ |
\hline |
419 |
+ |
\end{tabular} |
420 |
+ |
\caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the |
421 |
+ |
fraction of events with additional hard jets from radiation in |
422 |
+ |
\ttll\ events. \label{tab:njetskfactors_met100}} |
423 |
+ |
\end{center} |
424 |
+ |
\end{table} |
425 |
+ |
|
426 |
+ |
|
427 |
+ |
However, we have two pieces of information indicating that the |
428 |
+ |
scale up/scale down variations are inconsistent with the data. |
429 |
+ |
These are described below. |
430 |
+ |
|
431 |
+ |
The first piece of information is that the jet multiplicity in the scale |
432 |
+ |
up/scale down sample is the most inconsistent with the data. This is shown |
433 |
+ |
in Table~\ref{tab:njetskfactors_met100}, where we tabulate the |
434 |
+ |
$K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for |
435 |
+ |
different \ttbar\ MC samples. The data/MC disagreement in the $N_{jets}$ |
436 |
+ |
distribution |
437 |
+ |
for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup} |
438 |
+ |
and~\ref{fig:dileptonnjets_scaledw}. This should be compared with the |
439 |
+ |
equivalent $N_{jets}$ plots for the default Powheg MC, see |
440 |
+ |
Fig.~\ref{fig:dileptonnjets}, which agrees much better with data. |
441 |
+ |
|
442 |
+ |
\begin{figure}[hbt] |
443 |
+ |
\begin{center} |
444 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf} |
445 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}% |
446 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf} |
447 |
+ |
\caption{ |
448 |
+ |
\label{fig:dileptonnjets_scaleup}%\protect |
449 |
+ |
SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\ |
450 |
+ |
(top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.} |
451 |
+ |
\end{center} |
452 |
+ |
\end{figure} |
453 |
+ |
|
454 |
+ |
\begin{figure}[hbt] |
455 |
+ |
\begin{center} |
456 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf} |
457 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}% |
458 |
+ |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf} |
459 |
+ |
\caption{ |
460 |
+ |
\label{fig:dileptonnjets_scaledw}%\protect |
461 |
+ |
SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\ |
462 |
+ |
(top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.} |
463 |
+ |
\end{center} |
464 |
+ |
\end{figure} |
465 |
+ |
|
466 |
+ |
|
467 |
+ |
\clearpage |
468 |
+ |
|
469 |
+ |
The second piece of information is that we have performed closure |
470 |
+ |
tests in CR5 using the alternative MC samples. These are exactly |
471 |
+ |
the same tests as the one performed in Section~\ref{sec:CR5} on the |
472 |
+ |
Powheg sample. As we argued previously, this is a very powerful |
473 |
+ |
test of the background calculation. |
474 |
+ |
The results of this test are summarized in Table~\ref{tab:hugecr5yields}. |
475 |
+ |
Concentrating on the relatively high statistics CR5A region, we see |
476 |
+ |
for all \ttbar\ MC samples except scale up/scale down we obtain |
477 |
+ |
closure within 1$\sigma$. The scale up/scale down tests closes |
478 |
+ |
worse, only within 2$\sigma$. This again is evidence that the |
479 |
+ |
scale up/scale down variations are in disagreement with the data. |
480 |
+ |
|
481 |
+ |
\input{hugeCR5Table.tex} |
482 |
+ |
|
483 |
+ |
Based on the two observations above, we argue that the MC |
484 |
+ |
scale up/scale down variations are too extreme. We feel that |
485 |
+ |
a reasonable choice would be to take one-half of the scale up/scale |
486 |
+ |
down variations in our MC. This factor of 1/2 would then bring |
487 |
+ |
the discrepancy in the closure test of |
488 |
+ |
Table~\ref{tab:hugecr5yields} for the scale up/scale down variations |
489 |
+ |
from about 2$\sigma$ to about 1$\sigma$. |
490 |
+ |
|
491 |
+ |
Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale |
492 |
+ |
up/scale |
493 |
+ |
down variations by a factor 2, we can see that a systematic |
494 |
+ |
uncertainty |
495 |
+ |
of 5\% covers the range of reasonable variations from different MC |
496 |
+ |
models in SRA and SRB. |
497 |
+ |
%The alternative MC models indicate that a 6\% systematic uncertainty |
498 |
+ |
%covers the range of reasonable variations. |
499 |
+ |
Note that this 5\% is also consistent with the level at which we are |
500 |
+ |
able to test the closure of the method with alternative samples in CR5 for the high statistics |
501 |
+ |
regions (Table~\ref{tab:hugecr5yields}). |
502 |
+ |
The range of reasonable variations obtained with the alternative |
503 |
+ |
samples are consistent with the uncertainties assigned for |
504 |
+ |
the \ttll\ background based on the closure of the background |
505 |
+ |
predictions and data in CR4 and CR5. |
506 |
+ |
|
507 |
+ |
|
508 |
+ |
|
509 |
+ |
|
510 |
+ |
|
511 |
+ |
%\begin{table}[!h] |
512 |
+ |
%\begin{center} |
513 |
+ |
%{\footnotesize |
514 |
+ |
%\begin{tabular}{l||c||c|c|c|c|c|c|c} |
515 |
+ |
%\hline |
516 |
+ |
%Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale |
517 |
+ |
%Up & Scale Down & |
518 |
+ |
%Match Up & Match Down \\ |
519 |
+ |
%\hline |
520 |
+ |
%\hline |
521 |
+ |
%SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\ |
522 |
+ |
%\hline |
523 |
+ |
%SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\ |
524 |
+ |
%\hline |
525 |
+ |
%SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\ |
526 |
+ |
%\hline |
527 |
+ |
%SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\ |
528 |
+ |
%\hline |
529 |
+ |
%SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\ |
530 |
+ |
%\hline |
531 |
+ |
%\end{tabular}} |
532 |
+ |
%\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only. |
533 |
+ |
%\label{tab:ttdlalt}} |
534 |
+ |
%\end{center} |
535 |
+ |
%\end{table} |
536 |
+ |
|
537 |
+ |
|
538 |
+ |
|
539 |
+ |
|
540 |
+ |
%\begin{table}[!h] |
541 |
+ |
%\begin{center} |
542 |
+ |
%{\footnotesize |
543 |
+ |
%\begin{tabular}{l||c|c|c|c|c|c|c} |
544 |
+ |
%\hline |
545 |
+ |
%$N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down & |
546 |
+ |
%Match Up & Match Down \\ |
547 |
+ |
%\hline |
548 |
+ |
%\hline |
549 |
+ |
%SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\ |
550 |
+ |
%\hline |
551 |
+ |
%SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\ |
552 |
+ |
%\hline |
553 |
+ |
%SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\ |
554 |
+ |
%\hline |
555 |
+ |
%SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\ |
556 |
+ |
%\hline |
557 |
+ |
%SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\ |
558 |
+ |
%\hline |
559 |
+ |
%\end{tabular}} |
560 |
+ |
%\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples. |
561 |
+ |
%\label{tab:nsig}} |
562 |
+ |
%\end{center} |
563 |
+ |
%\end{table} |
564 |
+ |
|
565 |
+ |
|
566 |
+ |
%\begin{table}[!h] |
567 |
+ |
%\begin{center} |
568 |
+ |
%\begin{tabular}{l||c|c|c|c} |
569 |
+ |
%\hline |
570 |
+ |
%Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale |
571 |
+ |
%& $\Delta$ Match \\ |
572 |
+ |
%\hline |
573 |
+ |
%\hline |
574 |
+ |
%SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\ |
575 |
+ |
%\hline |
576 |
+ |
%SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\ |
577 |
+ |
%\hline |
578 |
+ |
%SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\ |
579 |
+ |
%\hline |
580 |
+ |
%SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\ |
581 |
+ |
%\hline |
582 |
+ |
%SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\ |
583 |
+ |
%\hline |
584 |
+ |
%\end{tabular} |
585 |
+ |
%\caption{ Av. difference in \ttdl\ events for alternative sample pairs. |
586 |
+ |
%\label{tab:devt}} |
587 |
+ |
%\end{center} |
588 |
+ |
%\end{table} |
589 |
+ |
|
590 |
+ |
|
591 |
+ |
|
592 |
|
\clearpage |
593 |
|
|
594 |
|
% |
730 |
|
veto performance is modeled by the Monte Carlo. This uncertainty |
731 |
|
only applies to the fraction of dilepton BG events that have |
732 |
|
a second e/$\mu$ or a one prong $\tau \to h$, with |
733 |
< |
$P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is 1/3 (THIS WAS THE |
734 |
< |
7 TEV NUMBER, CHECK). The uncertainty for these events |
735 |
< |
is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto} |
733 |
> |
$P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see |
734 |
> |
Table~\ref{tab:trueisotrk}. |
735 |
> |
The uncertainty for these events |
736 |
> |
is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}. |
737 |
> |
|
738 |
> |
\begin{table}[!h] |
739 |
> |
\begin{center} |
740 |
> |
{\footnotesize |
741 |
> |
\begin{tabular}{l||c|c|c|c|c|c|c} |
742 |
> |
\hline |
743 |
> |
Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\ |
744 |
> |
\hline |
745 |
> |
\hline |
746 |
> |
$\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\ |
747 |
> |
\hline |
748 |
> |
\hline |
749 |
> |
e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\ |
750 |
> |
\hline |
751 |
> |
\end{tabular}} |
752 |
> |
\caption{ Fraction of \ttdl\ events with a true isolated track. |
753 |
> |
\label{tab:trueisotrk}} |
754 |
> |
\end{center} |
755 |
> |
\end{table} |
756 |
|
|
757 |
|
\subsubsection{Isolated Track Veto: Tag and Probe Studies} |
758 |
|
\label{sec:trkveto} |
759 |
|
|
300 |
– |
[EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\ |
301 |
– |
ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK] |
760 |
|
|
761 |
|
In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies |
762 |
|
with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency |
763 |
|
to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case |
764 |
< |
we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study |
764 |
> |
we would need to apply a data-to-MC scale factor in order to correctly |
765 |
> |
predict the \ttll\ background. |
766 |
> |
|
767 |
> |
This study |
768 |
|
addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a |
769 |
|
second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies |
770 |
|
in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization |
771 |
|
procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto. |
772 |
+ |
|
773 |
|
Furthermore, we test the data and MC |
774 |
|
isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not |
775 |
|
directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products |
782 |
|
Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed. |
783 |
|
As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%, |
784 |
|
leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background |
785 |
< |
due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible. |
785 |
> |
due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible. |
786 |
|
|
787 |
< |
The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample. |
787 |
> |
The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample. |
788 |
|
All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV. |
789 |
|
We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to |
790 |
|
this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do |
806 |
|
|
807 |
|
\begin{itemize} |
808 |
|
\item Electron passes full analysis ID/iso selection |
809 |
< |
\item \pt\ $>$ 30 GeV, $|\eta|<2.5$ |
810 |
< |
|
349 |
< |
\item Matched to 1 of the 2 electron tag-and-probe triggers |
350 |
< |
\begin{itemize} |
351 |
< |
\item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8_Mass30_v*= |
352 |
< |
\item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_Ele8_Mass30_v*= |
353 |
< |
\end{itemize} |
809 |
> |
\item \pt\ $>$ 30 GeV, $|\eta|<2.1$ |
810 |
> |
\item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*= |
811 |
|
\end{itemize} |
812 |
|
|
813 |
|
\item{Probe criteria} |
822 |
|
\begin{itemize} |
823 |
|
\item Muon passes full analysis ID/iso selection |
824 |
|
\item \pt\ $>$ 30 GeV, $|\eta|<2.1$ |
825 |
< |
\item Matched to 1 of the 2 electron tag-and-probe triggers |
825 |
> |
\item Matched to 1 of the 2 single muon triggers |
826 |
|
\begin{itemize} |
827 |
|
\item \verb=HLT_IsoMu30_v*= |
828 |
|
\item \verb=HLT_IsoMu30_eta2p1_v*= |
839 |
|
The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe |
840 |
|
good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy |
841 |
|
absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}. |
842 |
< |
In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC |
843 |
< |
efficiencies agree within 7\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency. |
842 |
> |
