ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/ZMet2012/bkg.tex
Revision: 1.16
Committed: Wed Dec 19 22:57:48 2012 UTC (12 years, 4 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
CVS Tags: AN_19p3fb
Changes since 1.15: +3 -3 lines
Log Message:
update 2jet yields for ZZ

File Contents

# User Rev Content
1 benhoob 1.4 %\clearpage
2 benhoob 1.1 \section{Background Estimation Techniques}
3     \label{sec:bkg}
4    
5     In this section we describe the techniques used to estimate the SM backgrounds in our signal regions defined by requirements of large \MET.
6 benhoob 1.4 The SM backgrounds fall into three categories:
7 benhoob 1.1
8     \begin{itemize}
9 benhoob 1.2 \item \zjets: this is the dominant background after the preselection. The \MET\ in \zjets\ events is estimated with the
10 benhoob 1.1 ``\MET\ templates'' technique described in Sec.~\ref{sec:bkg_zjets};
11     \item Flavor-symmetric (FS) backgrounds: this category includes processes which produces 2 leptons of uncorrelated flavor. It is dominated
12     by \ttbar\ but also contains Z$\to\tau\tau$, WW, and single top processes. This is the dominant contribution in the signal regions, and it
13 benhoob 1.2 is estimated using a data control sample of e$\mu$ events as described in Sec.~\ref{sec:bkg_fs};
14 benhoob 1.1 \item WZ and ZZ backgrounds: this background is estimated from MC, after validating the MC modeling of these processes using data control
15 benhoob 1.2 samples with jets and exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample) as described in Sec.~\ref{sec:bkg_vz};
16 benhoob 1.4 %\item Rare SM backgrounds: this background contains rare processes such as $t\bar{t}$V and triple vector boson processes VVV (V=W,Z).
17     %This background is estimated from MC as described in Sec.~\ref{sec:bkg_raresm}. {\bf FIXME: add rare MC}
18 benhoob 1.1 \end{itemize}
19    
20     \subsection{Estimating the \zjets\ Background with \MET\ Templates}
21     \label{sec:bkg_zjets}
22    
23 benhoob 1.3 The premise of this data driven technique is that \MET\ in \zjets\ events
24 benhoob 1.1 is produced by the hadronic recoil system and {\it not} by the leptons making up the Z.
25     Therefore, the basic idea of the \MET\ template method is to measure the \MET\ distribution in
26     a control sample which has no true MET and the same general attributes regarding
27     fake MET as in \zjets\ events. We thus use a sample of \gjets\ events, since both \zjets\
28     and \gjets\ events consist of a well-measured object recoiling against hadronic jets.
29    
30     For selecting photon-like objects, the very loose photon selection described in Sec.~\ref{sec:phosel} is used.
31     It is not essential for the photon sample to have high purity. For our purposes, selecting jets with predominantly
32     electromagnetic energy deposition in a good fiducial volume suffices to ensure that
33     they are well measured and do not contribute to fake \MET. The \gjets\ events are selected with a suite of
34     single photon triggers with \pt thresholds varying from 22--90 GeV. The events are weighted by the trigger prescale
35     such that \gjets\ events evenly sample the conditions over the full period of data taking.
36     There remains a small difference in the PU conditions in the \gjets\ vs. \zjets\ samples due to the different
37     dependencies of the $\gamma$ vs. Z isolation efficiencies on PU. To account for this, we reweight the \gjets\ samples
38     to match the distribution of reconstructed primary vertices in the \zjets\ sample.
39    
40     To account for kinematic differences between the hadronic systems in the control vs. signal
41     samples, we measure the \MET\ distributions in the \gjets\ sample in bins of the number of jets
42 benhoob 1.3 and the scalar sum of jet transverse energies (\Ht). These \MET\ templates are extracted separately from the 5 single photon
43     triggers with thresholds 22, 36, 50, 75, and 90 GeV, so that the templates are effectively binned in photon \pt.
44     All \MET distributions are normalized to unit area to form ``MET templates''.
45     The prediction of the MET in each \Z event is the template which corresponds to the \njets,
46     \Ht, and Z \pt in the \zjets\ event. The prediction for the \Z sample is simply the sum of all such templates.
47     All templates are displayed in App.~\ref{app:templates}.
48 benhoob 1.1
49 benhoob 1.6 After preselection, there is a small contribution from backgrounds other than \zjets. To correct for this, the \MET\ templates
50     prediction is scaled such that the total background prediction matches the observed data yield in the \MET\ 0--60 GeV region.
51     Because the non-\zjets impurity in the low \MET\ region after preselection is very small, this results in
52     scaling factors of 0.985 (0.995) for the inclusive (targeted) search.
53 benhoob 1.1
54     \subsection{Estimating the Flavor-Symmetric Background with e$\mu$ Events}
55     \label{sec:bkg_fs}
56    
57     In this subsection we describe the background estimate for the FS background. Since this background produces equal rates of same-flavor (SF)
58     ee and $\mu\mu$ lepton pairs as opposite-flavor (OF) e$\mu$ lepton pairs, the OF yield can be used to estimate the SF yield, after
59     correcting for the different electron vs. muon offline selection efficiencies and the different efficiencies for the ee, $\mu\mu$, and e$\mu$ triggers.
60    
61     An important quantity needed to translate from the OF yield to a prediction for the background in the SF final state is the ratio
62     $R_{\mu e} = \epsilon_\mu / \epsilon_e$, where $\epsilon_\mu$ ($\epsilon_e$) indicates the offline muon (electron) selection efficiency.
63     This quantity can be extracted from data using the observed Z$\to\mu\mu$ and Z$\to$ee yields in the preselection region, after correcting
64     for the different trigger efficiencies.
