ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.21
Committed: Thu Oct 18 22:41:52 2012 UTC (12 years, 7 months ago) by linacre
Content type: application/x-tex
Branch: MAIN
Changes since 1.20: +9 -9 lines
Log Message:
typos etc

File Contents

# Content
1 %\section{Systematics Uncertainties on the Background Prediction}
2 %\label{sec:systematics}
3
4 In this Section we discuss the systematic uncertainty on the BG
5 prediction. This prediction is assembled from the event
6 counts in the peak region of the transverse mass distribution as
7 well as Monte Carlo
8 with a number of correction factors, as described previously.
9 The
10 final uncertainty on the prediction is built up from the uncertainties in these
11 individual
12 components.
13 The calculation is done for each signal
14 region,
15 for electrons and muons separately.
16
17 The choice to normalize to the peak region of $M_T$ has the
18 advantage that some uncertainties, e.g., luminosity, cancel.
19 It does however introduce complications because it couples
20 some of the uncertainties in non-trivial ways. For example,
21 the primary effect of an uncertainty on the rare MC cross-section
22 is to introduce an uncertainty in the rare MC background estimate
23 which comes entirely from MC. But this uncertainty also affects,
24 for example,
25 the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 $t\bar{t}$ normalization to the peak region (because some of the
27 events in the peak region are from rare processes). These effects
28 are carefully accounted for.
29 %%%TO ADD BACK IN IF WE HAVE SYSTEMATICS TABLE.
30 %The contribution to the overall
31 %uncertainty from each BG source is tabulated in
32 %Section~\ref{sec:bgunc-bottomline}.
33 Here we discuss the uncertainties one-by-one and comment
34 on their impact on the overall result, at least to first order.
35 Second order effects, such as the one described, are also included.
36
37 \subsection{Statistical uncertainties on the event counts in the $M_T$
38 peak regions}
39 These vary between 2\% and 20\%, depending on the signal region
40 (different
41 signal regions have different \met\ requirements, thus they also have
42 different $M_T$ regions used as control).
43 Since
44 the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
45 fractional uncertainty is pretty much carried through all the way to
46 the end. There is also an uncertainty from the finite MC event counts
47 in the $M_T$ peak regions. This is also included, but it is smaller.
48
49 Normalizing to the $M_T$ peak has the distinct advantages that
50 uncertainties on luminosity, cross-sections, trigger efficiency,
51 lepton ID, cancel out.
52 For the low statistics regions with high \met\ requirements, the
53 price to pay in terms of event count is that statistical uncertainties start
54 to become significant. In the future we may consider a different
55 normalization startegy in the low statistics regions.
56
57 \subsection{Uncertainty from the choice of $M_T$ peak region}
58
59 This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.
60 If the $M_T$ peak region is not well modelled, this would introduce an
61 uncertainty.
62
63 We have tested this possibility by recalculating the post-veto scale factors for a different
64 choice
65 of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
66 $50 < M_T < 80$ GeV). This is shown in Table~\ref{tab:mtpeaksf2}.
67 The two results for the scale factors are very compatible.
68 We do not take any systematic uncertainty for this possible effect.
69
70 \begin{table}[!h]
71 \begin{center}
72 {\footnotesize
73 \begin{tabular}{l||c|c|c|c|c|c|c}
74 \hline
75 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
76 \hline
77 \hline
78 \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
79 \hline
80 $\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
81 $\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
82 \hline
83 $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
84 \hline
85 \hline
86 e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
87 e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
88 \hline
89 e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
90 \hline
91 \hline
92 \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
93 \hline
94 $\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
95 $\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
96 \hline
97 $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
98 \hline
99 \hline
100 e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
101 e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
102 \hline
103 e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
104 \hline
105 \end{tabular}}
106 \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
107 \ttdl\ sample, while the post-veto SFs are applied to the single
108 lepton samples. The veto SF is shown for comparison across channels.
