1 |
benhoob |
1.1 |
|
2 |
|
|
\section{Closure Test of Templates in MC}
|
3 |
|
|
\label{sec:mc}
|
4 |
|
|
|
5 |
warren |
1.6 |
The above procedure is applied to MC to test its effectiveness under `ideal' conditions.
|
6 |
|
|
In order to test the
|
7 |
|
|
results obtained in section \ref{sec:tempcompresults},
|
8 |
|
|
%dependence of the method on the sample composition,
|
9 |
|
|
we construct templates separately from PhotonJet MC and QCD MC.
|
10 |
|
|
%Templates are derived from PhotonJet MC, and
|
11 |
|
|
These templates are then used to predict the MET distribution in ZJets MC. The
|
12 |
|
|
MC samples used are:
|
13 |
|
|
|
14 |
benhoob |
1.1 |
\begin{itemize}
|
15 |
|
|
\item PhotonJet MC
|
16 |
|
|
\begin{itemize}
|
17 |
warren |
1.2 |
\item \verb=/G_Pt_15to30_TuneZ2_7TeV_pythia6/Spring11-PU_S1_START311_V1G1-v1/AODSIM =
|
18 |
|
|
\item \verb=/G_Pt_30to50_TuneZ2_7TeV_pythia6/Spring11-PU_S1_START311_V1G1-v1/AODSIM =
|
19 |
|
|
\item \verb=/G_Pt_50to80_TuneZ2_7TeV_pythia6/Spring11-PU_S1_START311_V1G1-v1/AODSIM =
|
20 |
|
|
\item \verb=/G_Pt_80to120_TuneZ2_7TeV_pythia6/Spring11-PU_S1_START311_V1G1-v1/AODSIM =
|
21 |
|
|
\item \verb=/G_Pt_120to170_TuneZ2_7TeV_pythia6/Spring11-PU_S1_START311_V1G1-v1/AODSIM=
|
22 |
|
|
\item \verb=/G_Pt_170to300_TuneZ2_7TeV_pythia6/Spring11-PU_S1_START311_V1G1-v1/AODSIM=
|
23 |
benhoob |
1.1 |
\end{itemize}
|
24 |
warren |
1.6 |
\item QCD MC
|
25 |
|
|
\begin{itemize}
|
26 |
|
|
\item \verb=/QCD_Pt_15to30_TuneZ2_7TeV_pythia6/Spring11-PU_S1_START311_V1G1-v1/AODSIM =
|
27 |
|
|
\item \verb=/QCD_Pt_30to50_TuneZ2_7TeV_pythia6/Spring11-PU_S1_START311_V1G1-v1/AODSIM =
|
28 |
|
|
\item \verb=/QCD_Pt_50to80_TuneZ2_7TeV_pythia6/Spring11-PU_S1_START311_V1G1-v1/AODSIM =
|
29 |
|
|
\item \verb=/QCD_Pt_80to120_TuneZ2_7TeV_pythia6/Spring11-PU_S1_START311_V1G1-v1/AODSIM =
|
30 |
|
|
\item \verb=/QCD_Pt_120to170_TuneZ2_7TeV_pythia6/Spring11-PU_S1_START311_V1G1-v1/AODSIM=
|
31 |
|
|
\item \verb=/QCD_Pt_170to300_TuneZ2_7TeV_pythia6/Spring11-PU_S1_START311_V1G1-v1/AODSIM=
|
32 |
|
|
\end{itemize}
|
33 |
benhoob |
1.1 |
\item ZJet MC
|
34 |
|
|
\begin{itemize}
|
35 |
warren |
1.3 |
\item \verb=/DYToEE_M-20_CT10_TuneZ2_7TeV-powheg-pythia/Spring11-PU_S1_START311_V1G1-v1/AODSIM=
|
36 |
|
|
\item \verb=/DYToMuMu_M-20_CT10_TuneZ2_7TeV-powheg-pythia/Spring11-PU_S1_START311_V1G1-v1/AODSIM=
|
37 |
|
|
\item \verb=/DYToTauTau_M-20_CT10_TuneZ2_7TeV-powheg-pythia-tauola/Spring11-PU_S1_START311_V1G1-v1/AODSIM=
|
38 |
|
|
%use pythia
|
39 |
|
|
%\item \verb=/DYJetsToLL_TuneD6T_M-50_7TeV-madgraph-tauola/Spring11-PU_S1_START311_V1G1-v1/AODSIM=
|
40 |
benhoob |
1.1 |
\end{itemize}
|
41 |
|
|
\end{itemize}
|
42 |
|
|
|
43 |
warren |
1.6 |
|
44 |
warren |
1.8 |
Good agreement between the observed and predicted MET distributions is observed for each MC sample,
|
45 |
|
|
as well as between the two samples, as shown in figures \ref{fig:mcclosurepho} and \ref{fig:mcclosureqcd}.
|
46 |
|
|
Note that the low equivalent luminosity of the QCD samples ($\approx$ 300/pb) explains the lack of
|
47 |
|
|
statistics in the tails.
|
48 |
warren |
1.6 |
|
49 |
|
|
\begin{figure}[hbt]
|
50 |
|
|
\begin{center}
|
51 |
|
|
\resizebox{0.8\linewidth}{!}{\includegraphics{plots/mcclosure_qcd.pdf}}
|
52 |
|
|
\\ \medskip
|
53 |
|
|
%\resizebox{\linewidth}{!}{
|
54 |
|
|
\begin{tabular}{r|r|r|r|r}
|
55 |
|
|
MET & $>$ 30 GeV & $>$ 60 GeV & $>$ 100 GeV & $>$ 200 \\ \hline
|
56 |
|
|
|
57 |
|
|
%tr
|
58 |
|
|
Z MC & 921 & 15 & 1 & 0 \\
|
59 |
|
|
Prediction & 824.20 $\pm$ 38.99 & 21.89 $\pm$ 2.52 & 1.67 $\pm$ 0.31 & 0.00 $\pm$ 0.00 \\
|
60 |
|
|
|
61 |
|
|
%no tr
|
62 |
|
|
% data & 921 & 15 & 1 & 0 \\
|
63 |
|
|
% pred & 751.10 $\pm$ 101.82 & 7.78 $\pm$ 0.53 & 0.45 $\pm$ 0.06 & 0.00 $\pm$ 0.00 \\
|
64 |
|
|
|
65 |
|
|
\end{tabular}
|
66 |
|
|
%}
|
67 |
|
|
\\ \medskip
|
68 |
|
|
\caption{The MET distribution in \Z plus jets MC (black) and prediction (blue) for Njet $\ge$ 2.
|
69 |
|
|
Below the plot is tabulated the integral of the \Z plus jets MC MET and the predicted
|
70 |
|
|
MET from QCD MC for
|
71 |
|
|
MET $>$ 30 GeV, $>$ 60 GeV, $>$ 100 GeV, and $>$ 200 GeV.
|
72 |
|
|
}
|
73 |
|
|
\label{fig:mcclosureqcd}
|
74 |
|
|
\end{center}
|
75 |
|
|
\end{figure}
|
76 |
|
|
|
77 |
benhoob |
1.1 |
|
78 |
|
|
\begin{figure}[hbt]
|
79 |
|
|
\begin{center}
|
80 |
warren |
1.6 |
\resizebox{0.8\linewidth}{!}{\includegraphics{plots/mcclosure_pho.pdf}}
|
81 |
benhoob |
1.1 |
\\ \medskip
|
82 |
|
|
%\resizebox{\linewidth}{!}{
|
83 |
warren |
1.3 |
\begin{tabular}{r|r|r|r|r}
|
84 |
|
|
MET & $>$ 30 GeV & $>$ 60 GeV & $>$ 100 GeV & $>$ 200 \\ \hline
|
85 |
warren |
1.6 |
%tr
|
86 |
warren |
1.7 |
Z MC & 921 & 15 & 1 & 0 \\
|
87 |
|
|
Prediction & 959.15 $\pm$ 27.00 & 19.39 $\pm$ 0.58 & 2.28 $\pm$ 0.09 & 0.07 $\pm$ 0.01 \\
|
88 |
warren |
1.6 |
|
89 |
|
|
%no tr
|
90 |
|
|
% Z MC & 921 & 15 & 1 & 0 \\
|
91 |
|
|
% Prediction & 953.60 $\pm$ 31.28 & 17.94 $\pm$ 0.66 & 2.45 $\pm$ 0.10 & 0.11 $\pm$ 0.02 \\
|
92 |
warren |
1.3 |
|
93 |
benhoob |
1.1 |
\end{tabular}
|
94 |
|
|
%}
|
95 |
|
|
\\ \medskip
|
96 |
warren |
1.6 |
\caption{The MET distribution in \Z plus jets MC (black) and prediction (blue) for Njet $\ge$ 2.
|
97 |
|
|
Below the plot is tabulated the integral of the \Z plus jets MC MET and the predicted
|
98 |
|
|
MET from photon plus jets MC for
|
99 |
warren |
1.5 |
MET $>$ 30 GeV, $>$ 60 GeV, $>$ 100 GeV, and $>$ 200 GeV.
|
100 |
warren |
1.4 |
}
|
101 |
warren |
1.6 |
\label{fig:mcclosurepho}
|
102 |
benhoob |
1.1 |
\end{center}
|
103 |
|
|
\end{figure}
|
104 |
|
|
|
105 |
|
|
|
106 |
warren |
1.3 |
%2010 results
|
107 |
|
|
% MET & $>$ 30 GeV & $>$ 60 GeV & $>$ 120 GeV \\ \hline
|
108 |
|
|
% Z+jets observed & 184 & 10 & 0 \\
|
109 |
|
|
% $\gamma$+jets predicted & 182.21 & 11.52 & 1.40 \\
|
110 |
|
|
|
111 |
|
|
|
112 |
benhoob |
1.1 |
%\begin{wrapfigure}{r}{0.6\textwidth}
|
113 |
|
|
%\vspace{-25pt}
|
114 |
|
|
%\begin{center}
|
115 |
|
|
%\includegraphics[width=0.8\textwidth]{plots/mcclosure}
|
116 |
|
|
% \caption{\label{fig:mcclosure} The MET distribution in Z+jets MC (black) and prediction (blue) for Njet $\ge$ 2. Below the plot is tabulated the integral of the observed Z+jets MC MET and the predicted MET from $\gamma$+jets MC for MET $>$ 30 GeV, $>$ 60 GeV and $>$ 120 GeV. The quantity (observed-predicted)/predicted as a function of MET is shown above the plot.}
|
117 |
|
|
%\end{center}
|
118 |
|
|
%\vspace{-20pt}
|
119 |
|
|
%\end{wrapfigure}
|