65    
66     Hence we define:
67    
68     \begin{itemize}
69     \item $N_{ee}^{\rm{trig}} = \epsilon_{ee}^{\rm{trig}}N_{ee}^{\rm{offline}}$,
70     \item $N_{\mu\mu}^{\rm{trig}} = \epsilon_{\mu\mu}^{\rm{trig}}N_{\mu\mu}^{\rm{offline}}$,
71     \item $N_{e\mu}^{\rm{trig}} = \epsilon_{e\mu}^{\rm{trig}}N_{e\mu}^{\rm{offline}}$.
72     \end{itemize}
73    
74 benhoob 1.3 Here $N_{\ell\ell}^{\rm{trig}}$ denotes the number of selected Z events in the $\ell\ell$ channel passing the offline and trigger selection
75     (in other words, the number of recorded and selected events), $\epsilon_{\ell\ell}^{\rm{trig}}$ is the trigger efficiency, and
76     $N_{\ell\ell}^{\rm{offline}}$ is the number of events that would have passed the offline selection if the trigger had an efficiency of 100\%.
77 benhoob 1.1 Thus we calculate the quantity:
78    
79     \begin{equation}
80     R_{\mu e} = \sqrt{\frac{N_{\mu\mu}^{\rm{offline}}}{N_{ee}^{\rm{offline}}}} = \sqrt{\frac{N_{\mu\mu}^{\rm{trig}}/\epsilon_{\mu\mu}^{\rm{trig}}}{N_{ee}^{\rm{trig}}/\epsilon_{ee}^{\rm{trig}}}}
81 benhoob 1.15 = \sqrt{\frac{304953/0.88}{239661/0.95}} = 1.17\pm0.07.
82 benhoob 1.1 \end{equation}
83    
84     Here we have used the Z$\to\mu\mu$ and Z$\to$ee yields from Table~\ref{table:zyields_2j} and the trigger efficiencies quoted in Sec.~\ref{sec:datasets}.
85 benhoob 1.4 The indicated uncertainty is due to the 3\% uncertainties in the trigger efficiencies. %{\bf FIXME: check for variation w.r.t. lepton \pt}.
86 benhoob 1.1 The predicted yields in the ee and $\mu\mu$ final states are calculated from the observed e$\mu$ yield as
87    
88     \begin{itemize}
89     \item $N_{ee}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{ee}^{\rm{trig}}} {2 R_{\mu e}}
90 benhoob 1.11 = \frac{N_{e\mu}^{\rm{trig}}}{0.92}\frac{0.95}{2\times1.17} = (0.44\pm0.05) \times N_{e\mu}^{\rm{trig}}$ ,
91 benhoob 1.1 \item $N_{\mu\mu}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{\mu\mu}^{\rm{trig}} R_{\mu e}} {2}
92 benhoob 1.11 = \frac {N_{e\mu}^{\rm{trig}}} {0.95} \frac {0.88 \times 1.17}{2} = (0.54\pm0.07) \times N_{e\mu}^{\rm{trig}}$,
93 benhoob 1.1 \end{itemize}
94    
95     and the predicted yield in the combined ee and $\mu\mu$ channel is simply the sum of these two predictions:
96    
97     \begin{itemize}
98 benhoob 1.11 \item $N_{ee+\mu\mu}^{\rm{predicted}} = (0.98\pm0.06)\times N_{e\mu}^{\rm{trig}}$.
99 benhoob 1.1 \end{itemize}
100    
101 benhoob 1.3 Note that the relative uncertainty in the combined ee and $\mu\mu$ prediction is smaller than those for the individual ee and $\mu\mu$ predictions
102 benhoob 1.4 because the uncertainty in $R_{\mu e}$ cancels when summing the ee and $\mu\mu$ predictions. %{\bf N.B. these uncertainties are preliminary}.
103 benhoob 1.1
104     To improve the statistical precision of the FS background estimate, we remove the requirement that the e$\mu$ lepton pair falls in the Z mass window.
105     Instead we scale the e$\mu$ yield by $K$, the efficiency for e$\mu$ events to satisfy the Z mass requirement, extracted from simulation. In Fig.~\ref{fig:K_incl}
106 benhoob 1.6 we display the value of $K$ in data and simulation, for a variety of \MET\ requirements, for the inclusive analysis.
107     Based on this we chose $K=0.14\pm0.02$ for the lower \MET\ regions, $K=0.14\pm0.04$ for the \MET\ $>$ 200 GeV region,and $K=0.14\pm0.09$ for \MET\ $>$ 300 GeV,
108     where the larger uncertainties reflect the reduced statistical precision at large \MET.
109 benhoob 1.1 The corresponding plot for the targeted analysis, including the b-veto, is displayed in Fig.~\ref{fig:K_targeted}.
110     Based on this we chose $K=0.13\pm0.02$
111 benhoob 1.6 for all \MET\ regions up to \MET\ $>$ 150 GeV. For the \MET\ $>$ 200 GeV region we choose $K=0.13\pm0.05$, due to the reduced statistical precision.
112 benhoob 1.1
113     \begin{figure}[!ht]
114     \begin{center}
115     \begin{tabular}{cc}
116 benhoob 1.11 \includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_19fb.pdf} &
117     \includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_19fb.pdf} \\
118 benhoob 1.1 \end{tabular}
119 benhoob 1.6 \caption{\label{fig:K_incl}
120 benhoob 1.1 The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
121 benhoob 1.6 exclusive \MET\ intervals (right) for the inclusive analysis.
122 benhoob 1.1 }
123 benhoob 1.6
124     \begin{comment}
125    
126     ----------------------------------------
127     EXCLUSIVE RESULTS
128     ----------------------------------------
129    
130     Using selection : ((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20)
131     Using weight : vtxweight * weight
132 benhoob 1.11 OF entries (total) 44537
133     OF entries (Z mass) 6051
134     K 0.135865
135 benhoob 1.6 Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
136     Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
137    
138     --------------------------------------------------------------
139     pfmet>0 && pfmet<30
140    
141     data :
142 benhoob 1.11 total : 7563
143     Z : 957
144     K : 0.13 +/- 0.004
145 benhoob 1.6
146     MC :
147     total : 399.019
148     Z : 51.0493
149     K : 0.13 +/- 0.007
150     --------------------------------------------------------------
151    
152    
153     --------------------------------------------------------------
154     pfmet>30 && pfmet<60
155    
156     data :
157 benhoob 1.11 total : 14185
158     Z : 1893
159     K : 0.13 +/- 0.003
160 benhoob 1.6
161     MC :
162     total : 755.309
163     Z : 111.206
164     K : 0.15 +/- 0.003
165     --------------------------------------------------------------
166    
167    
168     --------------------------------------------------------------
169     pfmet>60 && pfmet<100
170    
171     data :
172 benhoob 1.11 total : 14928
173     Z : 2122
174     K : 0.14 +/- 0.003
175 benhoob 1.6
176     MC :
177     total : 838.418
178     Z : 123.554
179     K : 0.15 +/- 0.003
180     --------------------------------------------------------------
181    
182    
183     --------------------------------------------------------------
184     pfmet>100 && pfmet<200
185    
186     data :
187 benhoob 1.11 total : 7437
188     Z : 1029
189     K : 0.14 +/- 0.004
190 benhoob 1.6
191     MC :
192     total : 451.624
193     Z : 67.7098
194     K : 0.15 +/- 0.004
195     --------------------------------------------------------------
196    
197    
198     --------------------------------------------------------------
199     pfmet>200 && pfmet<300
200    
201     data :
202 benhoob 1.11 total : 371
203     Z : 44
204     K : 0.12 +/- 0.018
205 benhoob 1.6
206     MC :
207     total : 24.2441
208     Z : 2.67077
209     K : 0.11 +/- 0.013
210     --------------------------------------------------------------
211    
212    
213     --------------------------------------------------------------
214     pfmet>300
215    
216     data :
217 benhoob 1.11 total : 53
218     Z : 6
219     K : 0.11 +/- 0.046
220 benhoob 1.6
221     MC :
222     total : 4.53108
223     Z : 0.230071
224     K : 0.05 +/- 0.022
225     --------------------------------------------------------------
226    
227    
228     ----------------------------------------
229     INCLUSIVE RESULTS
230     ----------------------------------------
231    
232     Using selection : ((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20)
233     Using weight : vtxweight * weight
234 benhoob 1.11 OF entries (total) 44537
235     OF entries (Z mass) 6051
236     K 0.135865
237 benhoob 1.6 Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
238     Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
239    
240     --------------------------------------------------------------
241     pfmet>0
242    
243     data :
244 benhoob 1.11 total : 44537
245     Z : 6051
246 benhoob 1.6 K : 0.14 +/- 0.002
247    
248     MC :
249     total : 2472.89
250     Z : 356.434
251     K : 0.14 +/- 0.002
252     --------------------------------------------------------------
253    
254    
255     --------------------------------------------------------------
256     pfmet>30
257    
258     data :
259 benhoob 1.11 total : 36974
260     Z : 5094
261     K : 0.14 +/- 0.002
262 benhoob 1.6
263     MC :
264     total : 2074.05
265     Z : 305.382
266     K : 0.15 +/- 0.002
267     --------------------------------------------------------------
268    
269    
270     --------------------------------------------------------------
271     pfmet>60
272    
273     data :
274 benhoob 1.11 total : 22789
275     Z : 3201
276     K : 0.14 +/- 0.002
277 benhoob 1.6
278     MC :
279     total : 1318.79
280     Z : 194.166
281     K : 0.15 +/- 0.002
282     --------------------------------------------------------------
283    
284    
285     --------------------------------------------------------------
286     pfmet>100
287    
288     data :
289 benhoob 1.11 total : 7861
290     Z : 1079
291     K : 0.14 +/- 0.004
292 benhoob 1.6
293     MC :
294     total : 480.402
295     Z : 70.6107
296     K : 0.15 +/- 0.004
297     --------------------------------------------------------------
298    
299    
300     --------------------------------------------------------------
301     pfmet>200
302    
303     data :
304 benhoob 1.11 total : 424
305     Z : 50
306     K : 0.12 +/- 0.017
307 benhoob 1.6
308     MC :
309     total : 28.7751
310     Z : 2.90084
311     K : 0.10 +/- 0.012
312     --------------------------------------------------------------
313    
314    
315     --------------------------------------------------------------
316     pfmet>300
317    
318     data :
319 benhoob 1.11 total : 53
320     Z : 6
321     K : 0.11 +/- 0.046
322 benhoob 1.6
323     MC :
324     total : 4.53108
325     Z : 0.230071
326     K : 0.05 +/- 0.022
327     --------------------------------------------------------------
328    
329     \end{comment}
330    
331 benhoob 1.1 \end{center}
332     \end{figure}
333    
334     \begin{figure}[!hb]
335     \begin{center}
336     \begin{tabular}{cc}
337 benhoob 1.11 \includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_bveto_19fb.pdf} &
338     \includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_bveto_19fb.pdf} \\
339 benhoob 1.1 \end{tabular}
340     \caption{
341     The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
342     exclusive \MET\ intervals (right) for the targeted analysis, including the b-veto.
343     Based on this we chose $K=0.13\pm0.02$ for the \MET\ regions up to \MET\ $>$ 100 GeV.
344     For higher \MET\ regions we chose $K=0.13\pm0.07$.
345 benhoob 1.4 %{\bf FIXME plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
346 benhoob 1.1 \label{fig:K_targeted}
347     }
348 benhoob 1.6 \begin{comment}
349    
350     Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvm==0)
351     Using weight : vtxweight * weight
352 benhoob 1.11 OF entries (total) 12006
353     OF entries (Z mass) 1407
354     K 0.117191
355     Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
356     Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
357 benhoob 1.6
358     --------------------------------------------------------------
359     pfmet>0 && pfmet<30
360    
361     data :
362 benhoob 1.11 total : 2719
363     Z : 273
364     K : 0.10 +/- 0.006
365 benhoob 1.6
366     MC :
367     total : 131.974
368     Z : 15.1946
369     K : 0.12 +/- 0.020
370     --------------------------------------------------------------
371    
372    
373     --------------------------------------------------------------
374     pfmet>30 && pfmet<60
375    
376     data :
377 benhoob 1.11 total : 3842
378     Z : 435
379     K : 0.11 +/- 0.005
380 benhoob 1.6
381     MC :
382     total : 172.956
383     Z : 21.9369
384     K : 0.13 +/- 0.007
385     --------------------------------------------------------------
386    
387    
388     --------------------------------------------------------------
389     pfmet>60 && pfmet<80
390    
391     data :
392 benhoob 1.11 total : 2029
393     Z : 269
394     K : 0.13 +/- 0.008
395 benhoob 1.6
396     MC :
397     total : 109.789
398     Z : 13.9792
399     K : 0.13 +/- 0.008
400     --------------------------------------------------------------
401    
402    
403     --------------------------------------------------------------
404     pfmet>80 && pfmet<100
405    
406     data :
407 benhoob 1.11 total : 1490
408     Z : 194
409     K : 0.13 +/- 0.009
410 benhoob 1.6
411     MC :
412     total : 73.3643
413     Z : 11.5154
414     K : 0.16 +/- 0.010
415     --------------------------------------------------------------
416    
417    
418     --------------------------------------------------------------
419     pfmet>100 && pfmet<150
420    
421     data :
422 benhoob 1.11 total : 1467
423     Z : 189
424     K : 0.13 +/- 0.009
425 benhoob 1.6
426     MC :
427     total : 86.7947
428     Z : 11.742
429     K : 0.14 +/- 0.009
430     --------------------------------------------------------------
431    
432    
433     --------------------------------------------------------------
434     pfmet>150 && pfmet<200
435    
436     data :
437 benhoob 1.11 total : 320
438     Z : 31
439     K : 0.10 +/- 0.017
440 benhoob 1.6
441     MC :
442     total : 19.4473
443     Z : 2.97965
444     K : 0.15 +/- 0.017
445     --------------------------------------------------------------
446    
447    
448     --------------------------------------------------------------
449     pfmet>200
450    
451     data :
452 benhoob 1.11 total : 139
453     Z : 16
454     K : 0.12 +/- 0.029
455 benhoob 1.6
456     MC :
457     total : 8.99801
458     Z : 0.794136
459     K : 0.09 +/- 0.021
460     --------------------------------------------------------------
461    
462 benhoob 1.11 Warning in <TROOT::Append>: Replacing existing TH1: hdummy (Potential memory leak).
463     Info in <TCanvas::Print>: pdf file ../plots/extractK_exclusive_bveto.pdf has been created
464     root [3] extractK(false,true,true)
465 benhoob 1.6 Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvm==0)
466     Using weight : vtxweight * weight
467 benhoob 1.11 OF entries (total) 12006
468     OF entries (Z mass) 1407
469     K 0.117191
470 benhoob 1.6 Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
471     Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
472    
473     --------------------------------------------------------------
474     pfmet>0
475    
476     data :
477 benhoob 1.11 total : 12006
478     Z : 1407
479     K : 0.12 +/- 0.003
480 benhoob 1.6
481     MC :
482     total : 603.333
483     Z : 78.1422
484     K : 0.13 +/- 0.005
485     --------------------------------------------------------------
486    
487    
488     --------------------------------------------------------------
489     pfmet>30
490    
491     data :
492 benhoob 1.11 total : 9287
493     Z : 1134
494     K : 0.12 +/- 0.004
495 benhoob 1.6
496     MC :
497     total : 471.396
498     Z : 62.9476
499     K : 0.13 +/- 0.004
500     --------------------------------------------------------------
501    
502    
503     --------------------------------------------------------------
504     pfmet>60
505    
506     data :
507 benhoob 1.11 total : 5445
508     Z : 699
509     K : 0.13 +/- 0.005
510 benhoob 1.6
511     MC :
512     total : 298.41
513     Z : 41.0107
514     K : 0.14 +/- 0.005
515     --------------------------------------------------------------
516    
517    
518     --------------------------------------------------------------
519     pfmet>80
520    
521     data :
522 benhoob 1.11 total : 3416
523     Z : 430
524     K : 0.13 +/- 0.006
525 benhoob 1.6
526     MC :
527     total : 188.602
528     Z : 27.0313
529     K : 0.14 +/- 0.006
530     --------------------------------------------------------------
531    
532    
533     --------------------------------------------------------------
534     pfmet>100
535    
536     data :
537 benhoob 1.11 total : 1926
538     Z : 236
539     K : 0.12 +/- 0.008
540 benhoob 1.6
541     MC :
542     total : 115.24
543     Z : 15.5158
544     K : 0.13 +/- 0.008
545     --------------------------------------------------------------
546    
547    
548     --------------------------------------------------------------
549     pfmet>150
550    
551     data :
552 benhoob 1.11 total : 459
553     Z : 47
554     K : 0.10 +/- 0.015
555 benhoob 1.6
556     MC :
557     total : 28.4454
558     Z : 3.77378
559     K : 0.13 +/- 0.014
560     --------------------------------------------------------------
561    
562    
563     --------------------------------------------------------------
564     pfmet>200
565    
566     data :
567 benhoob 1.11 total : 139
568     Z : 16
569     K : 0.12 +/- 0.029
570 benhoob 1.6
571     MC :
572     total : 8.99801
573     Z : 0.794136
574     K : 0.09 +/- 0.021
575     --------------------------------------------------------------
576    
577     \end{comment}
578    
579     \end{center}
580     \end{figure}
581    
582    
583     \begin{comment}
584    
585     \begin{figure}[!hb]
586     \begin{center}
587     \begin{tabular}{cc}
588     \includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_bvetoLoose_92fb.pdf} &
589     \includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_bvetoLoose_92fb.pdf} \\
590     \end{tabular}
591     \caption{
592     The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
593     exclusive \MET\ intervals (right) for the targeted analysis, including the b-veto.
594     %{\bf FIXME plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
595     \label{fig:K_targeted}}
596    
597    
598     root [2] extractK(true,false,true)
599     Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvl==0)
600     Using weight : vtxweight * weight
601     OF entries (total) 2715
602     OF entries (Z mass) 279
603     K 0.102762
604     Warning in <TStreamerInfo::Compile>: Counter fNClusterRange should not be skipped from class TTree
605     Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
606    
607     --------------------------------------------------------------
608     pfmet>0 && pfmet<30
609    
610     data :
611     total : 713
612     Z : 59
613     K : 0.08 +/- 0.011
614    
615     MC :
616     total : 74.2549
617     Z : 7.09789
618     K : 0.10 +/- 0.025
619     --------------------------------------------------------------
620    
621    
622     --------------------------------------------------------------
623     pfmet>30 && pfmet<60
624    
625     data :
626     total : 850
627     Z : 79
628     K : 0.09 +/- 0.010
629    
630     MC :
631     total : 84.6973
632     Z : 9.55105
633     K : 0.11 +/- 0.009
634     --------------------------------------------------------------
635    
636    
637     --------------------------------------------------------------
638     pfmet>60 && pfmet<80
639    
640     data :
641     total : 469
642     Z : 61
643     K : 0.13 +/- 0.017
644    
645     MC :
646     total : 50.1496
647     Z : 5.92081
648     K : 0.12 +/- 0.012
649     --------------------------------------------------------------
650    
651    
652     --------------------------------------------------------------
653     pfmet>80 && pfmet<100
654    
655     data :
656     total : 269
657     Z : 33
658     K : 0.12 +/- 0.021
659    
660     MC :
661     total : 30.0547
662     Z : 4.67993
663     K : 0.16 +/- 0.014
664     --------------------------------------------------------------
665    
666    
667     --------------------------------------------------------------
668     pfmet>100 && pfmet<150
669    
670     data :
671     total : 311
672     Z : 34
673     K : 0.11 +/- 0.019
674    
675     MC :
676     total : 39.4475
677     Z : 5.02593
678     K : 0.13 +/- 0.014
679     --------------------------------------------------------------
680    
681    
682     --------------------------------------------------------------
683     pfmet>150 && pfmet<200
684    
685     data :
686     total : 79
687     Z : 10
688     K : 0.13 +/- 0.040
689    
690     MC :
691     total : 9.96228
692     Z : 1.4975
693     K : 0.15 +/- 0.023
694     --------------------------------------------------------------
695    
696    
697     --------------------------------------------------------------
698     pfmet>200
699    
700     data :
701     total : 24
702     Z : 3
703     K : 0.12 +/- 0.072
704    
705     MC :
706     total : 5.3503
707     Z : 0.425719
708     K : 0.08 +/- 0.027
709     --------------------------------------------------------------
710    
711     root [3] Info in <TCanvas::Print>: pdf file /Users/benhoob/tas/ZMet2012/plots/extractK_exclusive_bvetoLoose_92fb.pdf has been created
712    
713     root [3]
714     root [3] extractK(false,false,true)
715     Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvl==0)
716     Using weight : vtxweight * weight
717     OF entries (total) 2715
718     OF entries (Z mass) 279
719     K 0.102762
720     Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
721     Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
722    
723     --------------------------------------------------------------
724     pfmet>0
725    
726     data :
727     total : 2715
728     Z : 279
729     K : 0.10 +/- 0.006
730    
731     MC :
732     total : 293.912
733     Z : 34.199
734     K : 0.12 +/- 0.008
735     --------------------------------------------------------------
736    
737    
738     --------------------------------------------------------------
739     pfmet>30
740    
741     data :
742     total : 2002
743     Z : 220
744     K : 0.11 +/- 0.007
745    
746     MC :
747     total : 219.661
748     Z : 27.101
749     K : 0.12 +/- 0.006
750     --------------------------------------------------------------
751    
752    
753     --------------------------------------------------------------
754     pfmet>60
755    
756     data :
757     total : 1152
758     Z : 141
759     K : 0.12 +/- 0.010
760    
761     MC :
762     total : 134.962
763     Z : 17.5498
764     K : 0.13 +/- 0.007
765     --------------------------------------------------------------
766    
767    
768     --------------------------------------------------------------
769     pfmet>80
770    
771     data :
772     total : 683
773     Z : 80
774     K : 0.12 +/- 0.013
775    
776     MC :
777     total : 84.8149
778     Z : 11.629
779     K : 0.14 +/- 0.009
780     --------------------------------------------------------------
781    
782    
783     --------------------------------------------------------------
784     pfmet>100
785    
786     data :
787     total : 414
788     Z : 47
789     K : 0.11 +/- 0.017
790    
791     MC :
792     total : 54.7604
793     Z : 6.94915
794     K : 0.13 +/- 0.011
795     --------------------------------------------------------------
796    
797    
798     --------------------------------------------------------------
799     pfmet>150
800    
801     data :
802     total : 103
803     Z : 13
804     K : 0.13 +/- 0.035
805    
806     MC :
807     total : 15.3125
808     Z : 1.92322
809     K : 0.13 +/- 0.019
810     --------------------------------------------------------------
811    
812    
813     --------------------------------------------------------------
814     pfmet>200
815    
816     data :
817     total : 24
818     Z : 3
819     K : 0.12 +/- 0.072
820    
821     MC :
822     total : 5.3503
823     Z : 0.425719
824     K : 0.08 +/- 0.027
825     --------------------------------------------------------------
826    
827    
828 benhoob 1.1 \end{center}
829     \end{figure}
830    
831 benhoob 1.6
832     \end{comment}
833    
834    
835 benhoob 1.1 \clearpage
836    
837     \subsection{Estimating the WZ and ZZ Background with MC}
838     \label{sec:bkg_vz}
839    
840     Backgrounds from W($\ell\nu$)Z($\ell\ell$) where the W lepton is not identified or is outside acceptance, and Z($\nu\nu$)Z($\ell\ell$),
841     are estimated from simulation. The MC modeling of these processes is validated by comparing the MC predictions with data in control samples
842     with exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample).
843 benhoob 1.6 The critical samples are the WZJetsTo3LNu and ZZJetsTo4L, listed in Table~\ref{tab:mcsamples}
844     (the WZJetsTo2L2Q, ZZJetsTo2L2Q, and ZZJetsTo2L2Nu samples are also used in this analysis but their contribution to the 3-lepton and 4-lepton
845     control samples is negligible).
846 benhoob 1.1
847     \subsubsection{WZ Validation Studies}
848     \label{sec:bkg_wz}
849    
850     A pure WZ sample can be selected in data with the requirements:
851    
852     \begin{itemize}
853     \item Exactly 3 $p_T>20$~GeV leptons passing analysis identication and isolation requirements,
854     \item 2 of the 3 leptons must fall in the Z window 81-101 GeV,
855     \item \MET $>$ 50 GeV (to suppress DY).
856     \end{itemize}
857    
858     The data and MC yields passing the above selection are in Table~\ref{tab:wz}.
859 benhoob 1.6 The inclusive yields (without any jet requirements) agree within 13\%, which is consistent within
860     the uncertainty in the CMS measured WZ cross section (17\%). A data vs. MC comparison of kinematic
861 benhoob 1.1 distributions (jet multiplicity, \MET, Z \pt) is given in Fig.~\ref{fig:wz}. High \MET\
862     values in WZ and ZZ events arise from highly boosted W or Z bosons that decay leptonically,
863     and we therefore check that the MC does a reasonable job of reproducing the \pt distributions of the
864     leptonically decaying \Z. While the inclusive WZ yields are in reasonable agreement, we observe
865     an excess in data in events with at least 2 jets, corresponding to the jet multiplicity requirement
866 benhoob 1.6 in our preselection. We observe 106 events in data while the MC predicts $62\pm1.5$~(stat), representing an excess of 71\%,
867 benhoob 1.7 as indicated in Table~\ref{tab:wz2j}.
868     This excess will be studied further. For the time being, based on these studies we currently assess an uncertainty of 70\% on the WZ yield.
869 benhoob 1.10 A data vs. MC comparison of several kinematic quantities in the sample with 3 leptons and at least 2 jets can be found in App.~\ref{app:WZ}.
870 benhoob 1.7
871     \begin{comment}
872     We note some possible contributions to this discrepancy:
873 benhoob 1.1
874     \begin{itemize}
875    
876 benhoob 1.6 \item {\bf The following checks refer to the 5.2 fb$^{-1}$ results and will be updated.}
877    
878 benhoob 1.1 \item The \zjets\ contribution is under-estimated here, for 2 reasons: first, because the \zjets\
879     yield passing a \MET $>$ 50 GeV requirement is under-estimated in MC and second, because the fake
880     rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends
881     on the \zjets\ yield, if the \zjets\ yield is doubled then the excess is reduced from 78\% to 55\%.
882 benhoob 1.4 Also note that we are currently using 10\% of the \zjets\ MC sample and there is 1 event with a weight
883     of about 5, so the plots and tables will be remade with full \zjets\ sample.
884 benhoob 1.1
885     \item The \ttbar\ contribution is under-estimated here because the fake
886     rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends
887     on the \ttbar\ yield, if the \ttbar\ yield is doubled then the excess is reduced from 78\% to 57\%.
888    
889     \item Currently no attempt is made to reject jets from pile-up interactions, which may be responsible
890 benhoob 1.3 for some of the excess at large \njets. To check this, we increase the jet \pt threhsold to 40 GeV, which
891     helps to suppress PU jets, and observe 39 events in data vs. an MC prediction of $25\pm5.2$~(stat),
892 benhoob 1.1 decreasing the excess from 78\% to 58\%. In the future this may be improved by explicitly
893     requiring the jets to be consistent with originating from the signal primary vertex.
