ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/ZMet2011/topbkg.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/ZMet2011/topbkg.tex (file contents):
Revision 1.1 by benhoob, Mon Apr 25 14:51:42 2011 UTC vs.
Revision 1.7 by warren, Sun Jul 3 18:00:13 2011 UTC

# Line 15 | Line 15 | it does not account for the \ttbar backg
15   To estimate this contribution we use an opposite-flavor subtraction
16   technique which takes advantage of the fact that the \ttbar yield in the
17   opposite-flavor final state ($e\mu$) is the same as in the same-flavor final state
18 < ($ee+\mu\mu$), modulo differences in efficiency in the $e$ vs. $\mu$ selection.
18 > ($ee+\mu\mu$) (see figure \ref{fig:ttbar}),
19 > modulo differences in efficiency in the $e$ vs. $\mu$ selection.
20   Hence the \ttbar yield in the same-flavor final state can be estimated
21   using the corresponding yield in the opposite-flavor final state.
22   It is important to note that other backgrounds for which the lepton flavors are
23 < uncorrelated (for example $VV$ and DY$\rightarrow \tau\tau$) will also be included in
23 > uncorrelated (for example $WW$ and DY$\rightarrow \tau\tau$) will also be included in
24   this estimate.
25  
26   The simplest option
27   is to take the $e\mu$ yield inside the \Z mass window and scale this
28   to predict the $ee$ and $\mu\mu$ yields, based on $e$ and $\mu$ selection efficiencies.
29   Only the ratio of muon to electron selection efficiency is needed, which we evaluate
30 < as $\epsilon_{\mu e} = \sqrt{\frac{N_{Z\mu\mu}}{N_{Zee}}}$.
30 > as $R_{\mu e} = \sqrt{\frac{N_{Z\mu\mu}}{N_{Zee}}}$.
31   Here $N_{Zee}$ ($N_{Z\mu\mu}$) is the total number of events in the $ee$ ($\mu\mu$)
32   final state passing the pre-selection in Section~\ref{sec:yields},
33   without the requirement of at least 2 jets. We find
34 < $\epsilon_{\mu e}=1.11 \pm 0.01$ (stat). (Note that in the following
35 < $\epsilon_{e\mu} = 1/\epsilon_{\mu e}$.)
36 < Systematic uncertainties on the prediction are assessed in section~\ref{sec:systematicsof}, and only statistical uncertainties are given in this section.
34 > $R_{\mu e}=1.068 \pm 0.001$ (stat). %2011
35 > % $R_{\mu e}=1.11 \pm 0.01$ (stat). %2010
36 > (Note that in the following $R_{e\mu} = 1/R_{\mu e}$.)
37 > Systematic uncertainties on the prediction are assessed in section~\ref{sec:systematicsof},
38 > and only statistical uncertainties are given in this section.
39  
40   This procedure yields the following predicted yields $n_{pred}$,
41 < based on an observed yield of 3 $e\mu$ events in the loose signal region:
41 > based on an observed yield of
42 > 49 %976/pb ; %12 %204/pb
43 > $e\mu$ events %3 events in 2010 (met 60)
44 > in the loose signal region
45 > (the corresponding predictions in the tight
46 > signal region are shown in table \ref{tab:ttbpredk}
47 > and in figures~\ref{fig:pfmet_ee} and \ref{fig:pfmet_mm}):
48  
49   \begin{equation}
50 < n_{pred}(\mu\mu) = \frac{1}{2}n(e\mu)\epsilon_{\mu e} = 1.67 \pm 0.96
50 > n_{pred}(\mu\mu) = \frac{1}{2}n(e\mu)R_{\mu e} = 26.2 \pm 3.74 %2011--met 100 976/pb
51 > %n_{pred}(\mu\mu) = \frac{1}{2}n(e\mu)R_{\mu e} = 6.40 \pm 1.85 %2011--met 100 204/pb
52   \end{equation}
53   \begin{equation}
54 < n_{pred}(ee)     = \frac{1}{2}n(e\mu)\epsilon_{e\mu} = 1.35 \pm 0.78
54 > n_{pred}(ee)     = \frac{1}{2}n(e\mu)R_{e\mu} = 22.9 \pm 3.27 %2011--met 100 976/pb
55 > %n_{pred}(ee)     = \frac{1}{2}n(e\mu)R_{e\mu} = 5.62 \pm 1.62 %2011--met 100 204/pb
56   \end{equation}
57  
58 < The predicted same flavor \ttbar yields agree well with the MC expectation of 2.0 ($\mu\mu$) %really
59 < and 1.9 ($ee$) %really
60 < as shown in Fig.~\ref{fig:ttbar}.
61 < Due to the small statistics, the errors on the predicted yields using this procedure are quite large.
58 > The predicted same flavor \ttbar yields
59 > can be compared
60 > %agree well %well, it's just over 1 sigma for mm, just under for ee
61 > with the MC expectation of
62 > 18.6 %976/pb (w trig eff)
63 > %4.3 %204/pb (no trig eff)
64 > ($\mu\mu$) and
65 > 17.8 %976/pb (w trig eff)
66 > %3.7 %204/pb (no trig eff)
67 > ($ee$) as shown in Table \ref{sigyieldtableloose}.
68 > Due to the relatively small statistics, the errors on the predicted yields
69 > using this procedure are fairly large.
70   To improve the statistical errors, we instead determine the $e\mu$ yield
71   without requiring the leptons to fall in the \Z mass window.
