ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.19
Committed: Fri Oct 12 20:09:46 2012 UTC (12 years, 7 months ago) by vimartin
Content type: application/x-tex
Branch: MAIN
Changes since 1.18: +22 -20 lines
Log Message:
typo fixes

File Contents

# Content
1 %\section{Systematics Uncertainties on the Background Prediction}
2 %\label{sec:systematics}
3
4 In this Section we discuss the systematic uncertainty on the BG
5 prediction. This prediction is assembled from the event
6 counts in the peak region of the transverse mass distribution as
7 well as Monte Carlo
8 with a number of correction factors, as described previously.
9 The
10 final uncertainty on the prediction is built up from the uncertainties in these
11 individual
12 components.
13 The calculation is done for each signal
14 region,
15 for electrons and muons separately.
16
17 The choice to normalizing to the peak region of $M_T$ has the
18 advantage that some uncertainties, e.g., luminosity, cancel.
19 It does however introduce complications because it couples
20 some of the uncertainties in non-trivial ways. For example,
21 the primary effect of an uncertainty on the rare MC cross-section
22 is to introduce an uncertainty in the rare MC background estimate
23 which comes entirely from MC. But this uncertainty also affects,
24 for example,
25 the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 $t\bar{t}$ normalization to the peak region (because some of the
27 events in the peak region are from rare processes). These effects
28 are carefully accounted for.
29 %%%TO ADD BACK IN IF WE HAVE SYSTEMATICS TABLE.
30 %The contribution to the overall
31 %uncertainty from each BG source is tabulated in
32 %Section~\ref{sec:bgunc-bottomline}.
33 Here we discuss the uncertainties one-by-one and comment
34 on their impact on the overall result, at least to first order.
35 Second order effects, such as the one described, are also included.
36
37 \subsection{Statistical uncertainties on the event counts in the $M_T$
38 peak regions}
39 These vary between 2\% and 20\%, depending on the signal region
40 (different
41 signal regions have different \met\ requirements, thus they also have
42 different $M_T$ regions used as control.
43 Since
44 the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
45 fractional uncertainty is pretty much carried through all the way to
46 the end. There is also an uncertainty from the finite MC event counts
47 in the $M_T$ peak regions. This is also included, but it is smaller.
48
49 Normalizing to the $M_T$ peak has the distinct advantages that
50 uncertainties on luminosity, cross-sections, trigger efficiency,
51 lepton ID, cancel out.
52 For the low statistics regions with high \met\ requirements, the
53 price to pay in terms of event count is that statistical uncertainties start
54 to become significant. In the future we may consider a different
55 normalization startegy in the low statistics regions.
56
57 \subsection{Uncertainty from the choice of $M_T$ peak region}
58
59 This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.
60 If the $M_T$ peak region is not well modelled, this would introduce an
61 uncertainty.
62
63 We have tested this possibility by recalculating the post veto scale factors for a different
64 choice
65 of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
66 $50 < M_T < 80$ GeV. This is shown in Table~\ref{tab:mtpeaksf2}.
67 The two results for the scale factors are very compatible.
68 We do not take any systematic uncertainty for this possible effect.
69
70 \begin{table}[!h]
71 \begin{center}
72 {\footnotesize
73 \begin{tabular}{l||c|c|c|c|c|c|c}
74 \hline
75 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
76 \hline
77 \hline
78 \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
79 \hline
80 $\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
81 $\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
82 \hline
83 $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
84 \hline
85 \hline
86 e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
87 e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
88 \hline
89 e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
90 \hline
91 \hline
92 \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
93 \hline
94 $\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
95 $\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
96 \hline
97 $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
98 \hline
99 \hline
100 e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
101 e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
102 \hline
103 e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
104 \hline
105 \end{tabular}}
106 \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
107 \ttdl\ sample, while the post-veto SFs are applied to the single
108 lepton samples. The veto SF is shown for comparison across channels.
109 The raw MC is used for backgrounds from rare processes.
110 The uncertainties are statistical only.
111 \label{tab:mtpeaksf2}}
112 \end{center}
113 \end{table}
114
115
116 \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
117 These are taken as 50\%, uncorrelated.
118 The primary effect is to introduce a 50\%
119 uncertainty
120 on the $W +$ jets and rare BG
121 background predictions, respectively. However they also
122 have an effect on the other BGs via the $M_T$ peak normalization
123 in a way that tends to reduce the uncertainty. This is easy
124 to understand: if the $W$ cross-section is increased by 50\%, then
125 the $W$ background goes up. But the number of $M_T$ peak events
126 attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
127 scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
128 BG goes down.
129
130 \subsection{Scale factors for the tail-to-peak ratios for lepton +
131 jets top and W events}
132 These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
133 They are studied in CR1 and CR2. The studies are described
134 in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
135 we also give the uncertainty on the scale factors (see
136 Tables~\ref{tab:cr1yields}
137 and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top}$).
138
139 \subsection{Uncertainty on extra jet radiation for dilepton
140 background}
141 As discussed in Section~\ref{sec:jetmultiplicity}, the
142 jet distribution in
143 $t\bar{t} \to$
144 dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
145 it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$
146 comes from data/MC statistics. This
147 result directly in a 3\% uncertainty on the dilepton background, which is by far
148 the most important one.
149
150 \subsection{Uncertainty from MC statistics}
151 This affects mostly the \ttll\ background estimate, which is taken
152 from
153 Monte Carlo with appropriate correction factors. This uncertainty
154 is negligible in the low \met\ signal regions, and grows to about
155 15\% in SRG.
156
157
158 \subsection{Uncertainty on the \ttll\ Acceptance}
159
160 The \ttbar\ background prediction is obtained from MC, with corrections
161 derived from control samples in data. The uncertainty associated with
162 the theoretical modeling of the \ttbar\ production and decay is
163 estimated by comparing the background predictions obtained using
164 alternative MC samples. It should be noted that the full analysis is
165 performed with the alternative samples under consideration,
166 including the derivation of the various data-to-MC scale factors.
167 The variations considered are
168
169 \begin{itemize}
170 \item Top mass: The alternative values for the top mass differ
171 from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
172 = 166.5~\GeV$.
173 \item Jet-parton matching scale: This corresponds to variations in the
174 scale at which the Matrix Element partons from Madgraph are matched
175 to Parton Shower partons from Pythia. The nominal value is
176 $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
177 $x_q>40~\GeV$.
178 \item Renormalization and factorization scale: The alternative samples
179 correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
180 value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
181 \sum_{\mathrm{jets}} \pt^2$.
182 \item Alternative generators: Samples produced with different
183 generators, Powheg (our default) and Madgraph.
184 \item Modeling of taus: The alternative sample does not include
185 Tauola and is otherwise identical to the Powheg sample.
186 This effect was studied earlier using 7~TeV samples and found to be negligible.
187 \item The PDF uncertainty is estimated following the PDF4LHC
188 recommendations. The events are reweighted using alternative
189 PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
190 alternative eigenvector variations and the ``master equation''. In
191 addition, the NNPDF2.1 set with 100 replicas. The central value is
192 determined from the mean and the uncertainty is derived from the
193 $1\sigma$ range. The overall uncertainty is derived from the envelope of the
194 alternative predictions and their uncertainties.
195 This effect was studied earlier using 7~TeV samples and found to be negligible.
196 \end{itemize}
197
198 \begin{figure}[hbt]
199 \begin{center}
200 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
201 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
202 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
203 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
204 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
205 \caption{
206 \label{fig:ttllsyst}\protect
207 Comparison of the \ttll\ central prediction with those using
208 alternative MC samples. The blue band corresponds to the
209 total statistical error for all data and MC samples. The
210 alternative sample predictions are indicated by the
211 datapoints. The uncertainties on the alternative predictions
212 correspond to the uncorrelated statistical uncertainty from
213 the size of the alternative sample only. Note the
214 suppressed vertical scales.}
215 \end{center}
216 \end{figure}
217
218
219 \begin{table}[!h]
220 \begin{center}
221 {\footnotesize
222 \begin{tabular}{l||c|c|c|c|c|c|c}
223 \hline
224 $\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
225 Match Up & Match Down \\
226 \hline
227 \hline
228 SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\
229 \hline
230 SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\
231 \hline
232 % SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\
233 % \hline
234 % SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\
235 % \hline
236 % SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\
237 \hline
238 \end{tabular}}
239 \caption{ Relative difference in \ttdl\ predictions for alternative MC
240 samples in
241 the higher statistics regions SRA and SRB. These differences
242 are based on the central values of the predictions. For a fuller
243 picture
244 of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
245 \label{tab:fracdiff}}
246 \end{center}
247 \end{table}
248
249
250 In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
251 for regions A through E. We can make the following observations based
252 on this Figure.
253
254 \begin{itemize}
255 \item In the tighter signal regions we are running out of
256 statistics.
257 \item Within the limited statistics, there is no evidence that the
258 situation changes as we go from signal region A to signal region E.
259 Therefore, we assess a systematic based on the relatively high
260 statistics
261 test in signal region A, and apply the same systematic uncertainty
262 to all other regions.
263 \item In order to fully (as opposed as 1$\sigma$) cover the
264 alternative MC variations in region A we would have to take a
265 systematic
266 uncertainty of $\approx 10\%$. This would be driven by the
267 scale up/scale down variations, see Table~\ref{tab:fracdiff}.
268 \end{itemize}
269
270 \begin{table}[!ht]
271 \begin{center}
272 \begin{tabular}{l|c|c}
273 \hline
274 Sample
275 & K3 & K4\\
276 \hline
277 \hline
278 Powheg & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
279 Madgraph & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
280 Mass Up & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
281 Mass Down & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
282 Scale Up & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
283 Scale Down & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
284 Match Up & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
285 Match Down & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
286 \hline
287 \end{tabular}
288 \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
289 fraction of events with additional hard jets from radiation in
290 \ttll\ events. \label{tab:njetskfactors_met100}}
291 \end{center}
292 \end{table}
293
294
295 However, we have two pieces of information indicating that the
296 scale up/scale down variations are inconsistent with the data.
297 These are described below.
298
299 The first piece of information is that the jet multiplicity in the scale
300 up/scale down sample is the most inconsistent with the data. This is shown
301 in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
302 $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
303 different \ttbar\ MC samples. The data/MC disagreement in the $N_{jets}$
304 distribution
305 for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
306 and~\ref{fig:dileptonnjets_scaledw}. This should be compared with the
307 equivalent $N_{jets}$ plots for the default Powheg MC, see
308 Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
309
310 \begin{figure}[hbt]
311 \begin{center}
312 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
313 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
314 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
315 \caption{
316 \label{fig:dileptonnjets_scaleup}%\protect
317 SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
318 (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
319 \end{center}
320 \end{figure}
321
322 \begin{figure}[hbt]
323 \begin{center}
324 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
325 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
326 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
327 \caption{
328 \label{fig:dileptonnjets_scaledw}%\protect
329 SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
330 (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
331 \end{center}
332 \end{figure}
333
334
335 \clearpage
336
337 The second piece of information is that we have performed closure
338 tests in CR5 using the alternative MC samples. These are exactly
339 the same tests as the one performed in Section~\ref{sec:CR5} on the
340 Powheg sample. As we argued previously, this is a very powerful
341 test of the background calculation.
342 The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
343 Concentrating on the relatively high statistics CR5A region, we see
344 for all \ttbar\ MC samples except scale up/scale down we obtain
345 closure within 1$\sigma$. The scale up/scale down tests closes
346 worse, only within 2$\sigma$. This again is evidence that the
347 scale up/scale down variations are in disagreement with the data.
348
349 \input{hugeCR5Table.tex}
350
351 Based on the two observations above, we argue that the MC
352 scale up/scale down variations are too extreme. We feel that
353 a reasonable choice would be to take one-half of the scale up/scale
354 down variations in our MC. This factor of 1/2 would then bring
355 the discrepancy in the closure test of
356 Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
357 from about 2$\sigma$ to about 1$\sigma$.
358
359 Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
360 up/scale
361 down variations by a factor 2, we can see that a systematic
362 uncertainty
363 of 6\% would fully cover all of the variations from different MC
364 samples in SRA and SRB.
365 {\bf Thus, we take a 6\% systematic uncertainty, constant as a
366 function of signal region, as the systematic due to alternative MC
367 models.}
368 Note that this 6\% is also consistent with the level at which we are
369 able
370 to test the closure of the method in CR5 for the high statistics
371 regions
372 (Table~\ref{tab:hugecr5yields}).
373
374
375
376
377
378
379 %\begin{table}[!h]
380 %\begin{center}
381 %{\footnotesize
382 %\begin{tabular}{l||c||c|c|c|c|c|c|c}
383 %\hline
384 %Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale
385 %Up & Scale Down &
386 %Match Up & Match Down \\
387 %\hline
388 %\hline
389 %SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\
390 %\hline
391 %SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\
392 %\hline
393 %SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\
394 %\hline
395 %SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\
396 %\hline
397 %SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\
398 %\hline
399 %\end{tabular}}
400 %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
401 %\label{tab:ttdlalt}}
402 %\end{center}
403 %\end{table}
404
405
406
407
408 %\begin{table}[!h]
409 %\begin{center}
410 %{\footnotesize
411 %\begin{tabular}{l||c|c|c|c|c|c|c}
412 %\hline
413 %$N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
414 %Match Up & Match Down \\
415 %\hline
416 %\hline
417 %SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\
418 %\hline
419 %SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\
420 %\hline
421 %SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\
422 %\hline
423 %SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\
424 %\hline
425 %SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\
426 %\hline
427 %\end{tabular}}
428 %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
429 %\label{tab:nsig}}
430 %\end{center}
431 %\end{table}
432
433
434 %\begin{table}[!h]
435 %\begin{center}
436 %\begin{tabular}{l||c|c|c|c}
437 %\hline
438 %Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
439 %& $\Delta$ Match \\
440 %\hline
441 %\hline
442 %SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\
443 %\hline
444 %SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\
445 %\hline
446 %SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\
447 %\hline
448 %SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\
449 %\hline
450 %SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\
451 %\hline
452 %\end{tabular}
453 %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
454 %\label{tab:devt}}
455 %\end{center}
456 %\end{table}
457
458
459
460 \clearpage
461
462 %
463 %
464 %The methodology for determining the systematics on the background
465 %predictions has not changed with respect to the nominal analysis.
466 %Because the template method has not changed, the same
467 %systematic uncertainty is assessed on this prediction (32\%).
468 %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
469 %The systematic uncertainty in the OF background prediction based on
470 %e$\mu$ events has changed, due to the different composition of this
471 %sample after vetoing events containing b-tagged jets.
472 %
473 %As in the nominal analysis, we do not require the e$\mu$ events
474 %to satisfy the dilepton mass requirement and apply a scaling factor K,
475 %extracted from MC, to account for the fraction of e$\mu$ events
476 %which satisfy the dilepton mass requirement. This procedure is used
477 %in order to improve the statistical precision of the OF background estimate.
478 %
479 %For the selection used in the nominal analysis,
480 %the e$\mu$ sample is completely dominated by $t\bar{t}$
481 %events, and we observe that K is statistically consistent with constant with
482 %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
483 %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
484 %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
485 %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
486 %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
487 %Therefore, the sample composition changes
488 %as the \MET\ requirement is varied, and as a result K depends
489 %on the \MET\ requirement.
490 %
491 %We thus measure K in MC separately for each
492 %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
493 %%The systematic uncertainty on K is determined separately for each \MET\
494 %%requirement by comparing the relative difference in K in data vs. MC.
495 %The values of K used are the MC predictions
496 %%and the total systematic uncertainty on the OF prediction
497 %%as shown in
498 %(Table \ref{fig:kvmettable}).
499 %The contribution to the total OF prediction systematic uncertainty
500 %from K is assessed from the ratio of K in data and MC,
501 %shown in Fig.~\ref{fig:kvmet} (right).
502 %The ratio is consistent with unity to roughly 17\%,
503 %so we take this value as the systematic from K.
504 %17\% added in quadrature with 7\% from
505 %the electron to muon efficieny ratio
506 %(as assessed in the inclusive analysis)
507 %yields a total systematic of $\sim$18\%
508 %which we round up to 20\%.
509 %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
510 %so we take a systematic based on the statistical uncertainty
511 %of the MC prediction for K.
512 %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
513 %%Although we cannot check the value of K in data for \MET\ $>$ 150
514 %%because we find no OF events inside the Z mass window for this \MET\
515 %%cut, the overall OF yields with no dilepton mass requirement
516 %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
517 %
518 %
519 %%Below Old
520 %
521 %%In reevaluating the systematics on the OF prediction, however,
522 %%we observed a different behavior of K as a function of \MET\
523 %%as was seen in the inclusive analysis.
524 %
525 %%Recall that K is the ratio of the number of \emu\ events
526 %%inside the Z window to the total number of \emu\ events.
527 %%In the inclusive analysis, it is taken from \ttbar\ MC
528 %%and used to scale the inclusive \emu\ yield in data.
529 %%The yield scaled by K is then corrected for
530 %%the $e$ vs $\mu$ efficiency difference to obtain the
531 %%final OF prediction.
532 %
533 %%Based on the plot in figure \ref{fig:kvmet},
534 %%we choose to use a different
535 %%K for each \MET\ cut and assess a systematic uncertainty
536 %%on the OF prediction based on the difference between
537 %%K in data and MC.
538 %%The variation of K as a function of \MET\ is caused
539 %%by a change in sample composition with increasing \MET.
540 %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
541 %%not negligible (as it was in the inclusive analysis)
542 %%because of the b veto. (See appendix \ref{app:kinemu}.)
543 %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
544 %
545 %
546 %
547 %
548 %\begin{figure}[hbt]
549 % \begin{center}
550 % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
551 % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
552 % \caption{
553 % \label{fig:kvmet}\protect
554 % The left plot shows
555 % K as a function of \MET\ in MC (red) and data (black).
556 % The bin low edge corresponds to the \MET\ cut, and the
557 % bins are inclusive.
558 % The MC used is a sum of all SM MC used in the yield table of
559 % section \ref{sec:yields}.
560 % The right plot is the ratio of K in data to MC.
561 % The ratio is fit to a line whose slope is consistent with zero
562 % (the fit parameters are
563 % 0.9 $\pm$ 0.4 for the intercept and
564 % 0.001 $\pm$ 0.005 for the slope).
565 % }
566 % \end{center}
567 %\end{figure}
568 %
569 %
570 %
571 %\begin{table}[htb]
572 %\begin{center}
573 %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
574 %The uncertainties shown are the total relative systematic used for the OF prediction,
575 %which is the systematic uncertainty from K added in quadrature with
576 %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
577 %inclusive analysis.
578 %}
579 %\begin{tabular}{lcc}
580 %\hline
581 %\MET\ Cut & K & Relative Systematic \\
582 %\hline
583 %%the met zero row is used only for normalization of the money plot.