109 The raw MC is used for backgrounds from rare processes.
110 The uncertainties are statistical only.
111 \label{tab:mtpeaksf2}}
112 \end{center}
113 \end{table}
114
115
116 \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
117 These are taken as 50\%, uncorrelated.
118 The primary effect is to introduce a 50\%
119 uncertainty
120 on the $W +$ jets and rare BG
121 background predictions, respectively. However they also
122 have an effect on the other BGs via the $M_T$ peak normalization
123 in a way that tends to reduce the uncertainty. This is easy
124 to understand: if the $W$ cross-section is increased by 50\%, then
125 the $W$ background goes up. But the number of $M_T$ peak events
126 attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
127 scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
128 BG goes down.
129
130 \subsection{Tail-to-peak ratios for lepton +
131 jets top and W events}
132 The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
133 The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
134 Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its uncertainty is given in Table~\ref{tab:cr1yields}). This uncertainty affects both $R_{wjet}$ and $R_{top}$.
135 The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
136
137
138 \subsection{Uncertainty on extra jet radiation for dilepton
139 background}
140 As discussed in Section~\ref{sec:jetmultiplicity}, the
141 jet distribution in
142 $t\bar{t} \to$
143 dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
144 it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$
145 comes from data/MC statistics. This
146 results directly in a 3\% uncertainty on the dilepton background, which is by far
147 the most important one.
148
149 \subsection{Uncertainty from MC statistics}
150 This affects mostly the \ttll\ background estimate, which is taken
151 from
152 Monte Carlo with appropriate correction factors. This uncertainty
153 is negligible in the low \met\ signal regions, and grows to about
154 15\% in SRG.
155
156
157 \subsection{Uncertainty on the \ttll\ Acceptance}
158
159 The \ttbar\ background prediction is obtained from MC, with corrections
160 derived from control samples in data. The uncertainty associated with
161 the theoretical modeling of the \ttbar\ production and decay is
162 estimated by comparing the background predictions obtained using
163 alternative MC samples. It should be noted that the full analysis is
164 performed with the alternative samples under consideration,
165 including the derivation of the various data-to-MC scale factors.
166 The variations considered are
167
168 \begin{itemize}
169 \item Top mass: The alternative values for the top mass differ
170 from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
171 = 166.5~\GeV$.
172 \item Jet-parton matching scale: This corresponds to variations in the
173 scale at which the Matrix Element partons from Madgraph are matched
174 to Parton Shower partons from Pythia. The nominal value is
175 $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
176 $x_q>40~\GeV$.
177 \item Renormalization and factorization scale: The alternative samples
178 correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
179 value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
180 \sum_{\mathrm{jets}} \pt^2$.
181 \item Alternative generators: Samples produced with different
182 generators, Powheg (our default) and Madgraph.
183 \item Modeling of taus: The alternative sample does not include
184 Tauola and is otherwise identical to the Powheg sample.
185 This effect was studied earlier using 7~TeV samples and found to be negligible.
186 \item The PDF uncertainty is estimated following the PDF4LHC
187 recommendations. The events are reweighted using alternative
188 PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
189 alternative eigenvector variations and the ``master equation''.
190 The NNPDF2.1 set with 100 replicas is also used. The central value is
191 determined from the mean and the uncertainty is derived from the
192 $1\sigma$ range. The overall uncertainty is derived from the envelope of the
193 alternative predictions and their uncertainties.
