ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.18
Committed: Fri Oct 12 04:55:23 2012 UTC (12 years, 7 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.17: +7 -0 lines
Log Message:
triv

File Contents

# Content
1 %\section{Systematics Uncertainties on the Background Prediction}
2 %\label{sec:systematics}
3
4 In this Section we discuss the systematic uncertainty on the BG
5 prediction. This prediction is assembled from the event
6 counts in the peak region of the transverse mass distribution as
7 well as Monte Carlo
8 with a number of correction factors, as described previously.
9 The
10 final uncertainty on the prediction is built up from the uncertainties in these
11 individual
12 components.
13 The calculation is done for each signal
14 region,
15 for electrons and muons separately.
16
17 The choice to normalizing to the peak region of $M_T$ has the
18 advantage that some uncertainties, e.g., luminosity, cancel.
19 It does however introduce complications because it couples
20 some of the uncertainties in non-trivial ways. For example,
21 the primary effect of an uncertainty on the rare MC cross-section
22 is to introduce an uncertainty in the rare MC background estimate
23 which comes entirely from MC. But this uncertainty also affects,
24 for example,
25 the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 $t\bar{t}$ normalization to the peak region (because some of the
27 events in the peak region are from rare processes). These effects
28 are carefully accounted for. The contribution to the overall
29 uncertainty from each BG source is tabulated in
30 Section~\ref{sec:bgunc-bottomline}.
31 First, however, we discuss the uncertainties one-by-one and we comment
32 on their impact on the overall result, at least to first order.
33 Second order effects, such as the one described, are also included.
34
35 \subsection{Statistical uncertainties on the event counts in the $M_T$
36 peak regions}
37 These vary between 2\% and 20\%, depending on the signal region
38 (different
39 signal regions have different \met\ requirements, thus they also have
40 different $M_T$ regions used as control.
41 Since
42 the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
43 fractional uncertainty is pretty much carried through all the way to
44 the end. There is also an uncertainty from the finite MC event counts
45 in the $M_T$ peak regions. This is also included, but it is smaller.
46
47 Normalizing to the $M_T$ peak has the distinct advantages that
48 uncertainties on luminosity, cross-sections, trigger efficiency,
49 lepton ID, cancel out.
50 For the low statistics regions with high \met requirements, the
51 price to pay in terms of event count statistical uncertainties starts
52 to become significant. In the future we may consider a different
53 normalization startegy in the low statistics regions.
54
55 \subsection{Uncertainty from the choice of $M_T$ peak region}
56
57 This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.
58 If the $M_T$ peak region is not well modelled, this would introduce an
59 uncertainty.
60
61 We have tested this possibility by recalculating the post veto scale factors for a different
62 choice
63 of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 $50 < M_T < 80$ GeV. This is shown in Table~\ref{tab:mtpeaksf2}.
65 The two results for the scale factors are very compatible.
66 We do not take any systematic uncertainty for this possible effect.
67
68 \begin{table}[!h]
69 \begin{center}
70 {\footnotesize
71 \begin{tabular}{l||c|c|c|c|c|c|c}
72 \hline
73 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 \hline
75 \hline
76 \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 \hline
78 $\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 $\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 \hline
81 $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 \hline
83 \hline
84 e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 \hline
87 e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 \hline
89 \hline
90 \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 \hline
92 $\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 $\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 \hline
95 $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 \hline
97 \hline
98 e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 \hline
101 e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 \hline
103 \end{tabular}}
104 \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 \ttdl\ sample, while the post-veto SFs are applied to the single
106 lepton samples. The veto SF is shown for comparison across channels.
107 The raw MC is used for backgrounds from rare processes.
108 The uncertainties are statistical only.
109 \label{tab:mtpeaksf2}}
110 \end{center}
111 \end{table}
112
113
114 \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
115 These are taken as 50\%, uncorrelated.
116 The primary effect is to introduce a 50\%
117 uncertainty
118 on the $W +$ jets and rare BG
119 background predictions, respectively. However they also
120 have an effect on the other BGs via the $M_T$ peak normalization
121 in a way that tends to reduce the uncertainty. This is easy
122 to understand: if the $W$ cross-section is increased by 50\%, then
123 the $W$ background goes up. But the number of $M_T$ peak events
124 attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125 scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126 BG goes down.