72 < This yield is scaled by a factor determined from MC, $K= 0.16$,
72 > This yield is scaled by a factor determined from MC, $K= 0.16$, %same in 2011 as 2010
73   which accounts for the fraction of \ttbar events expected to fall in the $Z$ mass
74   window. This procedure yields the following
75 < predicted yields based on 27 observed $e\mu$ events:
75 > predicted yields based on
76 > 319 %(976/pb) %74 (204/pb)
77 > observed $e\mu$ events: %27 events in 2010 (met 60)
78  
79   \begin{equation}
80 < n_{pred}(\mu\mu) = \frac{1}{2}n(e\mu)K\epsilon_{\mu e} = 2.34 \pm 0.45
80 > n_{pred}(\mu\mu) = \frac{1}{2}n(e\mu)KR_{\mu e} = 27.0 \pm 1.5 %2011--met 100 976/pb
81 > %n_{pred}(\mu\mu) = \frac{1}{2}n(e\mu)KR_{\mu e} = 6.26 \pm 0.73 %2011--met 100 204/pb
82   \end{equation}
83   \begin{equation}
84 < n_{pred}(ee)     = \frac{1}{2}n(e\mu)K\epsilon_{e\mu} = 1.90 \pm 0.36
84 > n_{pred}(ee)     = \frac{1}{2}n(e\mu)KR_{e\mu} = 23.6 \pm 1.3 %2011--met 100 976/pb
85 > %n_{pred}(ee)     = \frac{1}{2}n(e\mu)KR_{e\mu} = 5.50 \pm 0.64 %2011--met 100 204/pb
86   \end{equation}
87  
88 < Notice that the yields are consistent with those predicted without using $K$, but the relative statistical uncertainty is reduced by a factor of approximately 2.
88 > Notice that the yields are consistent with those predicted without using $K$, but the relative statistical uncertainty is reduced by a factor of approximately 2. (See table \ref{tab:ttbpredk}.)
89   Since the total uncertainty is expected to be statistically-dominated, the second method yields a better prediction and we use this as our estimate
90 < of the \ttbar~background. Predicted yields for the tight signal region are given in the tables under Figs.~\ref{fig:pfmet_eemm}-\ref{fig:pfmet_mm}.
90 > of the \ttbar background.
91 > %moved this up
92 > %Predicted yields for the tight signal region are given in the tables under Figs.~\ref{fig:pfmet_eemm}-\ref{fig:pfmet_mm}.
93 >
94   % while the systematic uncertainty has increased slightly. This systematic
95   %uncertainty is a preliminary, conservative estimate. The total uncertainty on the prediction is improved significantly using the second method.
96  
97 +
98 + \begin{table}[hbt]
99 +  \begin{center}
100 +        \caption{
101 +          \label{tab:ttbpredk}
102 +          The \ttbar prediction for each MET cut used with and without using the K value.
103 +          For all MET cuts, the values are consistent, but the value without K
104 +          has a larger statistical uncertainty.
105 +        }
106 +        \begin{tabular}{lcccc}
107 +          \hline
108 +          \resulttitle
109 + \hline
110 + %976/pb
111 + $t\bar{t}$ pred with K    &  246.61  $\pm$  6.26  &  152.50  $\pm$  4.92  &  50.63  $\pm$  2.83  &  3.17  $\pm$  0.71  \\
112 + $t\bar{t}$ pred without K &  249.55  $\pm$  15.81  &  165.37  $\pm$  12.87  &  49.11  $\pm$  7.02  &  3.01  $\pm$  1.74  \\
113 +
114 + %204/pb
115 + %$t\bar{t}$ pred with K    &  54.77  $\pm$  2.95  &  34.73  $\pm$  2.35  &  11.76  $\pm$  1.37  &  1.13  $\pm$  0.46  \\
116 + %$t\bar{t}$ pred without K &  55.12  $\pm$  7.43  &  42.09  $\pm$  6.49  &  12.03  $\pm$  3.47  &  2.00  $\pm$  1.42  \\
117 +
118 + \hline
119 +        \end{tabular}
120 +  \end{center}
121 + \end{table}
122 +
123 +
124   \begin{figure}[hbt]
125    \begin{center}
126      \resizebox{0.75\linewidth}{!}{\includegraphics{plots/flavorsubdata.png}}
127 <    \caption{Dilepton mass distribution for events passing the loose signal region selection. The solid histograms represent the yields in the same-flavor
128 <      final state for each SM contribution, while the solid black line (OFOS) indicates the sum of the MC contributions in the opposite-flavor final state.
127 >    \caption{MC dilepton mass distribution for events passing the loose signal region selection.
128 >          The solid histograms represent the yields in the same-flavor
129 >      final state for each SM contribution, while the black data points (OFOS) indicates the
130 >          sum of the \ttbar MC contributions in the opposite-flavor final state.
131        %The observed ttbar yields inside the $Z$ mass window in the $ee$ and $\mu\mu$ final states are indicated.
132        The \ttbar distribution in the same-flavor final state is well-modeled by the OFOS prediction.}
133      \label{fig:ttbar}
134    \end{center}
135   \end{figure}
136  
82 %
83
84 %\begin{wrapfigure}{r}{0.6\textwidth}
85 %\vspace{-25pt}
86 %\begin{center}
87 %\includegraphics[width=0.8\textwidth]{plots/flavorsubdata}
88 %    \caption{     \label{fig:ttbar} Dilepton mass distribution for events passing the signal region selection. The solid histograms represent the yields in the same-flavor
89 %      final state for each SM contribution, while the solid black line (OFOS) indicates the sum of the MC contributions in the opposite-flavor final state.
90 %      %The observed ttbar yields inside the $Z$ mass window in the $ee$ and $\mu\mu$ final states are indicated.
91 %      The ttbar distribution in the same-flavor final state is well-modeled by the OFOS prediction.}
92 %\end{center}
93 %\vspace{-20pt}
94 %\end{wrapfigure}
95
96
97
98

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines