ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.15
Committed: Thu Oct 11 07:33:42 2012 UTC (12 years, 7 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.14: +91 -31 lines
Log Message:
splendid

File Contents

# Content
1 %\section{Systematics Uncertainties on the Background Prediction}
2 %\label{sec:systematics}
3
4 In this Section we discuss the systematic uncertainty on the BG
5 prediction. This prediction is assembled from the event
6 counts in the peak region of the transverse mass distribution as
7 well as Monte Carlo
8 with a number of correction factors, as described previously.
9 The
10 final uncertainty on the prediction is built up from the uncertainties in these
11 individual
12 components.
13 The calculation is done for each signal
14 region,
15 for electrons and muons separately.
16
17 The choice to normalizing to the peak region of $M_T$ has the
18 advantage that some uncertainties, e.g., luminosity, cancel.
19 It does however introduce complications because it couples
20 some of the uncertainties in non-trivial ways. For example,
21 the primary effect of an uncertainty on the rare MC cross-section
22 is to introduce an uncertainty in the rare MC background estimate
23 which comes entirely from MC. But this uncertainty also affects,
24 for example,
25 the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 $t\bar{t}$ normalization to the peak region (because some of the
27 events in the peak region are from rare processes). These effects
28 are carefully accounted for. The contribution to the overall
29 uncertainty from each BG source is tabulated in
30 Section~\ref{sec:bgunc-bottomline}.
31 First, however, we discuss the uncertainties one-by-one and we comment
32 on their impact on the overall result, at least to first order.
33 Second order effects, such as the one described, are also included.
34
35 \subsection{Statistical uncertainties on the event counts in the $M_T$
36 peak regions}
37 These vary between 2\% and 20\%, depending on the signal region
38 (different
39 signal regions have different \met\ requirements, thus they also have
40 different $M_T$ regions used as control.
41 Since
42 the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
43 fractional uncertainty is pretty much carried through all the way to
44 the end. There is also an uncertainty from the finite MC event counts
45 in the $M_T$ peak regions. This is also included, but it is smaller.
46
47 Normalizing to the $M_T$ peak has the distinct advantages that
48 uncertainties on luminosity, cross-sections, trigger efficiency,
49 lepton ID, cancel out.
50 For the low statistics regions with high \met requirements, the
51 price to pay in terms of event count statistical uncertainties starts
52 to become significant. In the future we may consider a different
53 normalization startegy in the low statistics regions.
54
55 \subsection{Uncertainty from the choice of $M_T$ peak region}
56
57 This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.
58 If the $M_T$ peak region is not well modelled, this would introduce an
59 uncertainty.
60
61 We have tested this possibility by recalculating the post veto scale factors for a different
62 choice
63 of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 $50 < M_T < 80$ GeV. This is shown in Table~\ref{tab:mtpeaksf2}.
65 The two results for the scale factors are very compatible.
66 We do not take any systematic uncertainty for this possible effect.
67
68 \begin{table}[!h]
69 \begin{center}
70 {\footnotesize
71 \begin{tabular}{l||c|c|c|c|c|c|c}
72 \hline
73 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 \hline
75 \hline
76 \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 \hline
78 $\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 $\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 \hline
81 $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 \hline
83 \hline
84 e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 \hline
87 e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 \hline
89 \hline
90 \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 \hline
92 $\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 $\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 \hline
95 $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 \hline
97 \hline
98 e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 \hline
101 e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 \hline
103 \end{tabular}}
104 \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 \ttdl\ sample, while the post-veto SFs are applied to the single
106 lepton samples. The veto SF is shown for comparison across channels.
107 The raw MC is used for backgrounds from rare processes.
108 The uncertainties are statistical only.
109 \label{tab:mtpeaksf2}}
110 \end{center}
111 \end{table}
112
113
114 \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
115 These are taken as 50\%, uncorrelated.
116 The primary effect is to introduce a 50\%
117 uncertainty
118 on the $W +$ jets and rare BG
119 background predictions, respectively. However they also
120 have an effect on the other BGs via the $M_T$ peak normalization
121 in a way that tends to reduce the uncertainty. This is easy
122 to understand: if the $W$ cross-section is increased by 50\%, then
123 the $W$ background goes up. But the number of $M_T$ peak events
124 attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125 scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126 BG goes down.
127
128 \subsection{Scale factors for the tail-to-peak ratios for lepton +
129 jets top and W events}
130 These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
131 They are studied in CR1 and CR2. The studies are described
132 in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
133 we also give the uncertainty on the scale factors. See
134 Tables~\ref{tab:cr1yields}
135 and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top})$.