In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC |
843 |
> |
efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency. |
844 |
|
For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for |
845 |
|
a data vs. MC discrepancy in the isolated track veto efficiency. |
846 |
|
|
851 |
|
|
852 |
|
\begin{figure}[hbt] |
853 |
|
\begin{center} |
854 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}% |
855 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf} |
856 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}% |
857 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf} |
858 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}% |
859 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf} |
860 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}% |
861 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf} |
862 |
< |
%\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}% |
863 |
< |
%\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf} |
854 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}% |
855 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf} |
856 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}% |
857 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf} |
858 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}% |
859 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf} |
860 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}% |
861 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf} |
862 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}% |
863 |
> |
\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf} |
864 |
|
\caption{ |
865 |
|
\label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right) |
866 |
|
for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4. |
872 |
|
|
873 |
|
\begin{table}[!ht] |
874 |
|
\begin{center} |
875 |
< |
\caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements |
876 |
< |
on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various |
877 |
< |
jet multiplicity requirements.} |
878 |
< |
\begin{tabular}{l|l|c|c|c|c|c} |
875 |
> |
\begin{tabular}{l|c|c|c|c|c} |
876 |
> |
|
877 |
> |
%Electrons: |
878 |
> |
%Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05) |
879 |
> |
%Total MC yields : 2497277 |
880 |
> |
%Total DATA yields : 2649453 |
881 |
> |
%Muons: |
882 |
> |
%Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05) |
883 |
> |
%Total MC yields : 3749863 |
884 |
> |
%Total DATA yields : 4210022 |
885 |
> |
%Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1 |
886 |
> |
%Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created |
887 |
> |
|
888 |
|
\hline |
889 |
|
\hline |
890 |
< |
e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
890 |
> |
e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
891 |
|
\hline |
892 |
< |
data & 0.088 $\pm$ 0.0003 & 0.030 $\pm$ 0.0002 & 0.013 $\pm$ 0.0001 & 0.007 $\pm$ 0.0001 & 0.005 $\pm$ 0.0001 \\ |
893 |
< |
mc & 0.087 $\pm$ 0.0001 & 0.030 $\pm$ 0.0001 & 0.014 $\pm$ 0.0001 & 0.008 $\pm$ 0.0000 & 0.005 $\pm$ 0.0000 \\ |
894 |
< |
data/mc & 1.01 $\pm$ 0.00 & 0.99 $\pm$ 0.01 & 0.97 $\pm$ 0.01 & 0.95 $\pm$ 0.01 & 0.93 $\pm$ 0.01 \\ |
892 |
> |
data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\ |
893 |
> |
mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\ |
894 |
> |
data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\ |
895 |
> |
|
896 |
|
\hline |
897 |
|
\hline |
898 |
< |
$\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
898 |
> |
$\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
899 |
|
\hline |
900 |
< |
data & 0.087 $\pm$ 0.0002 & 0.031 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.008 $\pm$ 0.0001 & 0.005 $\pm$ 0.0001 \\ |
901 |
< |
mc & 0.085 $\pm$ 0.0001 & 0.030 $\pm$ 0.0001 & 0.014 $\pm$ 0.0000 & 0.008 $\pm$ 0.0000 & 0.005 $\pm$ 0.0000 \\ |
902 |
< |
data/mc & 1.02 $\pm$ 0.00 & 1.06 $\pm$ 0.00 & 1.06 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\ |
900 |
> |
data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\ |
901 |
> |
mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\ |
902 |
> |