894    
895     \end{itemize}
896 benhoob 1.7 \end{comment}
897    
898 benhoob 1.1
899    
900     \begin{table}[htb]
901     \begin{center}
902     \caption{\label{tab:wz} Data and Monte Carlo yields passing the WZ preselection. }
903     \begin{tabular}{lccccc}
904 benhoob 1.12
905     %Loading babies at : ../output/V00-02-00
906     %Using selection : (((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101)
907     %Using weight : weight * 19.3 * trgeff * vtxweight
908    
909 benhoob 1.1 \hline
910 benhoob 1.3 \hline
911 benhoob 1.12 Sample & ee & $\mu\mu$ & e$\mu$ & total \\
912 benhoob 1.1 \hline
913 benhoob 1.12 %SCALING ZJETS BY 111/946
914     WZ &244.9 $\pm$ 1.6 &317.9 $\pm$ 1.8 & 17.0 $\pm$ 0.4 &579.7 $\pm$ 2.4 \\
915     \zjets & 2.5 $\pm$ 2.0 & 6.4 $\pm$ 3.9 & 0.0 $\pm$ 0.0 & 8.9 $\pm$ 4.3 \\
916     ZZ & 5.3 $\pm$ 0.0 & 7.1 $\pm$ 0.1 & 0.4 $\pm$ 0.0 & 12.8 $\pm$ 0.1 \\
917     \ttbar & 2.5 $\pm$ 1.3 & 6.7 $\pm$ 2.0 & 7.5 $\pm$ 2.1 & 16.7 $\pm$ 3.2 \\
918     single top & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 \\
919     WW & 0.0 $\pm$ 0.0 & 0.1 $\pm$ 0.1 & 0.2 $\pm$ 0.1 & 0.3 $\pm$ 0.1 \\
920     ttV & 8.6 $\pm$ 0.4 & 10.3 $\pm$ 0.4 & 2.5 $\pm$ 0.2 & 21.5 $\pm$ 0.7 \\
921     VVV & 3.4 $\pm$ 0.1 & 4.3 $\pm$ 0.1 & 0.6 $\pm$ 0.1 & 8.3 $\pm$ 0.2 \\
922 benhoob 1.5 \hline
923 benhoob 1.12 tot SM MC &267.1 $\pm$ 2.9 &353.3 $\pm$ 4.7 & 28.2 $\pm$ 2.2 &648.6 $\pm$ 6.0 \\
924 benhoob 1.1 \hline
925 benhoob 1.12 data & 312 & 391 & 50 & 753 \\
926 benhoob 1.1 \hline
927     \hline
928    
929     \end{tabular}
930     \end{center}
931     \end{table}
932    
933     \begin{table}[htb]
934     \begin{center}
935 benhoob 1.8 \caption{\label{tab:wz2j} Data and Monte Carlo yields passing the WZ preselection and \njets\ $\geq$ 2. }
936 benhoob 1.1 \begin{tabular}{lccccc}
937 benhoob 1.12
938     %Loading babies at : ../output/V00-02-00
939     %-------------------------------------
940     %USING SKIMMED SAMPLES WITH NJETS >= 2
941     %-------------------------------------
942    
943     %Using selection : ((((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101))&&(njets>=2)
944     %Using weight : weight * 19.3 * trgeff * vtxweight
945    
946 benhoob 1.1 \hline
947 benhoob 1.3 \hline
948 benhoob 1.12 Sample & ee & $\mu\mu$ & e$\mu$ & total \\
949 benhoob 1.1 \hline
950 benhoob 1.12 %SCALING ZJETS BY 111/946
951     \ttbar & 1.6 $\pm$ 0.9 & 3.4 $\pm$ 1.5 & 1.8 $\pm$ 1.1 & 6.9 $\pm$ 2.0 \\
952     \zjets & 1.9 $\pm$ 1.9 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 1.9 $\pm$ 1.9 \\
953     WZ & 40.0 $\pm$ 0.7 & 51.5 $\pm$ 0.7 & 2.7 $\pm$ 0.2 & 94.3 $\pm$ 1.0 \\
954     ZZ & 1.0 $\pm$ 0.0 & 1.4 $\pm$ 0.0 & 0.1 $\pm$ 0.0 & 2.6 $\pm$ 0.0 \\
955     single top & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 \\
956 benhoob 1.5 WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
957 benhoob 1.12 ttV & 8.0 $\pm$ 0.4 & 9.5 $\pm$ 0.4 & 2.2 $\pm$ 0.2 & 19.6 $\pm$ 0.6 \\
958     VVV & 1.9 $\pm$ 0.1 & 2.6 $\pm$ 0.1 & 0.2 $\pm$ 0.0 & 4.6 $\pm$ 0.2 \\
959 benhoob 1.5 \hline
960 benhoob 1.12 tot SM MC & 54.4 $\pm$ 2.2 & 69.0 $\pm$ 1.8 & 6.9 $\pm$ 1.1 &130.4 $\pm$ 3.1 \\
961 benhoob 1.1 \hline
962 benhoob 1.12 data & 87 & 91 & 22 & 200 \\
963 benhoob 1.1 \hline
964     \hline
965    
966     \end{tabular}
967     \end{center}
968     \end{table}
969    
970     \begin{figure}[tbh]
971     \begin{center}
972 benhoob 1.13 \includegraphics[width=1\linewidth]{plots/WZ_19fb.pdf}
973 benhoob 1.1 \caption{\label{fig:wz}\protect
974     Data vs. MC comparisons for the WZ selection discussed in the text for \lumi.
975     The number of jets, missing transverse energy, and Z boson transverse momentum are displayed.
976     }
977 benhoob 1.13 \begin{comment}
978     Loading babies at : ../output/V00-02-00
979     Using selection : (((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101)
980     Using weight : weight * 19.3 * trgeff * vtxweight
981     Plotting var njets flavor sf
982     compareDataMC : apply trigeff 1
983     MC yield VVV 7.73
984     MC yield ttV 18.95
985     MC yield single top 0.51
986     MC yield WW 0.09
987     MC yield ZZ 12.38
988     MC yield WZ 562.71
989     MC yield ttbar 9.18
990     SCALING ZJETS BY 111/946
991     MC yield zjets 8.85
992     MC total yield 620.39
993     data yield 703
994     Plotting var pfmet flavor sf
995     compareDataMC : apply trigeff 1
996     MC yield VVV 7.73
997     MC yield ttV 18.95
998     MC yield single top 0.51
999     MC yield WW 0.09
1000     MC yield ZZ 12.38
1001     MC yield WZ 562.72
1002     MC yield ttbar 9.18
1003     SCALING ZJETS BY 111/946
1004     MC yield zjets 8.85
1005     MC total yield 620.40
1006     data yield 703
1007     Plotting var dileppt flavor sf
1008     compareDataMC : apply trigeff 1
1009     MC yield VVV 7.73
1010     MC yield ttV 18.95
1011     MC yield single top 0.51
1012     MC yield WW 0.09
1013     MC yield ZZ 12.38
1014     MC yield WZ 562.71
1015     MC yield ttbar 9.18
1016     SCALING ZJETS BY 111/946
1017     MC yield zjets 8.85
1018     MC total yield 620.38
1019     data yield 703
1020     \end{comment}
1021    
1022 benhoob 1.1 \end{center}
1023     \end{figure}
1024    
1025     \clearpage
1026    
1027     \subsubsection{ZZ Validation Studies}
1028     \label{sec:bkg_zz}
1029    
1030     A pure ZZ sample can be selected in data with the requirements:
1031    
1032     \begin{itemize}
1033     \item Exactly 4 $p_T>20$~GeV leptons passing analysis identication and isolation requirements,
1034     \item 2 of the 4 leptons must fall in the $Z$ window 81-101 GeV.