136
137 \subsection{Uncertainty on extra jet radiation for dilepton
138 background}
139 As discussed in Section~\ref{sec:jetmultiplicity}, the
140 jet distribution in
141 $t\bar{t} \to$
142 dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
143 it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$
144 comes from data/MC statistics. This
145 result directly in a 3\% uncertainty on the dilepton BG, which is by far
146 the most important one.
147
148
149 \subsection{Uncertainty on the \ttll\ Acceptance}
150
151 [CLAUDIO: WE NEED TO DISCUSS THIS A LITTLE MORE -- THEN I CAN PUT THE
152 WORDS IN]
153
154 The \ttbar\ background prediction is obtained from MC, with corrections
155 derived from control samples in data. The uncertainty associated with
156 the theoretical modeling of the \ttbar\ production and decay is
157 estimated by comparing the background predictions obtained using
158 alternative MC samples. It should be noted that the full analysis is
159 performed with the alternative samples under consideration,
160 including the derivation of the various data-to-MC scale factors.
161 The variations considered are
162
163 \begin{itemize}
164 \item Top mass: The alternative values for the top mass differ
165 from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
166 = 166.5~\GeV$.
167 \item Jet-parton matching scale: This corresponds to variations in the
168 scale at which the Matrix Element partons from Madgraph are matched
169 to Parton Shower partons from Pythia. The nominal value is
170 $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
171 $x_q>40~\GeV$.
172 \item Renormalization and factorization scale: The alternative samples
173 correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
174 value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
175 \sum_{\mathrm{jets}} \pt^2$.
176 \item Alternative generators: Samples produced with different
177 generators, Powheg (our default) and Madgraph.
178 \item Modeling of taus: The alternative sample does not include
179 Tauola and is otherwise identical to the Powheg sample.
180 This effect was studied earlier using 7~TeV samples and found to be negligible.
181 \item The PDF uncertainty is estimated following the PDF4LHC
182 recommendations[CITE]. The events are reweighted using alternative
183 PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
184 alternative eigenvector variations and the ``master equation''. In
185 addition, the NNPDF2.1 set with 100 replicas. The central value is
186 determined from the mean and the uncertainty is derived from the
187 $1\sigma$ range. The overall uncertainty is derived from the envelope of the
188 alternative predictions and their uncertainties.
189 This effect was studied earlier using 7~TeV samples and found to be negligible.
190 \end{itemize}
191
192
193 \begin{table}[!h]
194 \begin{center}
195 {\footnotesize
196 \begin{tabular}{l||c||c|c|c|c|c|c|c}
197 \hline
198 Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
199 Match Up & Match Down \\
200 \hline
201 \hline
202 SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\
203 \hline
204 SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\
205 \hline
206 SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\
207 \hline
208 SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\
209 \hline
210 SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\
211 \hline
212 \end{tabular}}
213 \caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
214 \label{tab:ttdlalt}}
215 \end{center}
216 \end{table}
217
218
219 \begin{table}[!h]
220 \begin{center}
221 {\footnotesize
222 \begin{tabular}{l||c|c|c|c|c|c|c}
223 \hline
224 $\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
225 Match Up & Match Down \\
226 \hline
227 \hline
228 SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\
229 \hline
230 SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\
231 \hline
232 SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\
233 \hline
234 SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\
235 \hline
236 SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\
237 \hline
238 \end{tabular}}
239 \caption{ Relative difference in \ttdl\ predictions for alternative MC samples.
240 \label{tab:fracdiff}}
241 \end{center}
242 \end{table}
243
244
245 \begin{table}[!h]
246 \begin{center}
247 {\footnotesize
248 \begin{tabular}{l||c|c|c|c|c|c|c}
249 \hline
250 $N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
251 Match Up & Match Down \\
252 \hline
253 \hline
254 SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\
255 \hline
256 SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\
257 \hline
258 SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\
259 \hline
260 SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\
261 \hline
262 SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\
263 \hline
264 \end{tabular}}
265 \caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
266 \label{tab:nsig}}
267 \end{center}
268 \end{table}
269
270
271 \begin{table}[!h]
272 \begin{center}
273 \begin{tabular}{l||c|c|c|c}
274 \hline
275 Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
276 & $\Delta$ Match \\
277 \hline
278 \hline
279 SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\
280 \hline
281 SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\
282 \hline
283 SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\
284 \hline
285 SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\
286 \hline
287 SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\
288 \hline
289 \end{tabular}
290 \caption{ Av. difference in \ttdl\ events for alternative sample pairs.
291 \label{tab:devt}}
292 \end{center}
293 \end{table}
294
295
296 \begin{figure}[hbt]
297 \begin{center}
298 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
299 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
300 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
301 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
302 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
303 \caption{
304 \label{fig:ttllsyst}\protect
305 Comparison of the \ttll\ central prediction with those using
306 alternative MC samples. The blue band corresponds to the
307 total statistical error for all data and MC samples. The
308 alternative sample predictions are indicated by the
309 datapoints. The uncertainties on the alternative predictions
310 correspond to the uncorrelated statistical uncertainty from
311 the size of the alternative sample only.
312 [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
313 \end{center}
314 \end{figure}
315
316 \clearpage
317
318 %
319 %
320 %The methodology for determining the systematics on the background
321 %predictions has not changed with respect to the nominal analysis.
322 %Because the template method has not changed, the same
323 %systematic uncertainty is assessed on this prediction (32\%).
324 %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
325 %The systematic uncertainty in the OF background prediction based on
326 %e$\mu$ events has changed, due to the different composition of this
327 %sample after vetoing events containing b-tagged jets.
328 %
329 %As in the nominal analysis, we do not require the e$\mu$ events
330 %to satisfy the dilepton mass requirement and apply a scaling factor K,
331 %extracted from MC, to account for the fraction of e$\mu$ events
332 %which satisfy the dilepton mass requirement. This procedure is used
333 %in order to improve the statistical precision of the OF background estimate.
334 %
335 %For the selection used in the nominal analysis,
336 %the e$\mu$ sample is completely dominated by $t\bar{t}$
337 %events, and we observe that K is statistically consistent with constant with
338 %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
339 %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
340 %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
341 %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
342 %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
343 %Therefore, the sample composition changes
344 %as the \MET\ requirement is varied, and as a result K depends
345 %on the \MET\ requirement.
346 %
347 %We thus measure K in MC separately for each
348 %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
349 %%The systematic uncertainty on K is determined separately for each \MET\
350 %%requirement by comparing the relative difference in K in data vs. MC.
351 %The values of K used are the MC predictions
352 %%and the total systematic uncertainty on the OF prediction
353 %%as shown in
354 %(Table \ref{fig:kvmettable}).
355 %The contribution to the total OF prediction systematic uncertainty
356 %from K is assessed from the ratio of K in data and MC,
357 %shown in Fig.~\ref{fig:kvmet} (right).
358 %The ratio is consistent with unity to roughly 17\%,
359 %so we take this value as the systematic from K.
360 %17\% added in quadrature with 7\% from
361 %the electron to muon efficieny ratio
362 %(as assessed in the inclusive analysis)
363 %yields a total systematic of $\sim$18\%
364 %which we round up to 20\%.
365 %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
366 %so we take a systematic based on the statistical uncertainty
367 %of the MC prediction for K.
368 %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
369 %%Although we cannot check the value of K in data for \MET\ $>$ 150
370 %%because we find no OF events inside the Z mass window for this \MET\
371 %%cut, the overall OF yields with no dilepton mass requirement
372 %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
373 %
374 %
375 %%Below Old
376 %
377 %%In reevaluating the systematics on the OF prediction, however,
378 %%we observed a different behavior of K as a function of \MET\
379 %%as was seen in the inclusive analysis.
380 %
381 %%Recall that K is the ratio of the number of \emu\ events
382 %%inside the Z window to the total number of \emu\ events.
383 %%In the inclusive analysis, it is taken from \ttbar\ MC
384 %%and used to scale the inclusive \emu\ yield in data.
385 %%The yield scaled by K is then corrected for
386 %%the $e$ vs $\mu$ efficiency difference to obtain the
387 %%final OF prediction.
388 %
389 %%Based on the plot in figure \ref{fig:kvmet},
390 %%we choose to use a different
391 %%K for each \MET\ cut and assess a systematic uncertainty
392 %%on the OF prediction based on the difference between
393 %%K in data and MC.
394 %%The variation of K as a function of \MET\ is caused
395 %%by a change in sample composition with increasing \MET.
396 %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
397 %%not negligible (as it was in the inclusive analysis)
398 %%because of the b veto. (See appendix \ref{app:kinemu}.)
399 %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
400 %
401 %
402 %
403 %
404 %\begin{figure}[hbt]
405 % \begin{center}
406 % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
407 % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
408 % \caption{
409 % \label{fig:kvmet}\protect
410 % The left plot shows
411 % K as a function of \MET\ in MC (red) and data (black).
412 % The bin low edge corresponds to the \MET\ cut, and the
413 % bins are inclusive.
414 % The MC used is a sum of all SM MC used in the yield table of
415 % section \ref{sec:yields}.
416 % The right plot is the ratio of K in data to MC.