data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\ |
903 |
> |
|
904 |
|
\hline |
437 |
– |
\hline |
438 |
– |
e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
905 |
|
\hline |
906 |
< |
data & 0.099 $\pm$ 0.0008 & 0.038 $\pm$ 0.0005 & 0.019 $\pm$ 0.0004 & 0.011 $\pm$ 0.0003 & 0.008 $\pm$ 0.0002 \\ |
441 |
< |
mc & 0.100 $\pm$ 0.0004 & 0.038 $\pm$ 0.0003 & 0.019 $\pm$ 0.0002 & 0.012 $\pm$ 0.0002 & 0.008 $\pm$ 0.0001 \\ |
442 |
< |
data/mc & 0.99 $\pm$ 0.01 & 1.00 $\pm$ 0.02 & 0.99 $\pm$ 0.02 & 0.98 $\pm$ 0.03 & 0.97 $\pm$ 0.03 \\ |
906 |
> |
e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
907 |
|
\hline |
908 |
+ |
data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\ |
909 |
+ |
mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\ |
910 |
+ |
data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\ |
911 |
+ |
|
912 |
|
\hline |
445 |
– |
$\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
913 |
|
\hline |
914 |
< |
data & 0.100 $\pm$ 0.0006 & 0.041 $\pm$ 0.0004 & 0.022 $\pm$ 0.0003 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0002 \\ |
448 |
< |
mc & 0.099 $\pm$ 0.0004 & 0.039 $\pm$ 0.0002 & 0.020 $\pm$ 0.0002 & 0.013 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 \\ |
449 |
< |
data/mc & 1.01 $\pm$ 0.01 & 1.05 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.06 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\ |
914 |
> |
$\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
915 |
|
\hline |
916 |
+ |
data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\ |
917 |
+ |
mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\ |
918 |
+ |
data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\ |
919 |
+ |
|
920 |
|
\hline |
452 |
– |
e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
921 |
|
\hline |
922 |
< |
data & 0.105 $\pm$ 0.0020 & 0.042 $\pm$ 0.0013 & 0.021 $\pm$ 0.0009 & 0.013 $\pm$ 0.0007 & 0.009 $\pm$ 0.0006 \\ |
455 |
< |
mc & 0.109 $\pm$ 0.0011 & 0.043 $\pm$ 0.0007 & 0.021 $\pm$ 0.0005 & 0.013 $\pm$ 0.0004 & 0.009 $\pm$ 0.0003 \\ |
456 |
< |
data/mc & 0.96 $\pm$ 0.02 & 0.97 $\pm$ 0.03 & 1.00 $\pm$ 0.05 & 1.01 $\pm$ 0.06 & 0.97 $\pm$ 0.08 \\ |
922 |
> |
e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
923 |
|
\hline |
924 |
+ |
data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\ |
925 |
+ |
mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\ |
926 |
+ |
data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\ |
927 |
+ |
|
928 |
|
\hline |
459 |
– |
$\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
929 |
|
\hline |
930 |
< |
data & 0.106 $\pm$ 0.0016 & 0.045 $\pm$ 0.0011 & 0.025 $\pm$ 0.0008 & 0.016 $\pm$ 0.0007 & 0.012 $\pm$ 0.0006 \\ |
931 |
< |
mc & 0.108 $\pm$ 0.0009 & 0.044 $\pm$ 0.0006 & 0.024 $\pm$ 0.0004 & 0.016 $\pm$ 0.0004 & 0.011 $\pm$ 0.0003 \\ |
932 |
< |
data/mc & 0.98 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.04 $\pm$ 0.04 & 1.04 $\pm$ 0.05 & 1.06 $\pm$ 0.06 \\ |
930 |
> |
$\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
931 |
> |
\hline |
932 |
> |
data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\ |
933 |
> |
mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\ |
934 |
> |
data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\ |
935 |
> |
|
936 |
|
\hline |
937 |
|
\hline |
938 |
< |
e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
938 |
> |
e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
939 |
|
\hline |
940 |
< |
data & 0.117 $\pm$ 0.0055 & 0.051 $\pm$ 0.0038 & 0.029 $\pm$ 0.0029 & 0.018 $\pm$ 0.0023 & 0.012 $\pm$ 0.0019 \\ |
941 |
< |
mc & 0.120 $\pm$ 0.0031 & 0.052 $\pm$ 0.0021 & 0.027 $\pm$ 0.0015 & 0.018 $\pm$ 0.0012 & 0.013 $\pm$ 0.0011 \\ |
942 |
< |
data/mc & 0.97 $\pm$ 0.05 & 0.99 $\pm$ 0.08 & 1.10 $\pm$ 0.13 & 1.03 $\pm$ 0.15 & 0.91 $\pm$ 0.16 \\ |
940 |
> |
data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\ |
941 |
> |
mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\ |
942 |
> |
data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\ |
943 |
> |
|
944 |
|
\hline |
945 |
|
\hline |
946 |
< |
$\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
946 |
> |
