ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.26
Committed: Sun Oct 21 03:37:29 2012 UTC (12 years, 6 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.25: +3 -1 lines
Log Message:
minor

File Contents

# Content
1 %\section{Systematics Uncertainties on the Background Prediction}
2 %\label{sec:systematics}
3
4 In this Section we discuss the systematic uncertainty on the BG
5 prediction. This prediction is assembled from the event
6 counts in the peak region of the transverse mass distribution as
7 well as Monte Carlo
8 with a number of correction factors, as described previously.
9 The
10 final uncertainty on the prediction is built up from the uncertainties in these
11 individual
12 components.
13 The calculation is done for each signal
14 region,
15 for electrons and muons separately.
16
17 The choice to normalize to the peak region of $M_T$ has the
18 advantage that some uncertainties, e.g., luminosity, cancel.
19 It does however introduce complications because it couples
20 some of the uncertainties in non-trivial ways. For example,
21 the primary effect of an uncertainty on the rare MC cross-section
22 is to introduce an uncertainty in the rare MC background estimate
23 which comes entirely from MC. But this uncertainty also affects,
24 for example,
25 the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 $t\bar{t}$ normalization to the peak region (because some of the
27 events in the peak region are from rare processes). These effects
28 are carefully accounted for. The contribution to the overall
29 uncertainty from each background source is tabulated in
30 Section~\ref{sec:bgunc-bottomline}.
31 Here we discuss the uncertainties one-by-one and comment
32 on their impact on the overall result, at least to first order.
33 Second order effects, such as the one described, are also included.
34
35 \subsection{Statistical uncertainties on the event counts in the $M_T$
36 peak regions}
37 These vary between 2\% and 20\%, depending on the signal region
38 (different
39 signal regions have different \met\ requirements, thus they also have
40 different $M_T$ regions used as control).
41 Since
42 the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
43 fractional uncertainty is pretty much carried through all the way to
44 the end. There is also an uncertainty from the finite MC event counts
45 in the $M_T$ peak regions. This is also included, but it is smaller.
46
47 Normalizing to the $M_T$ peak has the distinct advantages that
48 uncertainties on luminosity, cross-sections, trigger efficiency,
49 lepton ID, cancel out.
50 For the low statistics regions with high \met\ requirements, the
51 price to pay in terms of event count is that statistical uncertainties start
52 to become significant. In the future we may consider a different
53 normalization startegy in the low statistics regions.
54
55 \subsection{Uncertainty from the choice of $M_T$ peak region}
56
57 This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.
58 If the $M_T$ peak region is not well modelled, this would introduce an
59 uncertainty.
60
61 We have tested this possibility by recalculating the post-veto scale factors for a different
62 choice
63 of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 $50 < M_T < 80$ GeV). This is shown in Table~\ref{tab:mtpeaksf2}.
65 The two results for the scale factors are very compatible.
66 We do not take any systematic uncertainty for this possible effect.
67
68 \begin{table}[!h]
69 \begin{center}
70 {\footnotesize
71 \begin{tabular}{l||c|c|c|c|c|c|c}
72 \hline
73 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 \hline
75 \hline
76 \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 \hline
78 $\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 $\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 \hline
81 $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 \hline
83 \hline
84 e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 \hline
87 e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 \hline
89 \hline
90 \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 \hline
92 $\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 $\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 \hline
95 $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 \hline
97 \hline
98 e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 \hline
101 e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 \hline
103 \end{tabular}}
104 \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 \ttdl\ sample, while the post-veto SFs are applied to the single
106 lepton samples. The veto SF is shown for comparison across channels.
107 The raw MC is used for backgrounds from rare processes.
108 The uncertainties are statistical only.
109 \label{tab:mtpeaksf2}}
110 \end{center}
111 \end{table}
112
113
114 \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
115 These are taken as 50\%, uncorrelated.
116 The primary effect is to introduce a 50\%
117 uncertainty
118 on the $W +$ jets and rare BG
119 background predictions, respectively. However they also
120 have an effect on the other BGs via the $M_T$ peak normalization
121 in a way that tends to reduce the uncertainty. This is easy
122 to understand: if the $W$ cross-section is increased by 50\%, then
123 the $W$ background goes up. But the number of $M_T$ peak events
124 attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125 scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126 BG goes down.