417 % The ratio is fit to a line whose slope is consistent with zero
418 % (the fit parameters are
419 % 0.9 $\pm$ 0.4 for the intercept and
420 % 0.001 $\pm$ 0.005 for the slope).
421 % }
422 % \end{center}
423 %\end{figure}
424 %
425 %
426 %
427 %\begin{table}[htb]
428 %\begin{center}
429 %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
430 %The uncertainties shown are the total relative systematic used for the OF prediction,
431 %which is the systematic uncertainty from K added in quadrature with
432 %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
433 %inclusive analysis.
434 %}
435 %\begin{tabular}{lcc}
436 %\hline
437 %\MET\ Cut & K & Relative Systematic \\
438 %\hline
439 %%the met zero row is used only for normalization of the money plot.
440 %%0 & 0.1 & \\
441 %30 & 0.12 & 20\% \\
442 %60 & 0.13 & 20\% \\
443 %80 & 0.12 & 20\% \\
444 %100 & 0.12 & 20\% \\
445 %150 & 0.09 & 25\% \\
446 %200 & 0.06 & 60\% \\
447 %\hline
448 %\end{tabular}
449 %\end{center}
450 %\end{table}
451
452 \subsection{Uncertainty from the isolated track veto}
453 This is the uncertainty associated with how well the isolated track
454 veto performance is modeled by the Monte Carlo. This uncertainty
455 only applies to the fraction of dilepton BG events that have
456 a second e/$\mu$ or a one prong $\tau \to h$, with
457 $P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see
458 Table~\ref{tab:trueisotrk}.
459 The uncertainty for these events
460 is 6\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
461
462 \begin{table}[!h]
463 \begin{center}
464 {\footnotesize
465 \begin{tabular}{l||c|c|c|c|c|c|c}
466 \hline
467 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
468 \hline
469 \hline
470 $\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\
471 \hline
472 \hline
473 e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\
474 \hline
475 \end{tabular}}
476 \caption{ Fraction of \ttdl\ events with a true isolated track.
477 \label{tab:trueisotrk}}
478 \end{center}
479 \end{table}
480
481 \subsubsection{Isolated Track Veto: Tag and Probe Studies}
482 \label{sec:trkveto}
483
484
485 In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
486 with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
487 to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
488 we would need to apply a data-to-MC scale factor in order to correctly
489 predict the \ttll\ background.
490
491 This study
492 addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
493 second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
494 in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
495 procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
496
497 Furthermore, we test the data and MC
498 isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
499 directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
500 may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
501 or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
502 the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
503 consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
504 $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
505 decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
506 Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
507 As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
508 leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
509 due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
510
511 The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
512 All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
513 We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
514 this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
515 not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
516 fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
517 \met\ $<$ 30 GeV and 0 b-tagged events.
518 The specific criteria for tags and probes for electrons and muons are:
519
520 %We study the isolated track veto efficiency in bins of \njets.
521 %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
522 %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
523
524
525 \begin{itemize}
526 \item{Electrons}
527
528 \begin{itemize}
529 \item{Tag criteria}
530
531 \begin{itemize}
532 \item Electron passes full analysis ID/iso selection
533 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
534 \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
535 \end{itemize}
536
537 \item{Probe criteria}
538 \begin{itemize}
539 \item Electron passes full analysis ID selection
540 \item \pt\ $>$ 30 GeV
541 \end{itemize}
542 \end{itemize}
543 \item{Muons}
544 \begin{itemize}
545 \item{Tag criteria}
546 \begin{itemize}
547 \item Muon passes full analysis ID/iso selection
548 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
549 \item Matched to 1 of the 2 single muon triggers
550 \begin{itemize}
551 \item \verb=HLT_IsoMu30_v*=
552 \item \verb=HLT_IsoMu30_eta2p1_v*=
553 \end{itemize}
554 \end{itemize}
555 \item{Probe criteria}
556 \begin{itemize}
557 \item Muon passes full analysis ID selection
558 \item \pt\ $>$ 30 GeV
559 \end{itemize}
560 \end{itemize}
561 \end{itemize}
562
563 The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
564 good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
565 absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
566 In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
567 efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
568 For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
569 a data vs. MC discrepancy in the isolated track veto efficiency.
570
571
572 %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
573 %This requirement is chosen because most of the tracks rejected by the isolated
574 %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
575
576 \begin{figure}[hbt]
577 \begin{center}
578 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
579 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
580 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
581 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
582 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
583 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
584 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
585 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
586 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
587 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
588 \caption{
589 \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
590 for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
591 }
592 \end{center}
593 \end{figure}
594
595 \clearpage
596
597 \begin{table}[!ht]
598 \begin{center}
599 \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
600 on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
601 jet multiplicity requirements.}
602 \begin{tabular}{l|c|c|c|c|c}
603
604 %Electrons:
605 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
606 %Total MC yields : 2497277
607 %Total DATA yields : 2649453
608 %Muons:
609 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
610 %Total MC yields : 3749863
611 %Total DATA yields : 4210022
612 %Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
613 %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
614
615 \hline
616 \hline
617 e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
618 \hline
619 data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\
620 mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\
621 data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
622
623 \hline
624 \hline
625 $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
626 \hline
627 data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
628 mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
629 data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
630
631 \hline
632 \hline
633 e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
634 \hline
635 data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\
636 mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
637 data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
638
639 \hline
640 \hline
641 $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
642 \hline
643 data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\
644 mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
645 data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\
646
647 \hline
648 \hline
649 e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
650 \hline
651 data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\
652 mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\
653 data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\
654
655 \hline
656 \hline
657 $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
658 \hline
659 data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\
660 mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\
661 data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\
662
663 \hline
664 \hline
665 e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
666 \hline
667 data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\
668 mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\
669 data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\
670
671 \hline
672 \hline
673 $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
674 \hline
675 data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\
676 mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\
677 data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\
678
679 \hline
680 \hline
681 e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
682 \hline
683 data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\
684 mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\
685 data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\
686
687 \hline
688 \hline
689 $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
690 \hline
691 data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\
692 mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\
693 data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\
694
695 \hline
696 \hline
697
698 \end{tabular}
699 \end{center}
700 \end{table}
701
702
703 %Figure.~\ref{fig:reliso} compares the relative track isolation
704 %for events with a track with $\pt > 10~\GeV$ in addition to a selected
705 %muon for $\Z+4$ jet events and various \ttll\ components. The
706 %isolation distributions show significant differences, particularly
707 %between the leptons from a \W\ or \Z\ decay and the tracks arising
708 %from $\tau$ decays. As can also be seen in the figure, the \pt\
709 %distribution for the various categories of tracks is different, where
710 %the decay products from $\tau$s are significantly softer. Since the
711 %\pt\ enters the denominator of the isolation definition and hence
712 %alters the isolation variable...
713
714 %\begin{figure}[hbt]
715 % \begin{center}
716 % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
717 % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
718 % \caption{
719 % \label{fig:reliso}%\protect
720 % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
721 % Z+Jets and ttbar dilepton have similar isolation distributions
722 % ttbar with leptonic and single prong taus tend to be less
723 % isolated. The difference in the isolation can be attributed
724 % to the different \pt\ distribution of the samples, since
725 % $\tau$ decay products tend to be softer than leptons arising
726 % from \W\ or \Z\ decays.}
727 % \end{center}
728 %\end{figure}
729
730 % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
731
732
733 %BEGIN SECTION TO WRITE OUT
734 %In detail, the procedure to correct the dilepton background is:
735
736 %\begin{itemize}
737 %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
738 %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
739 %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
740 %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
741 %the lepton \pt {\bf TODO: verify this in data and MC.}.
742 %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
743 %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
744 %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
745 %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
746 %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
747 %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
748 %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
749 %\end{itemize}
750 %END SECTION TO WRITE OUT
751
752
753 %{\bf fix me: What you have written in the next paragraph does not
754 %explain how $\epsilon_{fake}$ is measured.
755 %Why not measure $\epsilon_{fake}$ in the b-veto region?}
756
757 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
758 %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
759 %applying an additional scale factor for the single lepton background
760 %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
761 %veto and after subtracting the \ttll\ component, corrected for the
762 %isolation efficiency derived previously.
763 %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
764 %isolated track in single lepton events is independent of \mt\, so the use of
765 %an overall scale factor is justified to estimate the contribution in
766 %the \mt\ tail.
767 %
768 %\begin{figure}[hbt]
769 % \begin{center}
770 % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
771 % \caption{
772 % \label{fig:vetoeffcomp}%\protect
773 % Efficiency for selecting an isolated track comparing
774 % single lepton \ttlj\ and dilepton \ttll\ events in MC and
775 % data as a function of \mt. The
776 % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
777 % \mt\, while the data ranges between the two. This behavior
778 % is expected since the low \mt\ region is predominantly \ttlj, while the
779 % high \mt\ region contains mostly \ttll\ events.}
780 % \end{center}
781 %\end{figure}
782
783 \subsection{Summary of uncertainties}
784 \label{sec:bgunc-bottomline}.
785
786 THIS NEEDS TO BE WRITTEN