$\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
947 |
|
\hline |
948 |
< |
data & 0.111 $\pm$ 0.0044 & 0.050 $\pm$ 0.0030 & 0.029 $\pm$ 0.0024 & 0.019 $\pm$ 0.0019 & 0.014 $\pm$ 0.0017 \\ |
949 |
< |
mc & 0.115 $\pm$ 0.0025 & 0.051 $\pm$ 0.0017 & 0.030 $\pm$ 0.0013 & 0.020 $\pm$ 0.0011 & 0.015 $\pm$ 0.0009 \\ |
950 |
< |
data/mc & 0.97 $\pm$ 0.04 & 0.97 $\pm$ 0.07 & 0.95 $\pm$ 0.09 & 0.97 $\pm$ 0.11 & 0.99 $\pm$ 0.13 \\ |
948 |
> |
data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\ |
949 |
> |
mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\ |
950 |
> |
data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\ |
951 |
> |
|
952 |
|
\hline |
953 |
|
\hline |
954 |
< |
e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
954 |
> |
e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
955 |
|
\hline |
956 |
< |
data & 0.113 $\pm$ 0.0148 & 0.048 $\pm$ 0.0100 & 0.033 $\pm$ 0.0083 & 0.020 $\pm$ 0.0065 & 0.017 $\pm$ 0.0062 \\ |
957 |
< |
mc & 0.146 $\pm$ 0.0092 & 0.064 $\pm$ 0.0064 & 0.034 $\pm$ 0.0048 & 0.024 $\pm$ 0.0040 & 0.021 $\pm$ 0.0037 \\ |
958 |
< |
data/mc & 0.78 $\pm$ 0.11 & 0.74 $\pm$ 0.17 & 0.96 $\pm$ 0.28 & 0.82 $\pm$ 0.30 & 0.85 $\pm$ 0.34 \\ |
956 |
> |
data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\ |
957 |
> |
mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\ |
958 |
> |
data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\ |
959 |
> |
|
960 |
|
\hline |
961 |
|
\hline |
962 |
< |
$\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
962 |
> |
$\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\ |
963 |
|
\hline |
964 |
< |
data & 0.130 $\pm$ 0.0128 & 0.052 $\pm$ 0.0085 & 0.028 $\pm$ 0.0063 & 0.019 $\pm$ 0.0052 & 0.019 $\pm$ 0.0052 \\ |
965 |
< |
mc & 0.105 $\pm$ 0.0064 & 0.045 $\pm$ 0.0043 & 0.027 $\pm$ 0.0034 & 0.019 $\pm$ 0.0028 & 0.014 $\pm$ 0.0024 \\ |
966 |
< |
data/mc & 1.23 $\pm$ 0.14 & 1.18 $\pm$ 0.22 & 1.03 $\pm$ 0.27 & 1.01 $\pm$ 0.32 & 1.37 $\pm$ 0.45 \\ |
964 |
> |
data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\ |
965 |
> |
mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\ |
966 |
> |
data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\ |
967 |
> |
|
968 |
|
\hline |
969 |
|
\hline |
970 |
|
|
971 |
|
\end{tabular} |
972 |
+ |
\caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements |
973 |
+ |
on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various |
974 |
+ |
jet multiplicity requirements.} |
975 |
|
\end{center} |
976 |
|
\end{table} |
977 |
|
|
978 |
+ |
\clearpage |
979 |
+ |
\subsection{Summary of uncertainties} |
980 |
+ |
\label{sec:bgunc-bottomline} |
981 |
+ |
|
982 |
+ |
The contribution from each source to the total uncertainty on the background yield is given in Tables~\ref{tab:relativeuncertaintycomponents} and~\ref{tab:uncertaintycomponents} for the relative and absolute uncertainties, respectively. In the low-\met\ regions the dominant uncertainty comes from the top tail-to-peak ratio, $R_{top}$ (Section~\ref{sec:ttp}), while in the high-\met\ regions the \ttll\ systematic uncertainty dominates (Section~\ref{sec:ttdilbkgunc}). |
983 |
+ |
|
984 |
+ |
\input{uncertainties_table.tex} |
985 |
+ |
|
986 |
+ |
|
987 |
+ |
|
988 |
|
|
989 |
|
|
990 |
|
%Figure.~\ref{fig:reliso} compares the relative track isolation |
1037 |
|
%END SECTION TO WRITE OUT |
1038 |
|
|
1039 |
|
|
1040 |
< |
{\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured. |
1041 |
< |
Why not measure $\epsilon_{fake}$ in the b-veto region?} |
1040 |
> |
%{\bf fix me: What you have written in the next paragraph does not |
1041 |
> |
%explain how $\epsilon_{fake}$ is measured. |
1042 |
> |
%Why not measure $\epsilon_{fake}$ in the b-veto region?} |
1043 |
|
|
1044 |
|
%A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is |
1045 |
|
%possible to correct for differences in the $\epsilon_{fake}$ between data and MC by |
1067 |
|
% \end{center} |
1068 |
|
%\end{figure} |
1069 |
|
|
580 |
– |
\subsection{Summary of uncertainties} |
581 |
– |
\label{sec:bgunc-bottomline}. |
1070 |
|
|
1071 |
< |
THIS NEEDS TO BE WRITTEN |
1071 |
> |
|
1072 |
> |
% THIS NEEDS TO BE WRITTEN |