127
128 \subsection{Scale factors for the tail-to-peak ratios for lepton +
129 jets top and W events}
130 These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
131 They are studied in CR1 and CR2. The studies are described
132 in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
133 we also give the uncertainty on the scale factors. See
134 Tables~\ref{tab:cr1yields}
135 and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top})$.
136
137 \subsection{Uncertainty on extra jet radiation for dilepton
138 background}
139 As discussed in Section~\ref{sec:jetmultiplicity}, the
140 jet distribution in
141 $t\bar{t} \to$
142 dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
143 it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$
144 comes from data/MC statistics. This
145 result directly in a 3\% uncertainty on the dilepton BG, which is by far
146 the most important one.
147
148 \subsection{Uncertainty from MC statistics}
149 This affects mostly the \ttll\ background estimate, which is taken
150 from
151 Monte Carlo with appropriate correction factors. This uncertainty
152 is negligible in the low \met\ signal regions, and grows to about
153 15\% in SRG.
154
155
156 \subsection{Uncertainty on the \ttll\ Acceptance}
157
158 The \ttbar\ background prediction is obtained from MC, with corrections
159 derived from control samples in data. The uncertainty associated with
160 the theoretical modeling of the \ttbar\ production and decay is
161 estimated by comparing the background predictions obtained using
162 alternative MC samples. It should be noted that the full analysis is
163 performed with the alternative samples under consideration,
164 including the derivation of the various data-to-MC scale factors.
165 The variations considered are
166
167 \begin{itemize}
168 \item Top mass: The alternative values for the top mass differ
169 from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
170 = 166.5~\GeV$.
171 \item Jet-parton matching scale: This corresponds to variations in the
172 scale at which the Matrix Element partons from Madgraph are matched
173 to Parton Shower partons from Pythia. The nominal value is
174 $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
175 $x_q>40~\GeV$.
176 \item Renormalization and factorization scale: The alternative samples
177 correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
178 value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
179 \sum_{\mathrm{jets}} \pt^2$.
180 \item Alternative generators: Samples produced with different
181 generators, Powheg (our default) and Madgraph.
182 \item Modeling of taus: The alternative sample does not include
183 Tauola and is otherwise identical to the Powheg sample.
184 This effect was studied earlier using 7~TeV samples and found to be negligible.
185 \item The PDF uncertainty is estimated following the PDF4LHC
186 recommendations[CITE]. The events are reweighted using alternative
187 PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
188 alternative eigenvector variations and the ``master equation''. In
189 addition, the NNPDF2.1 set with 100 replicas. The central value is
190 determined from the mean and the uncertainty is derived from the
191 $1\sigma$ range. The overall uncertainty is derived from the envelope of the
192 alternative predictions and their uncertainties.
193 This effect was studied earlier using 7~TeV samples and found to be negligible.
194 \end{itemize}
195
196 \begin{figure}[hbt]
197 \begin{center}
198 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
199 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
200 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
201 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
202 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
203 \caption{
204 \label{fig:ttllsyst}\protect
205 Comparison of the \ttll\ central prediction with those using
206 alternative MC samples. The blue band corresponds to the
207 total statistical error for all data and MC samples. The
208 alternative sample predictions are indicated by the
209 datapoints. The uncertainties on the alternative predictions
210 correspond to the uncorrelated statistical uncertainty from
211 the size of the alternative sample only. Note the
212 suppressed vertical scales.}
213 \end{center}
214 \end{figure}
215
216
217 \begin{table}[!h]
218 \begin{center}
219 {\footnotesize
220 \begin{tabular}{l||c|c|c|c|c|c|c}
221 \hline
222 $\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
223 Match Up & Match Down \\
224 \hline
225 \hline
226 SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\
227 \hline
228 SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\
229 \hline
230 % SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\
231 % \hline
232 % SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\
233 % \hline
234 % SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\
235 \hline
236 \end{tabular}}
237 \caption{ Relative difference in \ttdl\ predictions for alternative MC
238 samples in
239 the higher statistics regions SRA and SRB. These differences
240 are based on the central values of the predictions. For a fuller
241 picture
242 of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
243 \label{tab:fracdiff}}
244 \end{center}
245 \end{table}
246
247
248 In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
249 for regions A through E. We can make the following observations based
250 on this Figure.
251
252 \begin{itemize}
253 \item In the tighter signal regions we are running out of
254 statistics.
255 \item Within the limited statistics, there is no evidence that the
256 situation changes as we go from signal region A to signal region E.
257 Therefore, we assess a systematic based on the relatively high
258 statistics
259 test in signal region A, and apply the same systematic uncertainty
260 to all other regions.
261 \item In order to fully (as opposed as 1$\sigma$) cover the
262 alternative MC variations in region A we would have to take a
263 systematic
264 uncertainty of $\approx 10\%$. This would be driven by the
265 scale up/scale down variations, see Table~\ref{tab:fracdiff}.
266 \end{itemize}
267
268 \begin{table}[!ht]
269 \begin{center}
270 \begin{tabular}{l|c|c}
271 \hline
272 Sample
273 & K3 & K4\\
274 \hline
275 \hline
276 Powheg & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
277 Madgraph & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
278 Mass Up & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
279 Mass Down & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
280 Scale Up & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
281 Scale Down & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
282 Match Up & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
283 Match Down & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
284 \hline
285 \end{tabular}
286 \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
287 fraction of events with additional hard jets from radiation in
288 \ttll\ events. \label{tab:njetskfactors_met100}}
289 \end{center}
290 \end{table}
291
292
293 However, we have two pieces of information indicating that the
294 scale up/scale down variations are inconsistent with the data.
295 These are described below.
296
297 The first piece of information is that the jet multiplicity in the scale
298 up/scale down sample is the most inconsistent with the data. This can be shown
299 in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
300 $K_3$ and $K_4$ factors of Section~\ref{tab:njetskfactors_met100} for
301 different \ttbar\ MC samples. The data/MC disagreement in the $N_{jets}$
302 distribution
303 for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
304 and~\ref{fig:dileptonnjets_scaledw}. This should be compared with the
305 equivalent $N_{jets}$ plots for the default Powheg MC, see
306 Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
307
308 \begin{figure}[hbt]
309 \begin{center}
310 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
311 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
312 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
313 \caption{
314 \label{fig:dileptonnjets_scaleup}%\protect
315 SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
316 (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
317 \end{center}
318 \end{figure}
319
320 \begin{figure}[hbt]
321 \begin{center}
322 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
323 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
324 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
325 \caption{
326 \label{fig:dileptonnjets_scaledw}%\protect
327 SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
328 (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
329 \end{center}
330 \end{figure}
331
332
333 \clearpage
334
335 The second piece of information is that we have performed closure
336 tests in CR5 using the alternative MC samples. These are exactly
337 the same tests as the one performed in Section~\ref{sec:CR5} on the
338 Powheg sample. As we argued previously, this is a very powerful
339 test of the background calculation.
340 The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
341 Concentrating on the relatively high statistics CR5A region, we see
342 for all \ttbar\ MC samples except scale up/scale down we obtain
343 closure within 1$\sigma$. The scale up/scale down tests closes
344 worse, only within 2$\sigma$. This again is evidence that the
345 scale up/scale down variations are in disagreement with the data.
346
347 \input{hugeCR5Table.tex}
348
349 Based on the two observations above, we argue that the MC
350 scale up/scale down variations are too extreme. We feel that
351 a reasonable choice would be to take one-half of the scale up/scale
352 down variations in our MC. This factor of 1/2 would then bring
353 the discrepancy in the closure test of
354 Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
355 from about 2$\sigma$ to about 1$\sigma$.
356
357 Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
358 up/scale
359 down variations by a factor 2, we can see that a systematic
360 uncertainty
361 of 6\% would fully cover all of the variations from different MC
362 samples in SRA and SRB.
363 {\bf Thus, we take a 6\% systematic uncertainty, constant as a
364 function of signal region, as the systematic due to alternative MC
365 models.}.
366 Note that this 6\% is also consistent with the level at which we are
367 able
368 to test the closure of the method in CR5 for the high statistics
369 regions
370 (Table~\ref{tab:hugecr5yields}).
371
372
373
374
375
376
377 %\begin{table}[!h]
378 %\begin{center}
379 %{\footnotesize
380 %\begin{tabular}{l||c||c|c|c|c|c|c|c}
381 %\hline
382 %Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale
383 %Up & Scale Down &
384 %Match Up & Match Down \\
385 %\hline
386 %\hline
387 %SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\
388 %\hline
389 %SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\
390 %\hline
391 %SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\
392 %\hline
393 %SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\
394 %\hline
395 %SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\
396 %\hline
397 %\end{tabular}}
398 %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
399 %\label{tab:ttdlalt}}
400 %\end{center}
401 %\end{table}
402
403
404
405
406 %\begin{table}[!h]
407 %\begin{center}
408 %{\footnotesize
409 %\begin{tabular}{l||c|c|c|c|c|c|c}
410 %\hline
411 %$N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
412 %Match Up & Match Down \\
413 %\hline
414 %\hline
415 %SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\
416 %\hline
417 %SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\
418 %\hline
419 %SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\
420 %\hline
421 %SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\
422 %\hline
423 %SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\
424 %\hline
425 %\end{tabular}}
426 %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
427 %\label{tab:nsig}}
428 %\end{center}
429 %\end{table}
430
431
432 %\begin{table}[!h]
433 %\begin{center}
434 %\begin{tabular}{l||c|c|c|c}
435 %\hline
436 %Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
437 %& $\Delta$ Match \\
438 %\hline
439 %\hline
440 %SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\
441 %\hline
442 %SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\
443 %\hline
444 %SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\
445 %\hline
446 %SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\
447 %\hline
448 %SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\
449 %\hline
450 %\end{tabular}
451 %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
452 %\label{tab:devt}}
453 %\end{center}
454 %\end{table}
455
456
457
458 \clearpage
459
460 %
461 %
462 %The methodology for determining the systematics on the background
463 %predictions has not changed with respect to the nominal analysis.
464 %Because the template method has not changed, the same
465 %systematic uncertainty is assessed on this prediction (32\%).
466 %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
467 %The systematic uncertainty in the OF background prediction based on
468 %e$\mu$ events has changed, due to the different composition of this
469 %sample after vetoing events containing b-tagged jets.
470 %
471 %As in the nominal analysis, we do not require the e$\mu$ events
472 %to satisfy the dilepton mass requirement and apply a scaling factor K,
473 %extracted from MC, to account for the fraction of e$\mu$ events
474 %which satisfy the dilepton mass requirement. This procedure is used
475 %in order to improve the statistical precision of the OF background estimate.
476 %
477 %For the selection used in the nominal analysis,
478 %the e$\mu$ sample is completely dominated by $t\bar{t}$
479 %events, and we observe that K is statistically consistent with constant with
480 %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
481 %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
482 %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
483 %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
484 %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
485 %Therefore, the sample composition changes
486 %as the \MET\ requirement is varied, and as a result K depends
487 %on the \MET\ requirement.
488 %
489 %We thus measure K in MC separately for each
490 %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
491 %%The systematic uncertainty on K is determined separately for each \MET\
492 %%requirement by comparing the relative difference in K in data vs. MC.
493 %The values of K used are the MC predictions
494 %%and the total systematic uncertainty on the OF prediction
495 %%as shown in
496 %(Table \ref{fig:kvmettable}).
497 %The contribution to the total OF prediction systematic uncertainty
498 %from K is assessed from the ratio of K in data and MC,
499 %shown in Fig.~\ref{fig:kvmet} (right).
500 %The ratio is consistent with unity to roughly 17\%,
501 %so we take this value as the systematic from K.
502 %17\% added in quadrature with 7\% from
503 %the electron to muon efficieny ratio
504 %(as assessed in the inclusive analysis)
505 %yields a total systematic of $\sim$18\%
506 %which we round up to 20\%.
507 %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
508 %so we take a systematic based on the statistical uncertainty
509 %of the MC prediction for K.
510 %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
511 %%Although we cannot check the value of K in data for \MET\ $>$ 150
512 %%because we find no OF events inside the Z mass window for this \MET\
513 %%cut, the overall OF yields with no dilepton mass requirement
514 %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
515 %
516 %
517 %%Below Old
518 %
519 %%In reevaluating the systematics on the OF prediction, however,
520 %%we observed a different behavior of K as a function of \MET\
521 %%as was seen in the inclusive analysis.
522 %
523 %%Recall that K is the ratio of the number of \emu\ events
524 %%inside the Z window to the total number of \emu\ events.
525 %%In the inclusive analysis, it is taken from \ttbar\ MC
526 %%and used to scale the inclusive \emu\ yield in data.
527 %%The yield scaled by K is then corrected for
528 %%the $e$ vs $\mu$ efficiency difference to obtain the
529 %%final OF prediction.
530 %
531 %%Based on the plot in figure \ref{fig:kvmet},
532 %%we choose to use a different
533 %%K for each \MET\ cut and assess a systematic uncertainty
534 %%on the OF prediction based on the difference between
535 %%K in data and MC.
536 %%The variation of K as a function of \MET\ is caused
537 %%by a change in sample composition with increasing \MET.
538 %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
539 %%not negligible (as it was in the inclusive analysis)
540 %%because of the b veto. (See appendix \ref{app:kinemu}.)
541 %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
542 %
543 %
544 %
545 %
546 %\begin{figure}[hbt]
547 % \begin{center}
548 % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
549 % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
550 % \caption{
551 % \label{fig:kvmet}\protect
552 % The left plot shows
553 % K as a function of \MET\ in MC (red) and data (black).
554 % The bin low edge corresponds to the \MET\ cut, and the
555 % bins are inclusive.
556 % The MC used is a sum of all SM MC used in the yield table of
557 % section \ref{sec:yields}.
558 % The right plot is the ratio of K in data to MC.
559 % The ratio is fit to a line whose slope is consistent with zero
560 % (the fit parameters are
561 % 0.9 $\pm$ 0.4 for the intercept and
562 % 0.001 $\pm$ 0.005 for the slope).
563 % }
564 % \end{center}
565 %\end{figure}
566 %
567 %
568 %
569 %\begin{table}[htb]
570 %\begin{center}
571 %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
572 %The uncertainties shown are the total relative systematic used for the OF prediction,
573 %which is the systematic uncertainty from K added in quadrature with
574 %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
575 %inclusive analysis.
576 %}
577 %\begin{tabular}{lcc}
578 %\hline
579 %\MET\ Cut & K & Relative Systematic \\
580 %\hline
581 %%the met zero row is used only for normalization of the money plot.