584 %%0 & 0.1 & \\
585 %30 & 0.12 & 20\% \\
586 %60 & 0.13 & 20\% \\
587 %80 & 0.12 & 20\% \\
588 %100 & 0.12 & 20\% \\
589 %150 & 0.09 & 25\% \\
590 %200 & 0.06 & 60\% \\
591 %\hline
592 %\end{tabular}
593 %\end{center}
594 %\end{table}
595
596 \subsection{Uncertainty from the isolated track veto}
597 This is the uncertainty associated with how well the isolated track
598 veto performance is modeled by the Monte Carlo. This uncertainty
599 only applies to the fraction of dilepton BG events that have
600 a second e/$\mu$ or a one prong $\tau \to h$, with
601 $P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see
602 Table~\ref{tab:trueisotrk}.
603 The uncertainty for these events
604 is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
605
606 \begin{table}[!h]
607 \begin{center}
608 {\footnotesize
609 \begin{tabular}{l||c|c|c|c|c|c|c}
610 \hline
611 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
612 \hline
613 \hline
614 $\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\
615 \hline
616 \hline
617 e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\
618 \hline
619 \end{tabular}}
620 \caption{ Fraction of \ttdl\ events with a true isolated track.
621 \label{tab:trueisotrk}}
622 \end{center}
623 \end{table}
624
625 \subsubsection{Isolated Track Veto: Tag and Probe Studies}
626 \label{sec:trkveto}
627
628
629 In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
630 with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
631 to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
632 we would need to apply a data-to-MC scale factor in order to correctly
633 predict the \ttll\ background.
634
635 This study
636 addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
637 second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
638 in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
639 procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
640
641 Furthermore, we test the data and MC
642 isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
643 directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
644 may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
645 or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
646 the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
647 consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
648 $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
649 decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
650 Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
651 As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
652 leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
653 due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
654
655 The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
656 All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
657 We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
658 this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
659 not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
660 fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
661 \met\ $<$ 30 GeV and 0 b-tagged events.
662 The specific criteria for tags and probes for electrons and muons are:
663
664 %We study the isolated track veto efficiency in bins of \njets.
665 %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
666 %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
667
668
669 \begin{itemize}
670 \item{Electrons}
671
672 \begin{itemize}
673 \item{Tag criteria}
674
675 \begin{itemize}
676 \item Electron passes full analysis ID/iso selection
677 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
678 \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
679 \end{itemize}
680
681 \item{Probe criteria}
682 \begin{itemize}
683 \item Electron passes full analysis ID selection
684 \item \pt\ $>$ 30 GeV
685 \end{itemize}
686 \end{itemize}
687 \item{Muons}
688 \begin{itemize}
689 \item{Tag criteria}
690 \begin{itemize}
691 \item Muon passes full analysis ID/iso selection
692 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
693 \item Matched to 1 of the 2 single muon triggers
694 \begin{itemize}
695 \item \verb=HLT_IsoMu30_v*=
696 \item \verb=HLT_IsoMu30_eta2p1_v*=
697 \end{itemize}
698 \end{itemize}
699 \item{Probe criteria}
700 \begin{itemize}
701 \item Muon passes full analysis ID selection
702 \item \pt\ $>$ 30 GeV
703 \end{itemize}
704 \end{itemize}
705 \end{itemize}
706
707 The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
708 good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
709 absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
710 In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
711 efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
712 For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
713 a data vs. MC discrepancy in the isolated track veto efficiency.