194 This effect was studied earlier using 7~TeV samples and found to be negligible.
195 \end{itemize}
196
197 \begin{figure}[hbt]
198 \begin{center}
199 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
200 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
201 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
202 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
203 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
204 \caption{
205 \label{fig:ttllsyst}\protect
206 Comparison of the \ttll\ central prediction with those using
207 alternative MC samples. The blue band corresponds to the
208 total statistical error for all data and MC samples. The
209 alternative sample predictions are indicated by the
210 datapoints. The uncertainties on the alternative predictions
211 correspond to the uncorrelated statistical uncertainty from
212 the size of the alternative sample only. Note the
213 suppressed vertical scales.}
214 \end{center}
215 \end{figure}
216
217
218 \begin{table}[!h]
219 \begin{center}
220 {\footnotesize
221 \begin{tabular}{l||c|c|c|c|c|c|c}
222 \hline
223 $\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
224 Match Up & Match Down \\
225 \hline
226 \hline
227 SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\
228 \hline
229 SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\
230 \hline
231 % SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\
232 % \hline
233 % SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\
234 % \hline
235 % SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\
236 \hline
237 \end{tabular}}
238 \caption{ Relative difference in \ttdl\ predictions for alternative MC
239 samples in
240 the higher statistics regions SRA and SRB. These differences
241 are based on the central values of the predictions. For a fuller
242 picture
243 of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
244 \label{tab:fracdiff}}
245 \end{center}
246 \end{table}
247
248
249 In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
250 for regions A through E. We can make the following observations based
251 on this Figure.
252
253 \begin{itemize}
254 \item In the tighter signal regions we are running out of
255 statistics.
256 \item Within the limited statistics, there is no evidence that the
257 situation changes as we go from signal region A to signal region E.
258 Therefore, we assess a systematic based on the relatively high
259 statistics
260 test in signal region A, and apply the same systematic uncertainty
261 to all other regions.
262 \item In order to fully (as opposed as 1$\sigma$) cover the
263 alternative MC variations in region A we would have to take a
264 systematic
265 uncertainty of $\approx 10\%$. This would be driven by the
266 scale up/scale down variations, see Table~\ref{tab:fracdiff}.
267 \end{itemize}
268
269 \begin{table}[!ht]
270 \begin{center}
271 \begin{tabular}{l|c|c}
272 \hline
273 Sample
274 & K3 & K4\\
275 \hline
276 \hline
277 Powheg & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
278 Madgraph & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
279 Mass Up & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
280 Mass Down & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
281 Scale Up & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
282 Scale Down & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
283 Match Up & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
284 Match Down & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
285 \hline
286 \end{tabular}
287 \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
288 fraction of events with additional hard jets from radiation in
289 \ttll\ events. \label{tab:njetskfactors_met100}}
290 \end{center}
291 \end{table}
292
293
294 However, we have two pieces of information indicating that the
295 scale up/scale down variations are inconsistent with the data.
296 These are described below.
297
298 The first piece of information is that the jet multiplicity in the scale
299 up/scale down sample is the most inconsistent with the data. This is shown
300 in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
301 $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
302 different \ttbar\ MC samples. The data/MC disagreement in the $N_{jets}$
303 distribution
304 for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
305 and~\ref{fig:dileptonnjets_scaledw}. This should be compared with the
306 equivalent $N_{jets}$ plots for the default Powheg MC, see
307 Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
308
309 \begin{figure}[hbt]
310 \begin{center}
311 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
312 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
313 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
314 \caption{
315 \label{fig:dileptonnjets_scaleup}%\protect
316 SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
317 (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
318 \end{center}
319 \end{figure}
320
321 \begin{figure}[hbt]
322 \begin{center}
323 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
324 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
325 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
326 \caption{
327 \label{fig:dileptonnjets_scaledw}%\protect
328 SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
329 (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
330 \end{center}
331 \end{figure}
332
333
334 \clearpage
335
336 The second piece of information is that we have performed closure
337 tests in CR5 using the alternative MC samples. These are exactly
338 the same tests as the one performed in Section~\ref{sec:CR5} on the
339 Powheg sample. As we argued previously, this is a very powerful
340 test of the background calculation.
341 The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
342 Concentrating on the relatively high statistics CR5A region, we see
343 for all \ttbar\ MC samples except scale up/scale down we obtain
344 closure within 1$\sigma$. The scale up/scale down tests closes
345 worse, only within 2$\sigma$. This again is evidence that the
346 scale up/scale down variations are in disagreement with the data.
347
348 \input{hugeCR5Table.tex}
349
350 Based on the two observations above, we argue that the MC
351 scale up/scale down variations are too extreme. We feel that
352 a reasonable choice would be to take one-half of the scale up/scale
353 down variations in our MC. This factor of 1/2 would then bring
354 the discrepancy in the closure test of
355 Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
356 from about 2$\sigma$ to about 1$\sigma$.
357
358 Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
359 up/scale
360 down variations by a factor 2, we can see that a systematic
361 uncertainty
362 of 6\% would fully cover all of the variations from different MC
363 samples in SRA and SRB.
364 {\bf Thus, we take a 6\% systematic uncertainty, constant as a
365 function of signal region, as the systematic due to alternative MC
366 models.}
367 Note that this 6\% is also consistent with the level at which we are
368 able
369 to test the closure of the method in CR5 for the high statistics
370 regions
371 (Table~\ref{tab:hugecr5yields}).
372
373
374
375
376
377
378 %\begin{table}[!h]
379 %\begin{center}
380 %{\footnotesize
381 %\begin{tabular}{l||c||c|c|c|c|c|c|c}
382 %\hline
383 %Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale
384 %Up & Scale Down &
385 %Match Up & Match Down \\
386 %\hline
387 %\hline
388 %SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\
389 %\hline
390 %SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\
391 %\hline
392 %SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\
393 %\hline
394 %SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\
395 %\hline
396 %SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\
397 %\hline
398 %\end{tabular}}
399 %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
400 %\label{tab:ttdlalt}}
401 %\end{center}
402 %\end{table}
403
404
405
406
407 %\begin{table}[!h]
408 %\begin{center}
409 %{\footnotesize
410 %\begin{tabular}{l||c|c|c|c|c|c|c}
411 %\hline
412 %$N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
413 %Match Up & Match Down \\
414 %\hline
415 %\hline
416 %SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\
417 %\hline
418 %SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\
419 %\hline
420 %SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\
421 %\hline
422 %SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\
423 %\hline
424 %SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\
425 %\hline
426 %\end{tabular}}
427 %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
428 %\label{tab:nsig}}
429 %\end{center}
430 %\end{table}
431
432
433 %\begin{table}[!h]
434 %\begin{center}
435 %\begin{tabular}{l||c|c|c|c}
436 %\hline
437 %Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
438 %& $\Delta$ Match \\
439 %\hline
440 %\hline
441 %SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\
442 %\hline
443 %SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\
444 %\hline
445 %SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\
446 %\hline
447 %SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\
448 %\hline
449 %SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\
450 %\hline
451 %\end{tabular}
452 %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
453 %\label{tab:devt}}
454 %\end{center}
455 %\end{table}
456
457
458
459 \clearpage
460
461 %
462 %
463 %The methodology for determining the systematics on the background
464 %predictions has not changed with respect to the nominal analysis.
465 %Because the template method has not changed, the same
466 %systematic uncertainty is assessed on this prediction (32\%).
467 %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
468 %The systematic uncertainty in the OF background prediction based on
469 %e$\mu$ events has changed, due to the different composition of this
470 %sample after vetoing events containing b-tagged jets.
471 %
472 %As in the nominal analysis, we do not require the e$\mu$ events
473 %to satisfy the dilepton mass requirement and apply a scaling factor K,
474 %extracted from MC, to account for the fraction of e$\mu$ events
475 %which satisfy the dilepton mass requirement. This procedure is used
476 %in order to improve the statistical precision of the OF background estimate.
477 %
478 %For the selection used in the nominal analysis,
479 %the e$\mu$ sample is completely dominated by $t\bar{t}$
480 %events, and we observe that K is statistically consistent with constant with
481 %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
482 %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
483 %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
484 %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
485 %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
486 %Therefore, the sample composition changes
487 %as the \MET\ requirement is varied, and as a result K depends
488 %on the \MET\ requirement.
489 %
490 %We thus measure K in MC separately for each
491 %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
492 %%The systematic uncertainty on K is determined separately for each \MET\
493 %%requirement by comparing the relative difference in K in data vs. MC.
494 %The values of K used are the MC predictions
495 %%and the total systematic uncertainty on the OF prediction
496 %%as shown in
497 %(Table \ref{fig:kvmettable}).
498 %The contribution to the total OF prediction systematic uncertainty
499 %from K is assessed from the ratio of K in data and MC,
500 %shown in Fig.~\ref{fig:kvmet} (right).
501 %The ratio is consistent with unity to roughly 17\%,
502 %so we take this value as the systematic from K.
503 %17\% added in quadrature with 7\% from
504 %the electron to muon efficieny ratio
505 %(as assessed in the inclusive analysis)
506 %yields a total systematic of $\sim$18\%
507 %which we round up to 20\%.
508 %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
509 %so we take a systematic based on the statistical uncertainty
510 %of the MC prediction for K.
511 %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
512 %%Although we cannot check the value of K in data for \MET\ $>$ 150
513 %%because we find no OF events inside the Z mass window for this \MET\
514 %%cut, the overall OF yields with no dilepton mass requirement
515 %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
516 %
517 %
518 %%Below Old
519 %
520 %%In reevaluating the systematics on the OF prediction, however,
521 %%we observed a different behavior of K as a function of \MET\
522 %%as was seen in the inclusive analysis.
523 %
524 %%Recall that K is the ratio of the number of \emu\ events
525 %%inside the Z window to the total number of \emu\ events.
526 %%In the inclusive analysis, it is taken from \ttbar\ MC
527 %%and used to scale the inclusive \emu\ yield in data.
528 %%The yield scaled by K is then corrected for
529 %%the $e$ vs $\mu$ efficiency difference to obtain the
530 %%final OF prediction.
531 %
532 %%Based on the plot in figure \ref{fig:kvmet},
533 %%we choose to use a different
534 %%K for each \MET\ cut and assess a systematic uncertainty
535 %%on the OF prediction based on the difference between
536 %%K in data and MC.
537 %%The variation of K as a function of \MET\ is caused
538 %%by a change in sample composition with increasing \MET.
539 %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
540 %%not negligible (as it was in the inclusive analysis)
541 %%because of the b veto. (See appendix \ref{app:kinemu}.)
542 %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
543 %
544 %
545 %
546 %
547 %\begin{figure}[hbt]
548 % \begin{center}
549 % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
550 % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
551 % \caption{
552 % \label{fig:kvmet}\protect
553 % The left plot shows
554 % K as a function of \MET\ in MC (red) and data (black).
555 % The bin low edge corresponds to the \MET\ cut, and the
556 % bins are inclusive.
557 % The MC used is a sum of all SM MC used in the yield table of
558 % section \ref{sec:yields}.
559 % The right plot is the ratio of K in data to MC.
560 % The ratio is fit to a line whose slope is consistent with zero
561 % (the fit parameters are
562 % 0.9 $\pm$ 0.4 for the intercept and
563 % 0.001 $\pm$ 0.005 for the slope).
564 % }
565 % \end{center}
566 %\end{figure}
567 %
568 %
569 %
570 %\begin{table}[htb]
571 %\begin{center}
572 %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
573 %The uncertainties shown are the total relative systematic used for the OF prediction,
574 %which is the systematic uncertainty from K added in quadrature with
575 %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
576 %inclusive analysis.
577 %}
578 %\begin{tabular}{lcc}
579 %\hline
580 %\MET\ Cut & K & Relative Systematic \\
581 %\hline
582 %%the met zero row is used only for normalization of the money plot.
583 %%0 & 0.1 & \\
584 %30 & 0.12 & 20\% \\
585 %60 & 0.13 & 20\% \\
586 %80 & 0.12 & 20\% \\
587 %100 & 0.12 & 20\% \\
588 %150 & 0.09 & 25\% \\
589 %200 & 0.06 & 60\% \\
590 %\hline
591 %\end{tabular}
592 %\end{center}
593 %\end{table}
594
595 \subsection{Uncertainty from the isolated track veto}
596 This is the uncertainty associated with how well the isolated track
597 veto performance is modeled by the Monte Carlo. This uncertainty
598 only applies to the fraction of dilepton BG events that have
599 a second e/$\mu$ or a one prong $\tau \to h$, with
600 $P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see
601 Table~\ref{tab:trueisotrk}.
602 The uncertainty for these events
603 is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
604
605 \begin{table}[!h]
606 \begin{center}
607 {\footnotesize
608 \begin{tabular}{l||c|c|c|c|c|c|c}
609 \hline
610 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
611 \hline
612 \hline
613 $\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\
614 \hline
615 \hline
616 e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\
617 \hline
618 \end{tabular}}
619 \caption{ Fraction of \ttdl\ events with a true isolated track.
620 \label{tab:trueisotrk}}
621 \end{center}
622 \end{table}
623
624 \subsubsection{Isolated Track Veto: Tag and Probe Studies}
625 \label{sec:trkveto}
626
627
628 In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
629 with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
630 to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
631 we would need to apply a data-to-MC scale factor in order to correctly
632 predict the \ttll\ background.
633
634 This study
635 addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
636 second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
637 in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
638 procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
639
640 Furthermore, we test the data and MC
641 isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
642 directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
643 may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
644 or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
645 the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
646 consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
647 $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
648 decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
649 Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
650 As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
651 leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
652 due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
653
654 The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
655 All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
656 We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
657 this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
658 not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
659 fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
660 \met\ $<$ 30 GeV and 0 b-tagged events.
661 The specific criteria for tags and probes for electrons and muons are:
662
663 %We study the isolated track veto efficiency in bins of \njets.
664 %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
665 %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
666
667
668 \begin{itemize}
669 \item{Electrons}
670
671 \begin{itemize}
672 \item{Tag criteria}
673
674 \begin{itemize}
675 \item Electron passes full analysis ID/iso selection
676 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
677 \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
678 \end{itemize}
679
680 \item{Probe criteria}
681 \begin{itemize}
682 \item Electron passes full analysis ID selection
683 \item \pt\ $>$ 30 GeV
684 \end{itemize}
685 \end{itemize}
686 \item{Muons}
687 \begin{itemize}
688 \item{Tag criteria}
689 \begin{itemize}
690 \item Muon passes full analysis ID/iso selection
691 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
692 \item Matched to 1 of the 2 single muon triggers
693 \begin{itemize}
694 \item \verb=HLT_IsoMu30_v*=
695 \item \verb=HLT_IsoMu30_eta2p1_v*=
696 \end{itemize}
697 \end{itemize}
698 \item{Probe criteria}
699 \begin{itemize}
700 \item Muon passes full analysis ID selection
701 \item \pt\ $>$ 30 GeV
702 \end{itemize}
703 \end{itemize}
704 \end{itemize}
705
706 The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
707 good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
708 absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
709 In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
710 efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
711 For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
712 a data vs. MC discrepancy in the isolated track veto efficiency.