1035     \end{itemize}
1036    
1037 benhoob 1.6 The data and MC yields passing the above selection are in Table~\ref{tab:zz}.
1038     In this ZZ-dominated sample we observe good agreement between the data yield and the MC prediction.
1039 benhoob 1.16 After requiring 2 jets (corresponding to the requirement in the analysis selection), we observe 14 events
1040     in data and the MC predicts $13.2\pm0.2$ events. Due to the limited statistical precision we assign an uncertainty
1041     of 50\% on the ZZ yield.
1042 benhoob 1.1
1043     \begin{table}[htb]
1044     \begin{center}
1045     \caption{\label{tab:zz} Data and Monte Carlo yields for the ZZ preselection. }
1046     \begin{tabular}{lccccc}
1047 benhoob 1.13
1048     %Loading babies at : ../output/V00-02-00
1049     %Using selection : ((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==4 && lep3.pt()>20.0 && lep4.pt()>20.0))&&(dilmass>81 && dilmass<101)
1050     %Using weight : weight * 19.3 * trgeff * vtxweight
1051    
1052 benhoob 1.1 \hline
1053 benhoob 1.3 \hline
1054 benhoob 1.1 Sample & ee & $\mu\mu$ & e$\mu$ & total \\
1055     \hline
1056 benhoob 1.13 %SCALING ZZ BY 1.92
1057     ZZ & 52.7 $\pm$ 0.2 & 73.3 $\pm$ 0.2 & 3.4 $\pm$ 0.0 &129.4 $\pm$ 0.3 \\
1058     WZ & 0.1 $\pm$ 0.0 & 0.1 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.3 $\pm$ 0.1 \\
1059 benhoob 1.6 %SCALING ZJETS BY 111/946
1060 benhoob 1.1 \zjets & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
1061     \ttbar & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
1062 benhoob 1.13 WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
1063 benhoob 1.6 single top & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
1064 benhoob 1.13 ttV & 1.3 $\pm$ 0.2 & 1.4 $\pm$ 0.2 & 0.3 $\pm$ 0.1 & 3.0 $\pm$ 0.2 \\
1065     VVV & 0.6 $\pm$ 0.1 & 0.8 $\pm$ 0.1 & 0.0 $\pm$ 0.0 & 1.4 $\pm$ 0.1 \\
1066 benhoob 1.1 \hline
1067 benhoob 1.13 tot SM MC & 54.7 $\pm$ 0.3 & 75.6 $\pm$ 0.3 & 3.8 $\pm$ 0.1 &134.1 $\pm$ 0.4 \\
1068 benhoob 1.6 \hline
1069 benhoob 1.13 data & 56 & 80 & 5 & 141 \\
1070 benhoob 1.1 \hline
1071     \hline
1072 benhoob 1.13
1073 benhoob 1.1 \end{tabular}
1074     \end{center}
1075     \end{table}
1076    
1077     \begin{figure}[tbh]
1078     \begin{center}
1079 benhoob 1.14 \includegraphics[width=1\linewidth]{plots/ZZ_19fb.pdf}
1080 benhoob 1.1 \caption{\label{fig:zz}\protect
1081 benhoob 1.3 Data vs. MC comparisons for the ZZ selection discussed in the text for \lumi.
1082     The number of jets, missing transverse energy, and Z boson transverse momentum are displayed.
1083 benhoob 1.1 }
1084     \end{center}
1085     \end{figure}
1086    
1087 benhoob 1.15 \begin{comment}
1088     Loading babies at : ../output/V00-02-00
1089     Using selection : ((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==4 && lep3.pt()>20.0 && lep4.pt()>20.0))&&(dilmass>81 && dilmass<101)
1090     Using weight : weight * 19.3 * trgeff * vtxweight
1091     Plotting var njets flavor sf
1092     compareDataMC : apply trigeff 1
1093    
1094     MC yield VVV 1.40
1095     MC yield ttV 2.64
1096     MC yield single top 0.00
1097     MC yield WW 0.00
1098     MC yield ttbar 0.00
1099     SCALING ZJETS BY 111/946
1100     MC yield zjets 0.00
1101     MC yield WZ 0.27
1102     SCALING ZJETS BY 1.92
1103     MC yield ZZ 125.99
1104     MC total yield 130.31
1105     data yield 136
1106     Plotting var pfmet flavor sf
1107     compareDataMC : apply trigeff 1
1108     MC yield VVV 1.40
1109     MC yield ttV 2.64
1110     MC yield single top 0.00
1111     MC yield WW 0.00
1112     MC yield ttbar 0.00
1113     SCALING ZJETS BY 111/946
1114     MC yield zjets 0.00
1115     MC yield WZ 0.27
1116     SCALING ZJETS BY 1.92
1117     MC yield ZZ 126.00
1118     MC total yield 130.32
1119     data yield 136
1120     Plotting var dileppt flavor sf
1121     compareDataMC : apply trigeff 1
1122     MC yield VVV 1.40
1123     MC yield ttV 2.64
1124     MC yield single top 0.00
1125     MC yield WW 0.00
1126     MC yield ttbar 0.00
1127     SCALING ZJETS BY 111/946
1128     MC yield zjets 0.00
1129     MC yield WZ 0.27
1130     SCALING ZJETS BY 1.92
1131     MC yield ZZ 126.00
1132     MC total yield 130.33
1133     data yield 136
1134     \end{comment}
1135 benhoob 1.1
1136    
1137    
1138 benhoob 1.4 %\subsection{Estimating the Rare SM Backgrounds with MC}
1139     %\label{sec:bkg_raresm}
1140 benhoob 1.1
1141 benhoob 1.4 %{\bf TODO: list samples, yields in preselection region, and show \MET\ distribution}