17 |
|
Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\ |
18 |
|
\hline |
19 |
|
\hline |
20 |
< |
$R^{\mu}_{top}$ & $0.015 \pm 0.001$ & $0.035 \pm 0.002$ & $0.021 \pm 0.002$ & $0.021 \pm 0.004$ & $0.025 \pm 0.007$ & $0.015 \pm 0.009$ & $0.021 \pm 0.015$ \\ |
21 |
< |
$R^{\mu}_{wjet}$ & $0.040 \pm 0.001$ & $0.071 \pm 0.003$ & $0.062 \pm 0.004$ & $0.064 \pm 0.006$ & $0.065 \pm 0.009$ & $0.067 \pm 0.012$ & $0.065 \pm 0.016$ \\ |
20 |
> |
\multicolumn{8}{c}{Muons} \\ |
21 |
|
\hline |
22 |
+ |
$R^{MC}_{top}$ & $0.015 \pm 0.001$ & $0.035 \pm 0.002$ & $0.021 \pm 0.002$ & $0.021 \pm 0.004$ & $0.025 \pm 0.007$ & $0.015 \pm 0.009$ & $0.021 \pm 0.015$ \\ |
23 |
+ |
$R^{MC}_{wjet}$ & $0.040 \pm 0.001$ & $0.071 \pm 0.003$ & $0.062 \pm 0.004$ & $0.064 \pm 0.006$ & $0.065 \pm 0.009$ & $0.067 \pm 0.012$ & $0.065 \pm 0.016$ \\ |
24 |
|
\hline |
25 |
< |
$R^e_{top}$ & $0.015 \pm 0.001$ & $0.031 \pm 0.002$ & $0.026 \pm 0.003$ & $0.025 \pm 0.005$ & $0.009 \pm 0.005$ & $0.021 \pm 0.012$ & $0.034 \pm 0.024$ \\ |
26 |
< |
$R^e_{wjet}$ & $0.040 \pm 0.002$ & $0.075 \pm 0.004$ & $0.067 \pm 0.005$ & $0.063 \pm 0.007$ & $0.061 \pm 0.010$ & $0.067 \pm 0.015$ & $0.070 \pm 0.021$ \\ |
25 |
> |
\hline |
26 |
> |
\hline |
27 |
> |
\multicolumn{8}{c}{Electrons} \\ |
28 |
> |
\hline |
29 |
> |
$R^{MC}_{top}$ & $0.015 \pm 0.001$ & $0.031 \pm 0.002$ & $0.026 \pm 0.003$ & $0.025 \pm 0.005$ & $0.009 \pm 0.005$ & $0.021 \pm 0.012$ & $0.034 \pm 0.024$ \\ |
30 |
> |
$R^{MC}_{wjet}$ & $0.040 \pm 0.002$ & $0.075 \pm 0.004$ & $0.067 \pm 0.005$ & $0.063 \pm 0.007$ & $0.061 \pm 0.010$ & $0.067 \pm 0.015$ & $0.070 \pm 0.021$ \\ |
31 |
|
\hline |
32 |
|
\end{tabular}} |
33 |
|
\caption{ Ratio of MC events in the \mt-tail over events in the \mt-peak for |
39 |
|
|
40 |
|
The MC values of these ratios are shown in Table~\ref{tab:ttp}. The e and $\mu$ channel results are averaged before corrections are made. |
41 |
|
|
42 |
< |
The MC value of $R_{wjet}$ is corrected based on the studies of CR1 (Section~\ref{sec:cr1}), which |
43 |
< |
lead to the data/MC scale factor $SFR_{wjet}$ (Table~\ref{tab:cr1yields}). |
42 |
> |
The MC value of $R^{MC}_{wjet}$ is corrected based on the studies of CR1 (Section~\ref{sec:cr1}), which |
43 |
> |
lead to the data/MC scale factor $SFR_{wjet}$ (Table~\ref{tab:cr1yields}). The corrected $R_{wjet}$ is thus given by $R^{MC}_{wjet} \times SFR_{wjet}$. |
44 |
|
|
45 |
|
%$SFR_{top}$ (Table~\ref{tab:cr2yields}) |
46 |
|
|
47 |
< |
There is no similar scale factor to correct the MC value of $R_{top}$ due to the lack of events in CR2 (Section~\ref{sec:cr2}). |
47 |
> |
There is no similar scale factor to correct the MC value of $R^{MC}_{top}$ due to the lack of events in CR2 (Section~\ref{sec:cr2}). |
48 |
|
We must therefore use a different procedure to derive a corrected value of $R_{top}$. |
49 |
|
|
50 |
< |
We start by defining optimistic (too small) and pessimistic (too large) predictions. |
50 |
> |
We start by defining optimistic (too small) and pessimistic (too large) predictions for $R_{top}$. |
51 |
|
|
52 |
< |
For the pessimistic prediction, we use the \wjets\ $M_T$ tail-to-peak ratio and data/MC scale factor, $R_{wjet}$ and $SFR_{wjet}$. |
52 |
> |
For the pessimistic prediction, we use the \wjets\ MC tail-to-peak ratio and data/MC scale factor, $R^{MC}_{wjet}$ and $SFR_{wjet}$ (i.e. the pessimistic prediction is the same as $R_{wjet}$). |
53 |
|
This prediction is too large because in \wjets\ events the $M_T$ tail comes from |
54 |
|
off-shell Ws and resolution effects, while in top events to first order |
55 |
|
only resolution effects matter. |
56 |
|
|
57 |
< |
For the optimistic prediction, we use the \ttsl\ $M_T$ tail-to-peak ratio $R_{top}$, but take the \wjets\ data/MC scale factor $SFR_{wjet}$. |
57 |
> |
For the optimistic prediction, we use the \ttsl\ MC tail-to-peak ratio $R^{MC}_{top}$, but take the \wjets\ data/MC scale factor $SFR_{wjet}$. |
58 |
|
This prediction is too small because |
59 |
|
the true top scale factor is to first order the same as for on-shell Ws, |
60 |
|
while $SFR_{wjet}$ is a weighted average of the |
61 |
|
scale factor for on-shell Ws (which is $>1$) and the |
62 |
|
scale factor for off-shell Ws (which is close to 1 as it is well modeled by MC). |
63 |
|
|
64 |
< |
The final prediction is given by the average of the optimistic and pessimistic predictions, and |
64 |
> |
The final prediction for $R_{top}$ is given by the average of the optimistic and pessimistic predictions, and |
65 |
|
the systematic uncertainty is given by half the difference between the two. |
66 |
|
|
67 |
< |
The corrected values of $R_{wjet}$ and $R_{top}$ are given in Table~\ref{tab:ttpcorr}. |
67 |
> |
The corrected values of $R_{wjet}$ and $R_{top}$ and their uncertainties are given in Table~\ref{tab:ttpcorr}. |
68 |
|
|
69 |
|
\begin{table}[!h] |
70 |
|
\begin{center} |
74 |
|
Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\ |
75 |
|
\hline |
76 |
|
\hline |
77 |
< |
$R_{top}$ & $0.015 \pm 0.001$ & $0.035 \pm 0.002$ & $0.021 \pm 0.002$ & $0.021 \pm 0.004$ & $0.025 \pm 0.007$ & $0.015 \pm 0.009$ & $0.021 \pm 0.015$ \\ |
78 |
< |
$R_{wjet}$ & $0.040 \pm 0.001$ & $0.071 \pm 0.003$ & $0.062 \pm 0.004$ & $0.064 \pm 0.006$ & $0.065 \pm 0.009$ & $0.067 \pm 0.012$ & $0.065 \pm 0.016$ \\ |
77 |
> |
$R_{top}$ & $0.045 \pm 0.023$ & $0.074 \pm 0.031$ & $0.055 \pm 0.031$ & $0.042 \pm 0.028$ & $0.041 \pm 0.036$ & $0.052 \pm 0.049$ & $0.053 \pm 0.066$ \\ |
78 |
> |
$R_{wjet}$ & $0.066 \pm 0.015$ & $0.101 \pm 0.022$ & $0.081 \pm 0.025$ & $0.061 \pm 0.029$ & $0.064 \pm 0.042$ & $0.082 \pm 0.062$ & $0.075 \pm 0.088$ \\ |
79 |
|
\hline |
80 |
|
\end{tabular}} |
81 |
< |
\caption{ Corrected values of $R_{wjet}$ and $R_{top}$. |
77 |
< |
***NEEDS TO BE FILLED*** |
81 |
> |
\caption{ Corrected values of $R_{wjet}$ and $R_{top}$. Both statistical and systematic uncertainties are included. |
82 |
|
\label{tab:ttpcorr}} |
83 |
|
\end{center} |
84 |
|
\end{table} |