127
128 \subsection{Tail-to-peak ratios for lepton +
129 jets top and W events}
130 The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131 The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132 Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its
133 uncertainty is given in Table~\ref{tab:cr1yields}.
134 This uncertainty affects both $R_{wjet}$ and $R_{top}$.
135 The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
136
137
138 \subsection{Uncertainty on extra jet radiation for dilepton
139 background}
140 As discussed in Section~\ref{sec:jetmultiplicity}, the
141 jet distribution in
142 $t\bar{t} \to$
143 dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
144 it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$
145 comes from data/MC statistics. This
146 results directly in a 3\% uncertainty on the dilepton background, which is by far
147 the most important one.
148
149 \subsection{Uncertainty from MC statistics}
150 This affects mostly the \ttll\ background estimate, which is taken
151 from
152 Monte Carlo with appropriate correction factors. This uncertainty
153 is negligible in the low \met\ signal regions, and grows to about
154 15\% in SRG.
155
156
157 \subsection{Uncertainty on the \ttll\ Background}
158 \label{sec:ttdilbkgunc}
159 The \ttbar\ background prediction is obtained from MC, with corrections
160 derived from control samples in data. The uncertainty associated with
161 the \ttbar\ background is derived from the level of closure of the
162 background prediction in CR4 (Table~\ref{tab:cr4yields}) and
163 CR5 (Table~\ref{tab:cr5yields}). The results from these control region
164 checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned
165 to the \ttdl\ background prediction based on these tests are
166 5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G).
167
168 \begin{figure}[hbt]
169 \begin{center}
170 \includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf}
171 \caption{
172 \label{fig:ttdlunc}%\protect
173 Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after
174 applying SFs) to data for CR4 and CR5 for all the signal
175 region requirements considered (A-G). The bands indicate the
176 systematic uncertainties assigned based on these tests,
177 ranging from $5\%$ for SRA to $40\%$ for SRE-G.}
178 \end{center}
179 \end{figure}
180
181
182 \subsubsection{Check of the uncertainty on the \ttll\ Background}
183
184 We check that the systematic uncertainty assigned to the \ttll\ background prediction
185 covers the uncertainty associated with
186 the theoretical modeling of the \ttbar\ production and decay
187 by comparing the background predictions obtained using
188 alternative MC samples. It should be noted that the full analysis is
189 performed with the alternative samples under consideration,
190 including the derivation of the various data-to-MC scale factors.
191 The variations considered are
192
193 \begin{itemize}
194 \item Top mass: The alternative values for the top mass differ
195 from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
196 = 166.5~\GeV$.
197 \item Jet-parton matching scale: This corresponds to variations in the
198 scale at which the Matrix Element partons from Madgraph are matched
199 to Parton Shower partons from Pythia. The nominal value is
200 $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
201 $x_q>40~\GeV$.
202 \item Renormalization and factorization scale: The alternative samples
203 correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
204 value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
205 \sum_{\mathrm{jets}} \pt^2$.
206 \item Alternative generators: Samples produced with different
207 generators, Powheg (our default) and Madgraph.
208 \item Modeling of taus: The alternative sample does not include
209 Tauola and is otherwise identical to the Powheg sample.
210 This effect was studied earlier using 7~TeV samples and found to be negligible.
211 \item The PDF uncertainty is estimated following the PDF4LHC
212 recommendations. The events are reweighted using alternative
213 PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
214 alternative eigenvector variations and the ``master equation''.
215 The NNPDF2.1 set with 100 replicas is also used. The central value is
216 determined from the mean and the uncertainty is derived from the
217 $1\sigma$ range. The overall uncertainty is derived from the envelope of the
218 alternative predictions and their uncertainties.
219 This effect was studied earlier using 7~TeV samples and found to be negligible.
220 \end{itemize}
221
222 \begin{figure}[hbt]
223 \begin{center}
224 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
225 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
226 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
227 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
228 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
229 \caption{
230 \label{fig:ttllsyst}\protect
231 Comparison of the \ttll\ central prediction with those using
232 alternative MC samples. The blue band corresponds to the
233 total statistical error for all data and MC samples. The
234 alternative sample predictions are indicated by the
235 datapoints. The uncertainties on the alternative predictions
236 correspond to the uncorrelated statistical uncertainty from
237 the size of the alternative sample only. Note the
238 suppressed vertical scales.}
239 \end{center}
240 \end{figure}
241
242
243 \begin{table}[!h]
244 \begin{center}
245 {\footnotesize
246 \begin{tabular}{l||c|c|c|c|c|c|c}
247 \hline
248 $\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
249 Match Up & Match Down \\
250 \hline
251 \hline
252 SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\
253 \hline
254 SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\
255 \hline
256 % SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\
257 % \hline
258 % SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\
259 % \hline
260 % SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\
261 \hline
262 \end{tabular}}
263 \caption{ Relative difference in \ttdl\ predictions for alternative MC
264 samples in
265 the higher statistics regions SRA and SRB. These differences
266 are based on the central values of the predictions. For a fuller
267 picture
268 of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
269 \label{tab:fracdiff}}
270 \end{center}
271 \end{table}
272
273
274 In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
275 for regions A through E. We can make the following observations based
276 on this Figure.
277
278 \begin{itemize}
279 \item In the tighter signal regions we are running out of
280 statistics.
281 \item Within the limited statistics, there is no evidence that the
282 situation changes as we go from signal region A to signal region E.
283 %Therefore, we assess a systematic based on the relatively high
284 %statistics
285 %test in signal region A, and apply the same systematic uncertainty
286 %to all other regions.
287 \item In signal regions B and above, the uncertainties assigned in Section~\ref{sec:ttdilbkgunc}
288 fully cover the alternative MC variations.
289 \item In order to fully (as opposed as 1$\sigma$) cover the
290 alternative MC variations in region A we would have to take a
291 systematic
292 uncertainty of $\approx 10\%$ instead of $5\%$. This would be driven by the
293 scale up/scale down variations, see Table~\ref{tab:fracdiff}.
294 \end{itemize}
295
296 \begin{table}[!ht]
297 \begin{center}
298 \begin{tabular}{l|c|c}
299 \hline
300 Sample
301 & K3 & K4\\
302 \hline
303 \hline
304 Powheg & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
305 Madgraph & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
306 Mass Up & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
307 Mass Down & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
308 Scale Up & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
309 Scale Down & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
310 Match Up & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
311 Match Down & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
312 \hline
313 \end{tabular}
314 \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
315 fraction of events with additional hard jets from radiation in
316 \ttll\ events. \label{tab:njetskfactors_met100}}
317 \end{center}
318 \end{table}
319
320
321 However, we have two pieces of information indicating that the
322 scale up/scale down variations are inconsistent with the data.
323 These are described below.
324
325 The first piece of information is that the jet multiplicity in the scale
326 up/scale down sample is the most inconsistent with the data. This is shown
327 in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
328 $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
329 different \ttbar\ MC samples. The data/MC disagreement in the $N_{jets}$
330 distribution
331 for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
332 and~\ref{fig:dileptonnjets_scaledw}. This should be compared with the
333 equivalent $N_{jets}$ plots for the default Powheg MC, see
334 Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
335
336 \begin{figure}[hbt]
337 \begin{center}
338 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
339 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
340 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
341 \caption{
342 \label{fig:dileptonnjets_scaleup}%\protect
343 SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
344 (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
345 \end{center}
346 \end{figure}
347
348 \begin{figure}[hbt]
349 \begin{center}
350 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
351 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
352 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
353 \caption{
354 \label{fig:dileptonnjets_scaledw}%\protect
355 SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
356 (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
357 \end{center}
358 \end{figure}
359
360
361 \clearpage
362
363 The second piece of information is that we have performed closure
364 tests in CR5 using the alternative MC samples. These are exactly
365 the same tests as the one performed in Section~\ref{sec:CR5} on the
366 Powheg sample. As we argued previously, this is a very powerful
367 test of the background calculation.
368 The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
369 Concentrating on the relatively high statistics CR5A region, we see
370 for all \ttbar\ MC samples except scale up/scale down we obtain
371 closure within 1$\sigma$. The scale up/scale down tests closes
372 worse, only within 2$\sigma$. This again is evidence that the
373 scale up/scale down variations are in disagreement with the data.
374
375 \input{hugeCR5Table.tex}
376
377 Based on the two observations above, we argue that the MC
378 scale up/scale down variations are too extreme. We feel that
379 a reasonable choice would be to take one-half of the scale up/scale
380 down variations in our MC. This factor of 1/2 would then bring
381 the discrepancy in the closure test of
382 Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
383 from about 2$\sigma$ to about 1$\sigma$.
384
385 Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
386 up/scale
387 down variations by a factor 2, we can see that a systematic
388 uncertainty
389 of 5\% covers the range of reasonable variations from different MC
390 models in SRA and SRB.
391 %The alternative MC models indicate that a 6\% systematic uncertainty
392 %covers the range of reasonable variations.
393 Note that this 5\% is also consistent with the level at which we are
394 able to test the closure of the method with alternative samples in CR5 for the high statistics
395 regions (Table~\ref{tab:hugecr5yields}).
396 The range of reasonable variations obtained with the alternative
397 samples are consistent with the uncertainties assigned for
398 the \ttll\ background based on the closure of the background
399 predictions and data in CR4 and CR5.
400
401
402
403
404
405 %\begin{table}[!h]
406 %\begin{center}
407 %{\footnotesize
408 %\begin{tabular}{l||c||c|c|c|c|c|c|c}
409 %\hline
410 %Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale
411 %Up & Scale Down &
412 %Match Up & Match Down \\
413 %\hline
414 %\hline
415 %SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\
416 %\hline
417 %SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\
418 %\hline
419 %SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\
420 %\hline
421 %SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\
422 %\hline
423 %SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\
424 %\hline
425 %\end{tabular}}
426 %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
427 %\label{tab:ttdlalt}}
428 %\end{center}
429 %\end{table}
430
431
432
433
434 %\begin{table}[!h]
435 %\begin{center}
436 %{\footnotesize
437 %\begin{tabular}{l||c|c|c|c|c|c|c}
438 %\hline
439 %$N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
440 %Match Up & Match Down \\
441 %\hline
442 %\hline
443 %SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\
444 %\hline
445 %SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\
446 %\hline
447 %SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\
448 %\hline
449 %SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\
450 %\hline
451 %SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\
452 %\hline
453 %\end{tabular}}
454 %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
455 %\label{tab:nsig}}
456 %\end{center}
457 %\end{table}
458
459
460 %\begin{table}[!h]
461 %\begin{center}
462 %\begin{tabular}{l||c|c|c|c}
463 %\hline
464 %Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
465 %& $\Delta$ Match \\
466 %\hline
467 %\hline
468 %SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\
469 %\hline
470 %SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\
471 %\hline
472 %SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\
473 %\hline
474 %SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\
475 %\hline
476 %SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\
477 %\hline
478 %\end{tabular}
479 %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
480 %\label{tab:devt}}
481 %\end{center}
482 %\end{table}
483
484
485
486 \clearpage
487
488 %
489 %
490 %The methodology for determining the systematics on the background
491 %predictions has not changed with respect to the nominal analysis.
492 %Because the template method has not changed, the same
493 %systematic uncertainty is assessed on this prediction (32\%).
494 %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
495 %The systematic uncertainty in the OF background prediction based on
496 %e$\mu$ events has changed, due to the different composition of this
497 %sample after vetoing events containing b-tagged jets.
498 %
499 %As in the nominal analysis, we do not require the e$\mu$ events
500 %to satisfy the dilepton mass requirement and apply a scaling factor K,
501 %extracted from MC, to account for the fraction of e$\mu$ events
502 %which satisfy the dilepton mass requirement. This procedure is used
503 %in order to improve the statistical precision of the OF background estimate.
504 %
505 %For the selection used in the nominal analysis,
506 %the e$\mu$ sample is completely dominated by $t\bar{t}$
507 %events, and we observe that K is statistically consistent with constant with
508 %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
509 %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
510 %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
511 %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
512 %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
513 %Therefore, the sample composition changes
514 %as the \MET\ requirement is varied, and as a result K depends
515 %on the \MET\ requirement.
516 %
517 %We thus measure K in MC separately for each
518 %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
519 %%The systematic uncertainty on K is determined separately for each \MET\
520 %%requirement by comparing the relative difference in K in data vs. MC.
521 %The values of K used are the MC predictions
522 %%and the total systematic uncertainty on the OF prediction
523 %%as shown in
524 %(Table \ref{fig:kvmettable}).
525 %The contribution to the total OF prediction systematic uncertainty
526 %from K is assessed from the ratio of K in data and MC,
527 %shown in Fig.~\ref{fig:kvmet} (right).
528 %The ratio is consistent with unity to roughly 17\%,
529 %so we take this value as the systematic from K.
530 %17\% added in quadrature with 7\% from
531 %the electron to muon efficieny ratio
532 %(as assessed in the inclusive analysis)
533 %yields a total systematic of $\sim$18\%
534 %which we round up to 20\%.
535 %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
536 %so we take a systematic based on the statistical uncertainty
537 %of the MC prediction for K.
538 %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
539 %%Although we cannot check the value of K in data for \MET\ $>$ 150
540 %%because we find no OF events inside the Z mass window for this \MET\
541 %%cut, the overall OF yields with no dilepton mass requirement
542 %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
543 %
544 %
545 %%Below Old
546 %
547 %%In reevaluating the systematics on the OF prediction, however,
548 %%we observed a different behavior of K as a function of \MET\
549 %%as was seen in the inclusive analysis.
550 %
551 %%Recall that K is the ratio of the number of \emu\ events
552 %%inside the Z window to the total number of \emu\ events.
553 %%In the inclusive analysis, it is taken from \ttbar\ MC
554 %%and used to scale the inclusive \emu\ yield in data.
555 %%The yield scaled by K is then corrected for
556 %%the $e$ vs $\mu$ efficiency difference to obtain the
557 %%final OF prediction.
558 %
559 %%Based on the plot in figure \ref{fig:kvmet},
560 %%we choose to use a different
561 %%K for each \MET\ cut and assess a systematic uncertainty
562 %%on the OF prediction based on the difference between
563 %%K in data and MC.
564 %%The variation of K as a function of \MET\ is caused
565 %%by a change in sample composition with increasing \MET.
566 %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
567 %%not negligible (as it was in the inclusive analysis)
568 %%because of the b veto. (See appendix \ref{app:kinemu}.)
569 %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
570 %
571 %
572 %
573 %
574 %\begin{figure}[hbt]
575 % \begin{center}
576 % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
577 % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
578 % \caption{
579 % \label{fig:kvmet}\protect
580 % The left plot shows
581 % K as a function of \MET\ in MC (red) and data (black).
582 % The bin low edge corresponds to the \MET\ cut, and the
583 % bins are inclusive.
584 % The MC used is a sum of all SM MC used in the yield table of
585 % section \ref{sec:yields}.
586 % The right plot is the ratio of K in data to MC.
587 % The ratio is fit to a line whose slope is consistent with zero
588 % (the fit parameters are
589 % 0.9 $\pm$ 0.4 for the intercept and
590 % 0.001 $\pm$ 0.005 for the slope).
591 % }
592 % \end{center}
593 %\end{figure}
594 %
595 %
596 %
597 %\begin{table}[htb]
598 %\begin{center}
599 %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
600 %The uncertainties shown are the total relative systematic used for the OF prediction,
601 %which is the systematic uncertainty from K added in quadrature with
602 %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
603 %inclusive analysis.
604 %}
605 %\begin{tabular}{lcc}
606 %\hline
607 %\MET\ Cut & K & Relative Systematic \\
608 %\hline
609 %%the met zero row is used only for normalization of the money plot.
610 %%0 & 0.1 & \\
611 %30 & 0.12 & 20\% \\
612 %60 & 0.13 & 20\% \\
613 %80 & 0.12 & 20\% \\
614 %100 & 0.12 & 20\% \\
615 %150 & 0.09 & 25\% \\
616 %200 & 0.06 & 60\% \\
617 %\hline
618 %\end{tabular}
619 %\end{center}
620 %\end{table}
621
622 \subsection{Uncertainty from the isolated track veto}
623 This is the uncertainty associated with how well the isolated track
624 veto performance is modeled by the Monte Carlo. This uncertainty
625 only applies to the fraction of dilepton BG events that have
626 a second e/$\mu$ or a one prong $\tau \to h$, with
627 $P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see
628 Table~\ref{tab:trueisotrk}.
629 The uncertainty for these events
630 is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
631
632 \begin{table}[!h]
633 \begin{center}
634 {\footnotesize
635 \begin{tabular}{l||c|c|c|c|c|c|c}
636 \hline
637 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
638 \hline
639 \hline
640 $\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\
641 \hline
642 \hline
643 e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\
644 \hline
645 \end{tabular}}
646 \caption{ Fraction of \ttdl\ events with a true isolated track.