713
714
715 %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
716 %This requirement is chosen because most of the tracks rejected by the isolated
717 %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
718
719 \begin{figure}[hbt]
720 \begin{center}
721 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
722 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
723 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
724 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
725 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
726 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
727 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
728 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
729 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
730 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
731 \caption{
732 \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
733 for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
734 }
735 \end{center}
736 \end{figure}
737
738 \clearpage
739
740 \begin{table}[!ht]
741 \begin{center}
742 \begin{tabular}{l|c|c|c|c|c}
743
744 %Electrons:
745 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
746 %Total MC yields : 2497277
747 %Total DATA yields : 2649453
748 %Muons:
749 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
750 %Total MC yields : 3749863
751 %Total DATA yields : 4210022
752 %Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
753 %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
754
755 \hline
756 \hline
757 e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
758 \hline
759 data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\
760 mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\
761 data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
762
763 \hline
764 \hline
765 $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
766 \hline
767 data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
768 mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
769 data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
770
771 \hline
772 \hline
773 e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
774 \hline
775 data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\
776 mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
777 data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
778
779 \hline
780 \hline
781 $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
782 \hline
783 data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\
784 mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
785 data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\
786
787 \hline
788 \hline
789 e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
790 \hline
791 data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\
792 mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\
793 data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\
794
795 \hline
796 \hline
797 $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
798 \hline
799 data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\
800 mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\
801 data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\
802
803 \hline
804 \hline
805 e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
806 \hline
807 data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\
808 mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\
809 data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\
810
811 \hline
812 \hline
813 $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
814 \hline
815 data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\
816 mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\
817 data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\
818
819 \hline
820 \hline
821 e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
822 \hline
823 data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\
824 mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\
825 data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\
826
827 \hline
828 \hline
829 $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
830 \hline
831 data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\
832 mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\
833 data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\
834
835 \hline
836 \hline
837
838 \end{tabular}
839 \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
840 on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
841 jet multiplicity requirements.}
842 \end{center}
843 \end{table}
844
845
846 %Figure.~\ref{fig:reliso} compares the relative track isolation
847 %for events with a track with $\pt > 10~\GeV$ in addition to a selected
848 %muon for $\Z+4$ jet events and various \ttll\ components. The
849 %isolation distributions show significant differences, particularly
850 %between the leptons from a \W\ or \Z\ decay and the tracks arising
851 %from $\tau$ decays. As can also be seen in the figure, the \pt\
852 %distribution for the various categories of tracks is different, where
853 %the decay products from $\tau$s are significantly softer. Since the
854 %\pt\ enters the denominator of the isolation definition and hence
855 %alters the isolation variable...
856
857 %\begin{figure}[hbt]
858 % \begin{center}
859 % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
860 % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
861 % \caption{
862 % \label{fig:reliso}%\protect
863 % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
864 % Z+Jets and ttbar dilepton have similar isolation distributions
865 % ttbar with leptonic and single prong taus tend to be less
866 % isolated. The difference in the isolation can be attributed
867 % to the different \pt\ distribution of the samples, since
868 % $\tau$ decay products tend to be softer than leptons arising
869 % from \W\ or \Z\ decays.}
870 % \end{center}
871 %\end{figure}
872
873 % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
874
875
876 %BEGIN SECTION TO WRITE OUT
877 %In detail, the procedure to correct the dilepton background is:
878
879 %\begin{itemize}
880 %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
881 %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
882 %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
883 %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
884 %the lepton \pt {\bf TODO: verify this in data and MC.}.
885 %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
886 %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
887 %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
888 %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
889 %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
890 %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
891 %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
892 %\end{itemize}
893 %END SECTION TO WRITE OUT
894
895
896 %{\bf fix me: What you have written in the next paragraph does not
897 %explain how $\epsilon_{fake}$ is measured.
898 %Why not measure $\epsilon_{fake}$ in the b-veto region?}
899
900 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
901 %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
902 %applying an additional scale factor for the single lepton background
903 %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
904 %veto and after subtracting the \ttll\ component, corrected for the
905 %isolation efficiency derived previously.
906 %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
907 %isolated track in single lepton events is independent of \mt\, so the use of
908 %an overall scale factor is justified to estimate the contribution in
909 %the \mt\ tail.
910 %
911 %\begin{figure}[hbt]
912 % \begin{center}
913 % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
914 % \caption{
915 % \label{fig:vetoeffcomp}%\protect
916 % Efficiency for selecting an isolated track comparing
917 % single lepton \ttlj\ and dilepton \ttll\ events in MC and
918 % data as a function of \mt. The
919 % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
920 % \mt\, while the data ranges between the two. This behavior
921 % is expected since the low \mt\ region is predominantly \ttlj, while the
922 % high \mt\ region contains mostly \ttll\ events.}
923 % \end{center}
924 %\end{figure}
925
926 % \subsection{Summary of uncertainties}
927 % \label{sec:bgunc-bottomline}.
928
929 % THIS NEEDS TO BE WRITTEN