714
715
716 %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
717 %This requirement is chosen because most of the tracks rejected by the isolated
718 %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
719
720 \begin{figure}[hbt]
721 \begin{center}
722 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
723 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
724 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
725 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
726 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
727 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
728 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
729 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
730 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
731 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
732 \caption{
733 \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
734 for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
735 }
736 \end{center}
737 \end{figure}
738
739 \clearpage
740
741 \begin{table}[!ht]
742 \begin{center}
743 \begin{tabular}{l|c|c|c|c|c}
744
745 %Electrons:
746 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
747 %Total MC yields : 2497277
748 %Total DATA yields : 2649453
749 %Muons:
750 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
751 %Total MC yields : 3749863
752 %Total DATA yields : 4210022
753 %Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
754 %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
755
756 \hline
757 \hline
758 e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
759 \hline
760 data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\
761 mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\
762 data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
763
764 \hline
765 \hline
766 $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
767 \hline
768 data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
769 mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
770 data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
771
772 \hline
773 \hline
774 e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
775 \hline
776 data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\
777 mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
778 data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
779
780 \hline
781 \hline
782 $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
783 \hline
784 data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\
785 mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
786 data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\
787
788 \hline
789 \hline
790 e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
791 \hline
792 data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\
793 mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\
794 data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\
795
796 \hline
797 \hline
798 $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
799 \hline
800 data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\
801 mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\
802 data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\
803
804 \hline
805 \hline
806 e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
807 \hline
808 data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\
809 mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\
810 data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\
811
812 \hline
813 \hline
814 $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
815 \hline
816 data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\
817 mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\
818 data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\
819
820 \hline
821 \hline
822 e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
823 \hline
824 data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\
825 mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\
826 data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\
827
828 \hline
829 \hline
830 $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
831 \hline
832 data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\
833 mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\
834 data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\
835
836 \hline
837 \hline
838
839 \end{tabular}
840 \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
841 on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
842 jet multiplicity requirements.}
843 \end{center}
844 \end{table}
845
846
847 %Figure.~\ref{fig:reliso} compares the relative track isolation
848 %for events with a track with $\pt > 10~\GeV$ in addition to a selected
849 %muon for $\Z+4$ jet events and various \ttll\ components. The
850 %isolation distributions show significant differences, particularly
851 %between the leptons from a \W\ or \Z\ decay and the tracks arising
852 %from $\tau$ decays. As can also be seen in the figure, the \pt\
853 %distribution for the various categories of tracks is different, where
854 %the decay products from $\tau$s are significantly softer. Since the
855 %\pt\ enters the denominator of the isolation definition and hence
856 %alters the isolation variable...
857
858 %\begin{figure}[hbt]
859 % \begin{center}
860 % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
861 % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
862 % \caption{
863 % \label{fig:reliso}%\protect
864 % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
865 % Z+Jets and ttbar dilepton have similar isolation distributions
866 % ttbar with leptonic and single prong taus tend to be less
867 % isolated. The difference in the isolation can be attributed
868 % to the different \pt\ distribution of the samples, since
869 % $\tau$ decay products tend to be softer than leptons arising
870 % from \W\ or \Z\ decays.}
871 % \end{center}
872 %\end{figure}
873
874 % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
875
876
877 %BEGIN SECTION TO WRITE OUT
878 %In detail, the procedure to correct the dilepton background is:
879
880 %\begin{itemize}
881 %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
882 %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
883 %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
884 %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
885 %the lepton \pt {\bf TODO: verify this in data and MC.}.
886 %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
887 %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
888 %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
889 %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
890 %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
891 %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
892 %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
893 %\end{itemize}
894 %END SECTION TO WRITE OUT
895
896
897 %{\bf fix me: What you have written in the next paragraph does not
898 %explain how $\epsilon_{fake}$ is measured.
899 %Why not measure $\epsilon_{fake}$ in the b-veto region?}
900
901 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
902 %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
903 %applying an additional scale factor for the single lepton background
904 %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
905 %veto and after subtracting the \ttll\ component, corrected for the
906 %isolation efficiency derived previously.
907 %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
908 %isolated track in single lepton events is independent of \mt\, so the use of
909 %an overall scale factor is justified to estimate the contribution in
910 %the \mt\ tail.
911 %
912 %\begin{figure}[hbt]
913 % \begin{center}
914 % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
915 % \caption{
916 % \label{fig:vetoeffcomp}%\protect
917 % Efficiency for selecting an isolated track comparing
918 % single lepton \ttlj\ and dilepton \ttll\ events in MC and
919 % data as a function of \mt. The
920 % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
921 % \mt\, while the data ranges between the two. This behavior
922 % is expected since the low \mt\ region is predominantly \ttlj, while the
923 % high \mt\ region contains mostly \ttll\ events.}
924 % \end{center}
925 %\end{figure}
926
927 % \subsection{Summary of uncertainties}
928 % \label{sec:bgunc-bottomline}.
929
930 % THIS NEEDS TO BE WRITTEN