582 %%0 & 0.1 & \\
583 %30 & 0.12 & 20\% \\
584 %60 & 0.13 & 20\% \\
585 %80 & 0.12 & 20\% \\
586 %100 & 0.12 & 20\% \\
587 %150 & 0.09 & 25\% \\
588 %200 & 0.06 & 60\% \\
589 %\hline
590 %\end{tabular}
591 %\end{center}
592 %\end{table}
593
594 \subsection{Uncertainty from the isolated track veto}
595 This is the uncertainty associated with how well the isolated track
596 veto performance is modeled by the Monte Carlo. This uncertainty
597 only applies to the fraction of dilepton BG events that have
598 a second e/$\mu$ or a one prong $\tau \to h$, with
599 $P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see
600 Table~\ref{tab:trueisotrk}.
601 The uncertainty for these events
602 is 6\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
603
604 \begin{table}[!h]
605 \begin{center}
606 {\footnotesize
607 \begin{tabular}{l||c|c|c|c|c|c|c}
608 \hline
609 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
610 \hline
611 \hline
612 $\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\
613 \hline
614 \hline
615 e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\
616 \hline
617 \end{tabular}}
618 \caption{ Fraction of \ttdl\ events with a true isolated track.
619 \label{tab:trueisotrk}}
620 \end{center}
621 \end{table}
622
623 \subsubsection{Isolated Track Veto: Tag and Probe Studies}
624 \label{sec:trkveto}
625
626
627 In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
628 with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
629 to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
630 we would need to apply a data-to-MC scale factor in order to correctly
631 predict the \ttll\ background.
632
633 This study
634 addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
635 second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
636 in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
637 procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
638
639 Furthermore, we test the data and MC
640 isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
641 directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
642 may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
643 or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
644 the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
645 consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
646 $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
647 decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
648 Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
649 As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
650 leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
651 due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
652
653 The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
654 All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
655 We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
656 this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
657 not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
658 fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
659 \met\ $<$ 30 GeV and 0 b-tagged events.
660 The specific criteria for tags and probes for electrons and muons are:
661
662 %We study the isolated track veto efficiency in bins of \njets.
663 %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
664 %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
665
666
667 \begin{itemize}
668 \item{Electrons}
669
670 \begin{itemize}
671 \item{Tag criteria}
672
673 \begin{itemize}
674 \item Electron passes full analysis ID/iso selection
675 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
676 \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
677 \end{itemize}
678
679 \item{Probe criteria}
680 \begin{itemize}
681 \item Electron passes full analysis ID selection
682 \item \pt\ $>$ 30 GeV
683 \end{itemize}
684 \end{itemize}
685 \item{Muons}
686 \begin{itemize}
687 \item{Tag criteria}
688 \begin{itemize}
689 \item Muon passes full analysis ID/iso selection
690 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
691 \item Matched to 1 of the 2 single muon triggers
692 \begin{itemize}
693 \item \verb=HLT_IsoMu30_v*=
694 \item \verb=HLT_IsoMu30_eta2p1_v*=
695 \end{itemize}
696 \end{itemize}
697 \item{Probe criteria}
698 \begin{itemize}
699 \item Muon passes full analysis ID selection
700 \item \pt\ $>$ 30 GeV
701 \end{itemize}
702 \end{itemize}
703 \end{itemize}
704
705 The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
706 good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
707 absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
708 In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
709 efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
710 For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
711 a data vs. MC discrepancy in the isolated track veto efficiency.
712
713
714 %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
715 %This requirement is chosen because most of the tracks rejected by the isolated
716 %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
717
718 \begin{figure}[hbt]
719 \begin{center}
720 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
721 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
722 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
723 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
724 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
725 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
726 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
727 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
728 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
729 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
730 \caption{
731 \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
732 for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
733 }
734 \end{center}
735 \end{figure}
736
737 \clearpage
738
739 \begin{table}[!ht]
740 \begin{center}
741 \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
742 on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
743 jet multiplicity requirements.}
744 \begin{tabular}{l|c|c|c|c|c}
745
746 %Electrons:
747 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
748 %Total MC yields : 2497277
749 %Total DATA yields : 2649453
750 %Muons:
751 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
752 %Total MC yields : 3749863
753 %Total DATA yields : 4210022
754 %Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
755 %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
756
757 \hline
758 \hline
759 e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
760 \hline
761 data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\
762 mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\
763 data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
764
765 \hline
766 \hline
767 $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
768 \hline
769 data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
770 mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
771 data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
772
773 \hline
774 \hline
775 e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
776 \hline
777 data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\
778 mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
779 data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
780
781 \hline
782 \hline
783 $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
784 \hline
785 data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\
786 mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
787 data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\
788
789 \hline
790 \hline
791 e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
792 \hline
793 data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\
794 mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\
795 data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\
796
797 \hline
798 \hline
799 $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
800 \hline
801 data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\
802 mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\
803 data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\
804
805 \hline
806 \hline
807 e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
808 \hline
809 data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\
810 mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\
811 data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\
812
813 \hline
814 \hline
815 $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
816 \hline
817 data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\
818 mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\
819 data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\
820
821 \hline
822 \hline
823 e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
824 \hline
825 data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\
826 mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\
827 data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\
828
829 \hline
830 \hline
831 $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
832 \hline
833 data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\
834 mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\
835 data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\
836
837 \hline
838 \hline
839
840 \end{tabular}
841 \end{center}
842 \end{table}
843
844
845 %Figure.~\ref{fig:reliso} compares the relative track isolation
846 %for events with a track with $\pt > 10~\GeV$ in addition to a selected
847 %muon for $\Z+4$ jet events and various \ttll\ components. The
848 %isolation distributions show significant differences, particularly
849 %between the leptons from a \W\ or \Z\ decay and the tracks arising
850 %from $\tau$ decays. As can also be seen in the figure, the \pt\
851 %distribution for the various categories of tracks is different, where
852 %the decay products from $\tau$s are significantly softer. Since the
853 %\pt\ enters the denominator of the isolation definition and hence
854 %alters the isolation variable...
855
856 %\begin{figure}[hbt]
857 % \begin{center}
858 % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
859 % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
860 % \caption{
861 % \label{fig:reliso}%\protect
862 % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
863 % Z+Jets and ttbar dilepton have similar isolation distributions
864 % ttbar with leptonic and single prong taus tend to be less
865 % isolated. The difference in the isolation can be attributed
866 % to the different \pt\ distribution of the samples, since
867 % $\tau$ decay products tend to be softer than leptons arising
868 % from \W\ or \Z\ decays.}
869 % \end{center}
870 %\end{figure}
871
872 % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
873
874
875 %BEGIN SECTION TO WRITE OUT
876 %In detail, the procedure to correct the dilepton background is:
877
878 %\begin{itemize}
879 %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
880 %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
881 %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
882 %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
883 %the lepton \pt {\bf TODO: verify this in data and MC.}.
884 %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
885 %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
886 %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
887 %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
888 %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
889 %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
890 %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
891 %\end{itemize}
892 %END SECTION TO WRITE OUT
893
894
895 %{\bf fix me: What you have written in the next paragraph does not
896 %explain how $\epsilon_{fake}$ is measured.
897 %Why not measure $\epsilon_{fake}$ in the b-veto region?}
898
899 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
900 %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
901 %applying an additional scale factor for the single lepton background
902 %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
903 %veto and after subtracting the \ttll\ component, corrected for the
904 %isolation efficiency derived previously.
905 %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
906 %isolated track in single lepton events is independent of \mt\, so the use of
907 %an overall scale factor is justified to estimate the contribution in
908 %the \mt\ tail.
909 %
910 %\begin{figure}[hbt]
911 % \begin{center}
912 % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
913 % \caption{
914 % \label{fig:vetoeffcomp}%\protect
915 % Efficiency for selecting an isolated track comparing
916 % single lepton \ttlj\ and dilepton \ttll\ events in MC and
917 % data as a function of \mt. The
918 % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
919 % \mt\, while the data ranges between the two. This behavior
920 % is expected since the low \mt\ region is predominantly \ttlj, while the
921 % high \mt\ region contains mostly \ttll\ events.}
922 % \end{center}
923 %\end{figure}
924
925 % \subsection{Summary of uncertainties}
926 % \label{sec:bgunc-bottomline}.
927
928 % THIS NEEDS TO BE WRITTEN