647 \label{tab:trueisotrk}}
648 \end{center}
649 \end{table}
650
651 \subsubsection{Isolated Track Veto: Tag and Probe Studies}
652 \label{sec:trkveto}
653
654
655 In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
656 with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
657 to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
658 we would need to apply a data-to-MC scale factor in order to correctly
659 predict the \ttll\ background.
660
661 This study
662 addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
663 second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
664 in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
665 procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
666
667 Furthermore, we test the data and MC
668 isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
669 directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
670 may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
671 or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
672 the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
673 consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
674 $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
675 decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
676 Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
677 As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
678 leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
679 due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
680
681 The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
682 All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
683 We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
684 this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
685 not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
686 fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
687 \met\ $<$ 30 GeV and 0 b-tagged events.
688 The specific criteria for tags and probes for electrons and muons are:
689
690 %We study the isolated track veto efficiency in bins of \njets.
691 %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
692 %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
693
694
695 \begin{itemize}
696 \item{Electrons}
697
698 \begin{itemize}
699 \item{Tag criteria}
700
701 \begin{itemize}
702 \item Electron passes full analysis ID/iso selection
703 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
704 \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
705 \end{itemize}
706
707 \item{Probe criteria}
708 \begin{itemize}
709 \item Electron passes full analysis ID selection
710 \item \pt\ $>$ 30 GeV
711 \end{itemize}
712 \end{itemize}
713 \item{Muons}
714 \begin{itemize}
715 \item{Tag criteria}
716 \begin{itemize}
717 \item Muon passes full analysis ID/iso selection
718 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
719 \item Matched to 1 of the 2 single muon triggers
720 \begin{itemize}
721 \item \verb=HLT_IsoMu30_v*=
722 \item \verb=HLT_IsoMu30_eta2p1_v*=
723 \end{itemize}
724 \end{itemize}
725 \item{Probe criteria}
726 \begin{itemize}
727 \item Muon passes full analysis ID selection
728 \item \pt\ $>$ 30 GeV
729 \end{itemize}
730 \end{itemize}
731 \end{itemize}
732
733 The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
734 good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
735 absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
736 In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
737 efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
738 For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
739 a data vs. MC discrepancy in the isolated track veto efficiency.
740
741
742 %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
743 %This requirement is chosen because most of the tracks rejected by the isolated
744 %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
745
746 \begin{figure}[hbt]
747 \begin{center}
748 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
749 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
750 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
751 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
752 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
753 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
754 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
755 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
756 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
757 \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
758 \caption{
759 \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
760 for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
761 }
762 \end{center}
763 \end{figure}
764
765 \clearpage
766
767 \begin{table}[!ht]
768 \begin{center}
769 \begin{tabular}{l|c|c|c|c|c}
770
771 %Electrons:
772 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
773 %Total MC yields : 2497277
774 %Total DATA yields : 2649453
775 %Muons:
776 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
777 %Total MC yields : 3749863
778 %Total DATA yields : 4210022
779 %Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
780 %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
781
782 \hline
783 \hline
784 e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
785 \hline
786 data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\
787 mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\
788 data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
789
790 \hline
791 \hline
792 $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
793 \hline
794 data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
795 mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
796 data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
797
798 \hline
799 \hline
800 e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
801 \hline
802 data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\
803 mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
804 data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
805
806 \hline
807 \hline
808 $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
809 \hline
810 data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\
811 mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
812 data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\
813
814 \hline
815 \hline
816 e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
817 \hline
818 data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\
819 mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\
820 data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\
821
822 \hline
823 \hline
824 $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
825 \hline
826 data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\
827 mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\
828 data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\
829
830 \hline
831 \hline
832 e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
833 \hline
834 data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\
835 mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\
836 data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\
837
838 \hline
839 \hline
840 $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
841 \hline
842 data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\
843 mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\
844 data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\
845
846 \hline
847 \hline
848 e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
849 \hline
850 data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\
851 mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\
852 data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\
853
854 \hline
855 \hline
856 $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
857 \hline
858 data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\
859 mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\
860 data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\
861
862 \hline
863 \hline
864
865 \end{tabular}
866 \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
867 on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
868 jet multiplicity requirements.}
869 \end{center}
870 \end{table}
871
872 \clearpage
873 \subsection{Summary of uncertainties}
874 \label{sec:bgunc-bottomline}
875
876 The contribution from each source to the total uncertainty on the background yield is given in Tables~\ref{tab:relativeuncertaintycomponents} and~\ref{tab:uncertaintycomponents} for the relative and absolute uncertainties, respectively. In the low-\met\ regions the dominant uncertainty comes from the top tail-to-peak ratio, $R_{top}$ (Section~\ref{sec:ttp}), while in the high-\met\ regions the \ttll\ systematic uncertainty dominates (Section~\ref{sec:ttdilbkgunc}).
877
878 \input{uncertainties_table.tex}
879
880
881
882
883
884 %Figure.~\ref{fig:reliso} compares the relative track isolation
885 %for events with a track with $\pt > 10~\GeV$ in addition to a selected
886 %muon for $\Z+4$ jet events and various \ttll\ components. The
887 %isolation distributions show significant differences, particularly
888 %between the leptons from a \W\ or \Z\ decay and the tracks arising
889 %from $\tau$ decays. As can also be seen in the figure, the \pt\
890 %distribution for the various categories of tracks is different, where
891 %the decay products from $\tau$s are significantly softer. Since the
892 %\pt\ enters the denominator of the isolation definition and hence
893 %alters the isolation variable...
894
895 %\begin{figure}[hbt]
896 % \begin{center}
897 % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
898 % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
899 % \caption{
900 % \label{fig:reliso}%\protect
901 % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
902 % Z+Jets and ttbar dilepton have similar isolation distributions
903 % ttbar with leptonic and single prong taus tend to be less
904 % isolated. The difference in the isolation can be attributed
905 % to the different \pt\ distribution of the samples, since
906 % $\tau$ decay products tend to be softer than leptons arising
907 % from \W\ or \Z\ decays.}
908 % \end{center}
909 %\end{figure}
910
911 % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
912
913
914 %BEGIN SECTION TO WRITE OUT
915 %In detail, the procedure to correct the dilepton background is:
916
917 %\begin{itemize}
918 %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
919 %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
920 %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
921 %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
922 %the lepton \pt {\bf TODO: verify this in data and MC.}.
923 %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
924 %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
925 %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
926 %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
927 %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
928 %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
929 %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
930 %\end{itemize}
931 %END SECTION TO WRITE OUT
932
933
934 %{\bf fix me: What you have written in the next paragraph does not
935 %explain how $\epsilon_{fake}$ is measured.
936 %Why not measure $\epsilon_{fake}$ in the b-veto region?}
937
938 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
939 %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
940 %applying an additional scale factor for the single lepton background
941 %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
942 %veto and after subtracting the \ttll\ component, corrected for the
943 %isolation efficiency derived previously.
944 %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
945 %isolated track in single lepton events is independent of \mt\, so the use of
946 %an overall scale factor is justified to estimate the contribution in
947 %the \mt\ tail.
948 %
949 %\begin{figure}[hbt]
950 % \begin{center}
951 % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
952 % \caption{
953 % \label{fig:vetoeffcomp}%\protect
954 % Efficiency for selecting an isolated track comparing
955 % single lepton \ttlj\ and dilepton \ttll\ events in MC and
956 % data as a function of \mt. The
957 % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
958 % \mt\, while the data ranges between the two. This behavior
959 % is expected since the low \mt\ region is predominantly \ttlj, while the
960 % high \mt\ region contains mostly \ttll\ events.}
961 % \end{center}
962 %\end{figure}
963
964
965
966 % THIS NEEDS TO BE WRITTEN