ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.5 by vimartin, Wed Oct 3 05:48:26 2012 UTC vs.
Revision 1.8 by vimartin, Fri Oct 5 18:12:37 2012 UTC

# Line 1 | Line 1
1   %\section{Systematics Uncertainties on the Background Prediction}
2   %\label{sec:systematics}
3  
4 < [ADD INTRODUCTORY BLURB ON UNCERTAINTIES \\
5 < ADD COMPARISONS OF ALL THE ALTERNATIVE SAMPLES FOR ALL THE SIGNAL
6 < REGIONS \\
7 < LIST ALL THE UNCERTAINTIES INCLUDED AND THEIR VALUES]
4 > [DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET
5 > FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS
6 > AND
7 > WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL
8 > UNCERTAINTIES
9 > CORRECTLY THROUGH.  WE WILL DO IT ONCE WE HAVE SETTLED ON THE
10 > INDIVIDUAL PIECES WHICH ARE STILL IN FLUX]
11 >
12 > In this Section we discuss the systematic uncertainty on the BG
13 > prediction.  This prediction is assembled from the event
14 > counts in the peak region of the transverse mass distribution as
15 > well as Monte Carlo
16 > with a number of correction factors, as described previously.
17 > The
18 > final uncertainty on the prediction is built up from the uncertainties in these
19 > individual
20 > components.
21 > The calculation is done for each signal
22 > region,
23 > for electrons and muons separately.
24 >
25 > The choice to normalizing to the peak region of $M_T$ has the
26 > advantage that some uncertainties, e.g., luminosity, cancel.
27 > It does however introduce complications because it couples
28 > some of the uncertainties in non-trivial ways.  For example,
29 > the primary effect of an uncertainty on the rare MC cross-section
30 > is to introduce an uncertainty in the rare MC background estimate
31 > which comes entirely from MC.   But this uncertainty also affects,
32 > for example,
33 > the $t\bar{t} \to$ dilepton BG estimate because it changes the
34 > $t\bar{t}$ normalization to the peak region (because some of the
35 > events in the peak region are from rare processes).  These effects
36 > are carefully accounted for.  The contribution to the overall
37 > uncertainty from each BG source is tabulated in
38 > Section~\ref{sec:bgunc-bottomline}.
39 > First, however, we discuss the uncertainties one-by-one and we comment
40 > on their impact on the overall result, at least to first order.
41 > Second order effects, such as the one described, are also included.
42 >
43 > \subsection{Statistical uncertainties on the event counts in the $M_T$
44 > peak regions}
45 > These vary between XX and XX \%, depending on the signal region
46 > (different
47 > signal regions have different \met\ requirements, thus they also have
48 > different $M_T$ regions used as control.
49 > Since
50 > the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
51 > fractional uncertainty is pretty much carried through all the way to
52 > the end.  There is also an uncertainty from the finite MC event counts
53 > in the $M_T$ peak regions.  This is also included, but it is smaller.
54 >
55 > \subsection{Uncertainty from the choice of $M_T$ peak region}
56 > IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT
57 > LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY.  WE NEED TO LOOK
58 > INTO THIS AGAIN
59 >
60 > \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
61 > These are taken as 50\%, uncorrelated.  
62 > The primary effect is to introduce a 50\%
63 > uncertainty
64 > on the $W +$ jets and rare BG
65 > background predictions, respectively.  However they also
66 > have an effect on the other BGs via the $M_T$ peak normalization
67 > in a way that tends to reduce the uncertainty.  This is easy
68 > to understand: if the $W$ cross-section is increased by 50\%, then
69 > the $W$ background goes up.  But the number of $M_T$ peak events
70 > attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
71 > scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
72 > BG goes down.  
73 >
74 > \subsection{Scale factors for the tail-to-peak ratios for lepton +
75 >  jets top and W events}
76 > These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
77 > They are studied in CR1 and CR2.  The studies are described
78 > in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
79 > we also give the uncertainty on the scale factors.
80 >
81 > \subsection{Uncertainty on extra jet radiation for dilepton
82 >  background}
83 > As discussed in Section~\ref{sec:jetmultiplicity}, the
84 > jet distribution in
85 > $t\bar{t} \to$
86 > dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
87 > it agree with the data.  The XX\% uncertainties on $K_3$ and $K_4$
88 > comes from data/MC statistics.  This  
89 > result directly in a XX\% uncertainty on the dilepton BG, which is by far
90 > the most important one.
91 >
92  
93   \subsection{Uncertainty on the \ttll\ Acceptance}
94  
# Line 35 | Line 119 | The variations considered are
119    Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
120    hadronisation, while POWHEG uses Pythia6.
121   \item Modeling of taus: The alternative sample does not include
122 <  Tauola and is otherwise identical to the Powheg sample.  [DONE AT
123 <  7TEV AND FOUND TO BE NEGLIGIBLE]
122 >  Tauola and is otherwise identical to the Powheg sample.
123 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
124   \item The PDF uncertainty is estimated following the PDF4LHC
125    recommendations[CITE]. The events are reweighted using alternative
126    PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
# Line 44 | Line 128 | The variations considered are
128    addition, the NNPDF2.1 set with 100 replicas. The central value is
129    determined from the mean and the uncertainty is derived from the
130    $1\sigma$ range. The overall uncertainty is derived from the envelope of the
131 <  alternative predictions and their uncertainties. [DONE AT 7 TEV AND
132 <  FOUND TO BE NEGLIGIBLE]
133 < \end{itemize}
131 >  alternative predictions and their uncertainties.
132 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
133 >  \end{itemize}
134  
135  
136   \begin{figure}[hbt]
# Line 60 | Line 144 | The variations considered are
144            alternative sample predictions are indicated by the
145            datapoints. The uncertainties on the alternative predictions
146            correspond to the uncorrelated statistical uncertainty from
147 <          the size of the alternative sample only.}
147 >          the size of the alternative sample only.
148 >        [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
149        \end{center}
150      \end{figure}
151  
152 <
152 > \clearpage
153  
154   %
155   %
# Line 200 | Line 285 | The variations considered are
285   %\end{center}
286   %\end{table}
287  
288 + \subsection{Uncertainty from the isolated track veto}
289 + This is the uncertainty associated with how well the isolated track
290 + veto performance is modeled by the Monte Carlo.  This uncertainty
291 + only applies to the fraction of dilepton BG events that have
292 + a second e/$\mu$ or a one prong $\tau \to h$, with
293 + $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is 1/3 (THIS WAS THE
294 + 7 TEV NUMBER, CHECK).  The uncertainty for these events
295 + is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
296  
297 < \subsection{Isolated Track Veto: Tag and Probe Studies}
297 > \subsubsection{Isolated Track Veto: Tag and Probe Studies}
298 > \label{sec:trkveto}
299  
300   [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
301   ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
# Line 483 | Line 577 | Why not measure $\epsilon_{fake}$ in the
577   %      \end{center}
578   %\end{figure}
579  
580 + \subsection{Summary of uncertainties}
581 + \label{sec:bgunc-bottomline}.
582 +
583 + THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines