1 |
benhoob |
1.4 |
%\clearpage
|
2 |
benhoob |
1.1 |
\section{Background Estimation Techniques}
|
3 |
|
|
\label{sec:bkg}
|
4 |
|
|
|
5 |
|
|
In this section we describe the techniques used to estimate the SM backgrounds in our signal regions defined by requirements of large \MET.
|
6 |
benhoob |
1.4 |
The SM backgrounds fall into three categories:
|
7 |
benhoob |
1.1 |
|
8 |
|
|
\begin{itemize}
|
9 |
benhoob |
1.2 |
\item \zjets: this is the dominant background after the preselection. The \MET\ in \zjets\ events is estimated with the
|
10 |
benhoob |
1.1 |
``\MET\ templates'' technique described in Sec.~\ref{sec:bkg_zjets};
|
11 |
|
|
\item Flavor-symmetric (FS) backgrounds: this category includes processes which produces 2 leptons of uncorrelated flavor. It is dominated
|
12 |
|
|
by \ttbar\ but also contains Z$\to\tau\tau$, WW, and single top processes. This is the dominant contribution in the signal regions, and it
|
13 |
benhoob |
1.2 |
is estimated using a data control sample of e$\mu$ events as described in Sec.~\ref{sec:bkg_fs};
|
14 |
benhoob |
1.1 |
\item WZ and ZZ backgrounds: this background is estimated from MC, after validating the MC modeling of these processes using data control
|
15 |
benhoob |
1.2 |
samples with jets and exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample) as described in Sec.~\ref{sec:bkg_vz};
|
16 |
benhoob |
1.4 |
%\item Rare SM backgrounds: this background contains rare processes such as $t\bar{t}$V and triple vector boson processes VVV (V=W,Z).
|
17 |
|
|
%This background is estimated from MC as described in Sec.~\ref{sec:bkg_raresm}. {\bf FIXME: add rare MC}
|
18 |
benhoob |
1.1 |
\end{itemize}
|
19 |
|
|
|
20 |
|
|
\subsection{Estimating the \zjets\ Background with \MET\ Templates}
|
21 |
|
|
\label{sec:bkg_zjets}
|
22 |
|
|
|
23 |
benhoob |
1.3 |
The premise of this data driven technique is that \MET\ in \zjets\ events
|
24 |
benhoob |
1.1 |
is produced by the hadronic recoil system and {\it not} by the leptons making up the Z.
|
25 |
|
|
Therefore, the basic idea of the \MET\ template method is to measure the \MET\ distribution in
|
26 |
|
|
a control sample which has no true MET and the same general attributes regarding
|
27 |
|
|
fake MET as in \zjets\ events. We thus use a sample of \gjets\ events, since both \zjets\
|
28 |
|
|
and \gjets\ events consist of a well-measured object recoiling against hadronic jets.
|
29 |
|
|
|
30 |
|
|
For selecting photon-like objects, the very loose photon selection described in Sec.~\ref{sec:phosel} is used.
|
31 |
|
|
It is not essential for the photon sample to have high purity. For our purposes, selecting jets with predominantly
|
32 |
|
|
electromagnetic energy deposition in a good fiducial volume suffices to ensure that
|
33 |
|
|
they are well measured and do not contribute to fake \MET. The \gjets\ events are selected with a suite of
|
34 |
|
|
single photon triggers with \pt thresholds varying from 22--90 GeV. The events are weighted by the trigger prescale
|
35 |
|
|
such that \gjets\ events evenly sample the conditions over the full period of data taking.
|
36 |
|
|
There remains a small difference in the PU conditions in the \gjets\ vs. \zjets\ samples due to the different
|
37 |
|
|
dependencies of the $\gamma$ vs. Z isolation efficiencies on PU. To account for this, we reweight the \gjets\ samples
|
38 |
|
|
to match the distribution of reconstructed primary vertices in the \zjets\ sample.
|
39 |
|
|
|
40 |
|
|
To account for kinematic differences between the hadronic systems in the control vs. signal
|
41 |
|
|
samples, we measure the \MET\ distributions in the \gjets\ sample in bins of the number of jets
|
42 |
benhoob |
1.3 |
and the scalar sum of jet transverse energies (\Ht). These \MET\ templates are extracted separately from the 5 single photon
|
43 |
|
|
triggers with thresholds 22, 36, 50, 75, and 90 GeV, so that the templates are effectively binned in photon \pt.
|
44 |
|
|
All \MET distributions are normalized to unit area to form ``MET templates''.
|
45 |
|
|
The prediction of the MET in each \Z event is the template which corresponds to the \njets,
|
46 |
|
|
\Ht, and Z \pt in the \zjets\ event. The prediction for the \Z sample is simply the sum of all such templates.
|
47 |
|
|
All templates are displayed in App.~\ref{app:templates}.
|
48 |
benhoob |
1.1 |
|
49 |
benhoob |
1.6 |
After preselection, there is a small contribution from backgrounds other than \zjets. To correct for this, the \MET\ templates
|
50 |
|
|
prediction is scaled such that the total background prediction matches the observed data yield in the \MET\ 0--60 GeV region.
|
51 |
|
|
Because the non-\zjets impurity in the low \MET\ region after preselection is very small, this results in
|
52 |
|
|
scaling factors of 0.985 (0.995) for the inclusive (targeted) search.
|
53 |
benhoob |
1.1 |
|
54 |
|
|
\subsection{Estimating the Flavor-Symmetric Background with e$\mu$ Events}
|
55 |
|
|
\label{sec:bkg_fs}
|
56 |
|
|
|
57 |
|
|
In this subsection we describe the background estimate for the FS background. Since this background produces equal rates of same-flavor (SF)
|
58 |
|
|
ee and $\mu\mu$ lepton pairs as opposite-flavor (OF) e$\mu$ lepton pairs, the OF yield can be used to estimate the SF yield, after
|
59 |
|
|
correcting for the different electron vs. muon offline selection efficiencies and the different efficiencies for the ee, $\mu\mu$, and e$\mu$ triggers.
|
60 |
|
|
|
61 |
|
|
An important quantity needed to translate from the OF yield to a prediction for the background in the SF final state is the ratio
|
62 |
|
|
$R_{\mu e} = \epsilon_\mu / \epsilon_e$, where $\epsilon_\mu$ ($\epsilon_e$) indicates the offline muon (electron) selection efficiency.
|
63 |
|
|
This quantity can be extracted from data using the observed Z$\to\mu\mu$ and Z$\to$ee yields in the preselection region, after correcting
|
64 |
|
|
for the different trigger efficiencies.
|
65 |
|
|
|
66 |
|
|
Hence we define:
|
67 |
|
|
|
68 |
|
|
\begin{itemize}
|
69 |
|
|
\item $N_{ee}^{\rm{trig}} = \epsilon_{ee}^{\rm{trig}}N_{ee}^{\rm{offline}}$,
|
70 |
|
|
\item $N_{\mu\mu}^{\rm{trig}} = \epsilon_{\mu\mu}^{\rm{trig}}N_{\mu\mu}^{\rm{offline}}$,
|
71 |
|
|
\item $N_{e\mu}^{\rm{trig}} = \epsilon_{e\mu}^{\rm{trig}}N_{e\mu}^{\rm{offline}}$.
|
72 |
|
|
\end{itemize}
|
73 |
|
|
|
74 |
benhoob |
1.3 |
Here $N_{\ell\ell}^{\rm{trig}}$ denotes the number of selected Z events in the $\ell\ell$ channel passing the offline and trigger selection
|
75 |
|
|
(in other words, the number of recorded and selected events), $\epsilon_{\ell\ell}^{\rm{trig}}$ is the trigger efficiency, and
|
76 |
|
|
$N_{\ell\ell}^{\rm{offline}}$ is the number of events that would have passed the offline selection if the trigger had an efficiency of 100\%.
|
77 |
benhoob |
1.1 |
Thus we calculate the quantity:
|
78 |
|
|
|
79 |
|
|
\begin{equation}
|
80 |
|
|
R_{\mu e} = \sqrt{\frac{N_{\mu\mu}^{\rm{offline}}}{N_{ee}^{\rm{offline}}}} = \sqrt{\frac{N_{\mu\mu}^{\rm{trig}}/\epsilon_{\mu\mu}^{\rm{trig}}}{N_{ee}^{\rm{trig}}/\epsilon_{ee}^{\rm{trig}}}}
|
81 |
benhoob |
1.15 |
= \sqrt{\frac{304953/0.88}{239661/0.95}} = 1.17\pm0.07.
|
82 |
benhoob |
1.1 |
\end{equation}
|
83 |
|
|
|
84 |
|
|
Here we have used the Z$\to\mu\mu$ and Z$\to$ee yields from Table~\ref{table:zyields_2j} and the trigger efficiencies quoted in Sec.~\ref{sec:datasets}.
|
85 |
benhoob |
1.4 |
The indicated uncertainty is due to the 3\% uncertainties in the trigger efficiencies. %{\bf FIXME: check for variation w.r.t. lepton \pt}.
|
86 |
benhoob |
1.1 |
The predicted yields in the ee and $\mu\mu$ final states are calculated from the observed e$\mu$ yield as
|
87 |
|
|
|
88 |
|
|
\begin{itemize}
|
89 |
|
|
\item $N_{ee}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{ee}^{\rm{trig}}} {2 R_{\mu e}}
|
90 |
benhoob |
1.11 |
= \frac{N_{e\mu}^{\rm{trig}}}{0.92}\frac{0.95}{2\times1.17} = (0.44\pm0.05) \times N_{e\mu}^{\rm{trig}}$ ,
|
91 |
benhoob |
1.1 |
\item $N_{\mu\mu}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{\mu\mu}^{\rm{trig}} R_{\mu e}} {2}
|
92 |
benhoob |
1.11 |
= \frac {N_{e\mu}^{\rm{trig}}} {0.95} \frac {0.88 \times 1.17}{2} = (0.54\pm0.07) \times N_{e\mu}^{\rm{trig}}$,
|
93 |
benhoob |
1.1 |
\end{itemize}
|
94 |
|
|
|
95 |
|
|
and the predicted yield in the combined ee and $\mu\mu$ channel is simply the sum of these two predictions:
|
96 |
|
|
|
97 |
|
|
\begin{itemize}
|
98 |
benhoob |
1.11 |
\item $N_{ee+\mu\mu}^{\rm{predicted}} = (0.98\pm0.06)\times N_{e\mu}^{\rm{trig}}$.
|
99 |
benhoob |
1.1 |
\end{itemize}
|
100 |
|
|
|
101 |
benhoob |
1.3 |
Note that the relative uncertainty in the combined ee and $\mu\mu$ prediction is smaller than those for the individual ee and $\mu\mu$ predictions
|
102 |
benhoob |
1.4 |
because the uncertainty in $R_{\mu e}$ cancels when summing the ee and $\mu\mu$ predictions. %{\bf N.B. these uncertainties are preliminary}.
|
103 |
benhoob |
1.1 |
|
104 |
|
|
To improve the statistical precision of the FS background estimate, we remove the requirement that the e$\mu$ lepton pair falls in the Z mass window.
|
105 |
|
|
Instead we scale the e$\mu$ yield by $K$, the efficiency for e$\mu$ events to satisfy the Z mass requirement, extracted from simulation. In Fig.~\ref{fig:K_incl}
|
106 |
benhoob |
1.6 |
we display the value of $K$ in data and simulation, for a variety of \MET\ requirements, for the inclusive analysis.
|
107 |
|
|
Based on this we chose $K=0.14\pm0.02$ for the lower \MET\ regions, $K=0.14\pm0.04$ for the \MET\ $>$ 200 GeV region,and $K=0.14\pm0.09$ for \MET\ $>$ 300 GeV,
|
108 |
|
|
where the larger uncertainties reflect the reduced statistical precision at large \MET.
|
109 |
benhoob |
1.1 |
The corresponding plot for the targeted analysis, including the b-veto, is displayed in Fig.~\ref{fig:K_targeted}.
|
110 |
|
|
Based on this we chose $K=0.13\pm0.02$
|
111 |
benhoob |
1.6 |
for all \MET\ regions up to \MET\ $>$ 150 GeV. For the \MET\ $>$ 200 GeV region we choose $K=0.13\pm0.05$, due to the reduced statistical precision.
|
112 |
benhoob |
1.1 |
|
113 |
|
|
\begin{figure}[!ht]
|
114 |
|
|
\begin{center}
|
115 |
|
|
\begin{tabular}{cc}
|
116 |
benhoob |
1.11 |
\includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_19fb.pdf} &
|
117 |
|
|
\includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_19fb.pdf} \\
|
118 |
benhoob |
1.1 |
\end{tabular}
|
119 |
benhoob |
1.6 |
\caption{\label{fig:K_incl}
|
120 |
benhoob |
1.1 |
The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
|
121 |
benhoob |
1.6 |
exclusive \MET\ intervals (right) for the inclusive analysis.
|
122 |
benhoob |
1.1 |
}
|
123 |
benhoob |
1.6 |
|
124 |
|
|
\begin{comment}
|
125 |
|
|
|
126 |
|
|
----------------------------------------
|
127 |
|
|
EXCLUSIVE RESULTS
|
128 |
|
|
----------------------------------------
|
129 |
|
|
|
130 |
|
|
Using selection : ((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20)
|
131 |
|
|
Using weight : vtxweight * weight
|
132 |
benhoob |
1.11 |
OF entries (total) 44537
|
133 |
|
|
OF entries (Z mass) 6051
|
134 |
|
|
K 0.135865
|
135 |
benhoob |
1.6 |
Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
|
136 |
|
|
Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
|
137 |
|
|
|
138 |
|
|
--------------------------------------------------------------
|
139 |
|
|
pfmet>0 && pfmet<30
|
140 |
|
|
|
141 |
|
|
data :
|
142 |
benhoob |
1.11 |
total : 7563
|
143 |
|
|
Z : 957
|
144 |
|
|
K : 0.13 +/- 0.004
|
145 |
benhoob |
1.6 |
|
146 |
|
|
MC :
|
147 |
|
|
total : 399.019
|
148 |
|
|
Z : 51.0493
|
149 |
|
|
K : 0.13 +/- 0.007
|
150 |
|
|
--------------------------------------------------------------
|
151 |
|
|
|
152 |
|
|
|
153 |
|
|
--------------------------------------------------------------
|
154 |
|
|
pfmet>30 && pfmet<60
|
155 |
|
|
|
156 |
|
|
data :
|
157 |
benhoob |
1.11 |
total : 14185
|
158 |
|
|
Z : 1893
|
159 |
|
|
K : 0.13 +/- 0.003
|
160 |
benhoob |
1.6 |
|
161 |
|
|
MC :
|
162 |
|
|
total : 755.309
|
163 |
|
|
Z : 111.206
|
164 |
|
|
K : 0.15 +/- 0.003
|
165 |
|
|
--------------------------------------------------------------
|
166 |
|
|
|
167 |
|
|
|
168 |
|
|
--------------------------------------------------------------
|
169 |
|
|
pfmet>60 && pfmet<100
|
170 |
|
|
|
171 |
|
|
data :
|
172 |
benhoob |
1.11 |
total : 14928
|
173 |
|
|
Z : 2122
|
174 |
|
|
K : 0.14 +/- 0.003
|
175 |
benhoob |
1.6 |
|
176 |
|
|
MC :
|
177 |
|
|
total : 838.418
|
178 |
|
|
Z : 123.554
|
179 |
|
|
K : 0.15 +/- 0.003
|
180 |
|
|
--------------------------------------------------------------
|
181 |
|
|
|
182 |
|
|
|
183 |
|
|
--------------------------------------------------------------
|
184 |
|
|
pfmet>100 && pfmet<200
|
185 |
|
|
|
186 |
|
|
data :
|
187 |
benhoob |
1.11 |
total : 7437
|
188 |
|
|
Z : 1029
|
189 |
|
|
K : 0.14 +/- 0.004
|
190 |
benhoob |
1.6 |
|
191 |
|
|
MC :
|
192 |
|
|
total : 451.624
|
193 |
|
|
Z : 67.7098
|
194 |
|
|
K : 0.15 +/- 0.004
|
195 |
|
|
--------------------------------------------------------------
|
196 |
|
|
|
197 |
|
|
|
198 |
|
|
--------------------------------------------------------------
|
199 |
|
|
pfmet>200 && pfmet<300
|
200 |
|
|
|
201 |
|
|
data :
|
202 |
benhoob |
1.11 |
total : 371
|
203 |
|
|
Z : 44
|
204 |
|
|
K : 0.12 +/- 0.018
|
205 |
benhoob |
1.6 |
|
206 |
|
|
MC :
|
207 |
|
|
total : 24.2441
|
208 |
|
|
Z : 2.67077
|
209 |
|
|
K : 0.11 +/- 0.013
|
210 |
|
|
--------------------------------------------------------------
|
211 |
|
|
|
212 |
|
|
|
213 |
|
|
--------------------------------------------------------------
|
214 |
|
|
pfmet>300
|
215 |
|
|
|
216 |
|
|
data :
|
217 |
benhoob |
1.11 |
total : 53
|
218 |
|
|
Z : 6
|
219 |
|
|
K : 0.11 +/- 0.046
|
220 |
benhoob |
1.6 |
|
221 |
|
|
MC :
|
222 |
|
|
total : 4.53108
|
223 |
|
|
Z : 0.230071
|
224 |
|
|
K : 0.05 +/- 0.022
|
225 |
|
|
--------------------------------------------------------------
|
226 |
|
|
|
227 |
|
|
|
228 |
|
|
----------------------------------------
|
229 |
|
|
INCLUSIVE RESULTS
|
230 |
|
|
----------------------------------------
|
231 |
|
|
|
232 |
|
|
Using selection : ((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20)
|
233 |
|
|
Using weight : vtxweight * weight
|
234 |
benhoob |
1.11 |
OF entries (total) 44537
|
235 |
|
|
OF entries (Z mass) 6051
|
236 |
|
|
K 0.135865
|
237 |
benhoob |
1.6 |
Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
|
238 |
|
|
Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
|
239 |
|
|
|
240 |
|
|
--------------------------------------------------------------
|
241 |
|
|
pfmet>0
|
242 |
|
|
|
243 |
|
|
data :
|
244 |
benhoob |
1.11 |
total : 44537
|
245 |
|
|
Z : 6051
|
246 |
benhoob |
1.6 |
K : 0.14 +/- 0.002
|
247 |
|
|
|
248 |
|
|
MC :
|
249 |
|
|
total : 2472.89
|
250 |
|
|
Z : 356.434
|
251 |
|
|
K : 0.14 +/- 0.002
|
252 |
|
|
--------------------------------------------------------------
|
253 |
|
|
|
254 |
|
|
|
255 |
|
|
--------------------------------------------------------------
|
256 |
|
|
pfmet>30
|
257 |
|
|
|
258 |
|
|
data :
|
259 |
benhoob |
1.11 |
total : 36974
|
260 |
|
|
Z : 5094
|
261 |
|
|
K : 0.14 +/- 0.002
|
262 |
benhoob |
1.6 |
|
263 |
|
|
MC :
|
264 |
|
|
total : 2074.05
|
265 |
|
|
Z : 305.382
|
266 |
|
|
K : 0.15 +/- 0.002
|
267 |
|
|
--------------------------------------------------------------
|
268 |
|
|
|
269 |
|
|
|
270 |
|
|
--------------------------------------------------------------
|
271 |
|
|
pfmet>60
|
272 |
|
|
|
273 |
|
|
data :
|
274 |
benhoob |
1.11 |
total : 22789
|
275 |
|
|
Z : 3201
|
276 |
|
|
K : 0.14 +/- 0.002
|
277 |
benhoob |
1.6 |
|
278 |
|
|
MC :
|
279 |
|
|
total : 1318.79
|
280 |
|
|
Z : 194.166
|
281 |
|
|
K : 0.15 +/- 0.002
|
282 |
|
|
--------------------------------------------------------------
|
283 |
|
|
|
284 |
|
|
|
285 |
|
|
--------------------------------------------------------------
|
286 |
|
|
pfmet>100
|
287 |
|
|
|
288 |
|
|
data :
|
289 |
benhoob |
1.11 |
total : 7861
|
290 |
|
|
Z : 1079
|
291 |
|
|
K : 0.14 +/- 0.004
|
292 |
benhoob |
1.6 |
|
293 |
|
|
MC :
|
294 |
|
|
total : 480.402
|
295 |
|
|
Z : 70.6107
|
296 |
|
|
K : 0.15 +/- 0.004
|
297 |
|
|
--------------------------------------------------------------
|
298 |
|
|
|
299 |
|
|
|
300 |
|
|
--------------------------------------------------------------
|
301 |
|
|
pfmet>200
|
302 |
|
|
|
303 |
|
|
data :
|
304 |
benhoob |
1.11 |
total : 424
|
305 |
|
|
Z : 50
|
306 |
|
|
K : 0.12 +/- 0.017
|
307 |
benhoob |
1.6 |
|
308 |
|
|
MC :
|
309 |
|
|
total : 28.7751
|
310 |
|
|
Z : 2.90084
|
311 |
|
|
K : 0.10 +/- 0.012
|
312 |
|
|
--------------------------------------------------------------
|
313 |
|
|
|
314 |
|
|
|
315 |
|
|
--------------------------------------------------------------
|
316 |
|
|
pfmet>300
|
317 |
|
|
|
318 |
|
|
data :
|
319 |
benhoob |
1.11 |
total : 53
|
320 |
|
|
Z : 6
|
321 |
|
|
K : 0.11 +/- 0.046
|
322 |
benhoob |
1.6 |
|
323 |
|
|
MC :
|
324 |
|
|
total : 4.53108
|
325 |
|
|
Z : 0.230071
|
326 |
|
|
K : 0.05 +/- 0.022
|
327 |
|
|
--------------------------------------------------------------
|
328 |
|
|
|
329 |
|
|
\end{comment}
|
330 |
|
|
|
331 |
benhoob |
1.1 |
\end{center}
|
332 |
|
|
\end{figure}
|
333 |
|
|
|
334 |
|
|
\begin{figure}[!hb]
|
335 |
|
|
\begin{center}
|
336 |
|
|
\begin{tabular}{cc}
|
337 |
benhoob |
1.11 |
\includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_bveto_19fb.pdf} &
|
338 |
|
|
\includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_bveto_19fb.pdf} \\
|
339 |
benhoob |
1.1 |
\end{tabular}
|
340 |
|
|
\caption{
|
341 |
|
|
The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
|
342 |
|
|
exclusive \MET\ intervals (right) for the targeted analysis, including the b-veto.
|
343 |
|
|
Based on this we chose $K=0.13\pm0.02$ for the \MET\ regions up to \MET\ $>$ 100 GeV.
|
344 |
|
|
For higher \MET\ regions we chose $K=0.13\pm0.07$.
|
345 |
benhoob |
1.4 |
%{\bf FIXME plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
|
346 |
benhoob |
1.1 |
\label{fig:K_targeted}
|
347 |
|
|
}
|
348 |
benhoob |
1.6 |
\begin{comment}
|
349 |
|
|
|
350 |
|
|
Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvm==0)
|
351 |
|
|
Using weight : vtxweight * weight
|
352 |
benhoob |
1.11 |
OF entries (total) 12006
|
353 |
|
|
OF entries (Z mass) 1407
|
354 |
|
|
K 0.117191
|
355 |
|
|
Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
|
356 |
|
|
Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
|
357 |
benhoob |
1.6 |
|
358 |
|
|
--------------------------------------------------------------
|
359 |
|
|
pfmet>0 && pfmet<30
|
360 |
|
|
|
361 |
|
|
data :
|
362 |
benhoob |
1.11 |
total : 2719
|
363 |
|
|
Z : 273
|
364 |
|
|
K : 0.10 +/- 0.006
|
365 |
benhoob |
1.6 |
|
366 |
|
|
MC :
|
367 |
|
|
total : 131.974
|
368 |
|
|
Z : 15.1946
|
369 |
|
|
K : 0.12 +/- 0.020
|
370 |
|
|
--------------------------------------------------------------
|
371 |
|
|
|
372 |
|
|
|
373 |
|
|
--------------------------------------------------------------
|
374 |
|
|
pfmet>30 && pfmet<60
|
375 |
|
|
|
376 |
|
|
data :
|
377 |
benhoob |
1.11 |
total : 3842
|
378 |
|
|
Z : 435
|
379 |
|
|
K : 0.11 +/- 0.005
|
380 |
benhoob |
1.6 |
|
381 |
|
|
MC :
|
382 |
|
|
total : 172.956
|
383 |
|
|
Z : 21.9369
|
384 |
|
|
K : 0.13 +/- 0.007
|
385 |
|
|
--------------------------------------------------------------
|
386 |
|
|
|
387 |
|
|
|
388 |
|
|
--------------------------------------------------------------
|
389 |
|
|
pfmet>60 && pfmet<80
|
390 |
|
|
|
391 |
|
|
data :
|
392 |
benhoob |
1.11 |
total : 2029
|
393 |
|
|
Z : 269
|
394 |
|
|
K : 0.13 +/- 0.008
|
395 |
benhoob |
1.6 |
|
396 |
|
|
MC :
|
397 |
|
|
total : 109.789
|
398 |
|
|
Z : 13.9792
|
399 |
|
|
K : 0.13 +/- 0.008
|
400 |
|
|
--------------------------------------------------------------
|
401 |
|
|
|
402 |
|
|
|
403 |
|
|
--------------------------------------------------------------
|
404 |
|
|
pfmet>80 && pfmet<100
|
405 |
|
|
|
406 |
|
|
data :
|
407 |
benhoob |
1.11 |
total : 1490
|
408 |
|
|
Z : 194
|
409 |
|
|
K : 0.13 +/- 0.009
|
410 |
benhoob |
1.6 |
|
411 |
|
|
MC :
|
412 |
|
|
total : 73.3643
|
413 |
|
|
Z : 11.5154
|
414 |
|
|
K : 0.16 +/- 0.010
|
415 |
|
|
--------------------------------------------------------------
|
416 |
|
|
|
417 |
|
|
|
418 |
|
|
--------------------------------------------------------------
|
419 |
|
|
pfmet>100 && pfmet<150
|
420 |
|
|
|
421 |
|
|
data :
|
422 |
benhoob |
1.11 |
total : 1467
|
423 |
|
|
Z : 189
|
424 |
|
|
K : 0.13 +/- 0.009
|
425 |
benhoob |
1.6 |
|
426 |
|
|
MC :
|
427 |
|
|
total : 86.7947
|
428 |
|
|
Z : 11.742
|
429 |
|
|
K : 0.14 +/- 0.009
|
430 |
|
|
--------------------------------------------------------------
|
431 |
|
|
|
432 |
|
|
|
433 |
|
|
--------------------------------------------------------------
|
434 |
|
|
pfmet>150 && pfmet<200
|
435 |
|
|
|
436 |
|
|
data :
|
437 |
benhoob |
1.11 |
total : 320
|
438 |
|
|
Z : 31
|
439 |
|
|
K : 0.10 +/- 0.017
|
440 |
benhoob |
1.6 |
|
441 |
|
|
MC :
|
442 |
|
|
total : 19.4473
|
443 |
|
|
Z : 2.97965
|
444 |
|
|
K : 0.15 +/- 0.017
|
445 |
|
|
--------------------------------------------------------------
|
446 |
|
|
|
447 |
|
|
|
448 |
|
|
--------------------------------------------------------------
|
449 |
|
|
pfmet>200
|
450 |
|
|
|
451 |
|
|
data :
|
452 |
benhoob |
1.11 |
total : 139
|
453 |
|
|
Z : 16
|
454 |
|
|
K : 0.12 +/- 0.029
|
455 |
benhoob |
1.6 |
|
456 |
|
|
MC :
|
457 |
|
|
total : 8.99801
|
458 |
|
|
Z : 0.794136
|
459 |
|
|
K : 0.09 +/- 0.021
|
460 |
|
|
--------------------------------------------------------------
|
461 |
|
|
|
462 |
benhoob |
1.11 |
Warning in <TROOT::Append>: Replacing existing TH1: hdummy (Potential memory leak).
|
463 |
|
|
Info in <TCanvas::Print>: pdf file ../plots/extractK_exclusive_bveto.pdf has been created
|
464 |
|
|
root [3] extractK(false,true,true)
|
465 |
benhoob |
1.6 |
Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvm==0)
|
466 |
|
|
Using weight : vtxweight * weight
|
467 |
benhoob |
1.11 |
OF entries (total) 12006
|
468 |
|
|
OF entries (Z mass) 1407
|
469 |
|
|
K 0.117191
|
470 |
benhoob |
1.6 |
Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
|
471 |
|
|
Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
|
472 |
|
|
|
473 |
|
|
--------------------------------------------------------------
|
474 |
|
|
pfmet>0
|
475 |
|
|
|
476 |
|
|
data :
|
477 |
benhoob |
1.11 |
total : 12006
|
478 |
|
|
Z : 1407
|
479 |
|
|
K : 0.12 +/- 0.003
|
480 |
benhoob |
1.6 |
|
481 |
|
|
MC :
|
482 |
|
|
total : 603.333
|
483 |
|
|
Z : 78.1422
|
484 |
|
|
K : 0.13 +/- 0.005
|
485 |
|
|
--------------------------------------------------------------
|
486 |
|
|
|
487 |
|
|
|
488 |
|
|
--------------------------------------------------------------
|
489 |
|
|
pfmet>30
|
490 |
|
|
|
491 |
|
|
data :
|
492 |
benhoob |
1.11 |
total : 9287
|
493 |
|
|
Z : 1134
|
494 |
|
|
K : 0.12 +/- 0.004
|
495 |
benhoob |
1.6 |
|
496 |
|
|
MC :
|
497 |
|
|
total : 471.396
|
498 |
|
|
Z : 62.9476
|
499 |
|
|
K : 0.13 +/- 0.004
|
500 |
|
|
--------------------------------------------------------------
|
501 |
|
|
|
502 |
|
|
|
503 |
|
|
--------------------------------------------------------------
|
504 |
|
|
pfmet>60
|
505 |
|
|
|
506 |
|
|
data :
|
507 |
benhoob |
1.11 |
total : 5445
|
508 |
|
|
Z : 699
|
509 |
|
|
K : 0.13 +/- 0.005
|
510 |
benhoob |
1.6 |
|
511 |
|
|
MC :
|
512 |
|
|
total : 298.41
|
513 |
|
|
Z : 41.0107
|
514 |
|
|
K : 0.14 +/- 0.005
|
515 |
|
|
--------------------------------------------------------------
|
516 |
|
|
|
517 |
|
|
|
518 |
|
|
--------------------------------------------------------------
|
519 |
|
|
pfmet>80
|
520 |
|
|
|
521 |
|
|
data :
|
522 |
benhoob |
1.11 |
total : 3416
|
523 |
|
|
Z : 430
|
524 |
|
|
K : 0.13 +/- 0.006
|
525 |
benhoob |
1.6 |
|
526 |
|
|
MC :
|
527 |
|
|
total : 188.602
|
528 |
|
|
Z : 27.0313
|
529 |
|
|
K : 0.14 +/- 0.006
|
530 |
|
|
--------------------------------------------------------------
|
531 |
|
|
|
532 |
|
|
|
533 |
|
|
--------------------------------------------------------------
|
534 |
|
|
pfmet>100
|
535 |
|
|
|
536 |
|
|
data :
|
537 |
benhoob |
1.11 |
total : 1926
|
538 |
|
|
Z : 236
|
539 |
|
|
K : 0.12 +/- 0.008
|
540 |
benhoob |
1.6 |
|
541 |
|
|
MC :
|
542 |
|
|
total : 115.24
|
543 |
|
|
Z : 15.5158
|
544 |
|
|
K : 0.13 +/- 0.008
|
545 |
|
|
--------------------------------------------------------------
|
546 |
|
|
|
547 |
|
|
|
548 |
|
|
--------------------------------------------------------------
|
549 |
|
|
pfmet>150
|
550 |
|
|
|
551 |
|
|
data :
|
552 |
benhoob |
1.11 |
total : 459
|
553 |
|
|
Z : 47
|
554 |
|
|
K : 0.10 +/- 0.015
|
555 |
benhoob |
1.6 |
|
556 |
|
|
MC :
|
557 |
|
|
total : 28.4454
|
558 |
|
|
Z : 3.77378
|
559 |
|
|
K : 0.13 +/- 0.014
|
560 |
|
|
--------------------------------------------------------------
|
561 |
|
|
|
562 |
|
|
|
563 |
|
|
--------------------------------------------------------------
|
564 |
|
|
pfmet>200
|
565 |
|
|
|
566 |
|
|
data :
|
567 |
benhoob |
1.11 |
total : 139
|
568 |
|
|
Z : 16
|
569 |
|
|
K : 0.12 +/- 0.029
|
570 |
benhoob |
1.6 |
|
571 |
|
|
MC :
|
572 |
|
|
total : 8.99801
|
573 |
|
|
Z : 0.794136
|
574 |
|
|
K : 0.09 +/- 0.021
|
575 |
|
|
--------------------------------------------------------------
|
576 |
|
|
|
577 |
|
|
\end{comment}
|
578 |
|
|
|
579 |
|
|
\end{center}
|
580 |
|
|
\end{figure}
|
581 |
|
|
|
582 |
|
|
|
583 |
|
|
\begin{comment}
|
584 |
|
|
|
585 |
|
|
\begin{figure}[!hb]
|
586 |
|
|
\begin{center}
|
587 |
|
|
\begin{tabular}{cc}
|
588 |
|
|
\includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_bvetoLoose_92fb.pdf} &
|
589 |
|
|
\includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_bvetoLoose_92fb.pdf} \\
|
590 |
|
|
\end{tabular}
|
591 |
|
|
\caption{
|
592 |
|
|
The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
|
593 |
|
|
exclusive \MET\ intervals (right) for the targeted analysis, including the b-veto.
|
594 |
|
|
%{\bf FIXME plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
|
595 |
|
|
\label{fig:K_targeted}}
|
596 |
|
|
|
597 |
|
|
|
598 |
|
|
root [2] extractK(true,false,true)
|
599 |
|
|
Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvl==0)
|
600 |
|
|
Using weight : vtxweight * weight
|
601 |
|
|
OF entries (total) 2715
|
602 |
|
|
OF entries (Z mass) 279
|
603 |
|
|
K 0.102762
|
604 |
|
|
Warning in <TStreamerInfo::Compile>: Counter fNClusterRange should not be skipped from class TTree
|
605 |
|
|
Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
|
606 |
|
|
|
607 |
|
|
--------------------------------------------------------------
|
608 |
|
|
pfmet>0 && pfmet<30
|
609 |
|
|
|
610 |
|
|
data :
|
611 |
|
|
total : 713
|
612 |
|
|
Z : 59
|
613 |
|
|
K : 0.08 +/- 0.011
|
614 |
|
|
|
615 |
|
|
MC :
|
616 |
|
|
total : 74.2549
|
617 |
|
|
Z : 7.09789
|
618 |
|
|
K : 0.10 +/- 0.025
|
619 |
|
|
--------------------------------------------------------------
|
620 |
|
|
|
621 |
|
|
|
622 |
|
|
--------------------------------------------------------------
|
623 |
|
|
pfmet>30 && pfmet<60
|
624 |
|
|
|
625 |
|
|
data :
|
626 |
|
|
total : 850
|
627 |
|
|
Z : 79
|
628 |
|
|
K : 0.09 +/- 0.010
|
629 |
|
|
|
630 |
|
|
MC :
|
631 |
|
|
total : 84.6973
|
632 |
|
|
Z : 9.55105
|
633 |
|
|
K : 0.11 +/- 0.009
|
634 |
|
|
--------------------------------------------------------------
|
635 |
|
|
|
636 |
|
|
|
637 |
|
|
--------------------------------------------------------------
|
638 |
|
|
pfmet>60 && pfmet<80
|
639 |
|
|
|
640 |
|
|
data :
|
641 |
|
|
total : 469
|
642 |
|
|
Z : 61
|
643 |
|
|
K : 0.13 +/- 0.017
|
644 |
|
|
|
645 |
|
|
MC :
|
646 |
|
|
total : 50.1496
|
647 |
|
|
Z : 5.92081
|
648 |
|
|
K : 0.12 +/- 0.012
|
649 |
|
|
--------------------------------------------------------------
|
650 |
|
|
|
651 |
|
|
|
652 |
|
|
--------------------------------------------------------------
|
653 |
|
|
pfmet>80 && pfmet<100
|
654 |
|
|
|
655 |
|
|
data :
|
656 |
|
|
total : 269
|
657 |
|
|
Z : 33
|
658 |
|
|
K : 0.12 +/- 0.021
|
659 |
|
|
|
660 |
|
|
MC :
|
661 |
|
|
total : 30.0547
|
662 |
|
|
Z : 4.67993
|
663 |
|
|
K : 0.16 +/- 0.014
|
664 |
|
|
--------------------------------------------------------------
|
665 |
|
|
|
666 |
|
|
|
667 |
|
|
--------------------------------------------------------------
|
668 |
|
|
pfmet>100 && pfmet<150
|
669 |
|
|
|
670 |
|
|
data :
|
671 |
|
|
total : 311
|
672 |
|
|
Z : 34
|
673 |
|
|
K : 0.11 +/- 0.019
|
674 |
|
|
|
675 |
|
|
MC :
|
676 |
|
|
total : 39.4475
|
677 |
|
|
Z : 5.02593
|
678 |
|
|
K : 0.13 +/- 0.014
|
679 |
|
|
--------------------------------------------------------------
|
680 |
|
|
|
681 |
|
|
|
682 |
|
|
--------------------------------------------------------------
|
683 |
|
|
pfmet>150 && pfmet<200
|
684 |
|
|
|
685 |
|
|
data :
|
686 |
|
|
total : 79
|
687 |
|
|
Z : 10
|
688 |
|
|
K : 0.13 +/- 0.040
|
689 |
|
|
|
690 |
|
|
MC :
|
691 |
|
|
total : 9.96228
|
692 |
|
|
Z : 1.4975
|
693 |
|
|
K : 0.15 +/- 0.023
|
694 |
|
|
--------------------------------------------------------------
|
695 |
|
|
|
696 |
|
|
|
697 |
|
|
--------------------------------------------------------------
|
698 |
|
|
pfmet>200
|
699 |
|
|
|
700 |
|
|
data :
|
701 |
|
|
total : 24
|
702 |
|
|
Z : 3
|
703 |
|
|
K : 0.12 +/- 0.072
|
704 |
|
|
|
705 |
|
|
MC :
|
706 |
|
|
total : 5.3503
|
707 |
|
|
Z : 0.425719
|
708 |
|
|
K : 0.08 +/- 0.027
|
709 |
|
|
--------------------------------------------------------------
|
710 |
|
|
|
711 |
|
|
root [3] Info in <TCanvas::Print>: pdf file /Users/benhoob/tas/ZMet2012/plots/extractK_exclusive_bvetoLoose_92fb.pdf has been created
|
712 |
|
|
|
713 |
|
|
root [3]
|
714 |
|
|
root [3] extractK(false,false,true)
|
715 |
|
|
Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvl==0)
|
716 |
|
|
Using weight : vtxweight * weight
|
717 |
|
|
OF entries (total) 2715
|
718 |
|
|
OF entries (Z mass) 279
|
719 |
|
|
K 0.102762
|
720 |
|
|
Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
|
721 |
|
|
Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
|
722 |
|
|
|
723 |
|
|
--------------------------------------------------------------
|
724 |
|
|
pfmet>0
|
725 |
|
|
|
726 |
|
|
data :
|
727 |
|
|
total : 2715
|
728 |
|
|
Z : 279
|
729 |
|
|
K : 0.10 +/- 0.006
|
730 |
|
|
|
731 |
|
|
MC :
|
732 |
|
|
total : 293.912
|
733 |
|
|
Z : 34.199
|
734 |
|
|
K : 0.12 +/- 0.008
|
735 |
|
|
--------------------------------------------------------------
|
736 |
|
|
|
737 |
|
|
|
738 |
|
|
--------------------------------------------------------------
|
739 |
|
|
pfmet>30
|
740 |
|
|
|
741 |
|
|
data :
|
742 |
|
|
total : 2002
|
743 |
|
|
Z : 220
|
744 |
|
|
K : 0.11 +/- 0.007
|
745 |
|
|
|
746 |
|
|
MC :
|
747 |
|
|
total : 219.661
|
748 |
|
|
Z : 27.101
|
749 |
|
|
K : 0.12 +/- 0.006
|
750 |
|
|
--------------------------------------------------------------
|
751 |
|
|
|
752 |
|
|
|
753 |
|
|
--------------------------------------------------------------
|
754 |
|
|
pfmet>60
|
755 |
|
|
|
756 |
|
|
data :
|
757 |
|
|
total : 1152
|
758 |
|
|
Z : 141
|
759 |
|
|
K : 0.12 +/- 0.010
|
760 |
|
|
|
761 |
|
|
MC :
|
762 |
|
|
total : 134.962
|
763 |
|
|
Z : 17.5498
|
764 |
|
|
K : 0.13 +/- 0.007
|
765 |
|
|
--------------------------------------------------------------
|
766 |
|
|
|
767 |
|
|
|
768 |
|
|
--------------------------------------------------------------
|
769 |
|
|
pfmet>80
|
770 |
|
|
|
771 |
|
|
data :
|
772 |
|
|
total : 683
|
773 |
|
|
Z : 80
|
774 |
|
|
K : 0.12 +/- 0.013
|
775 |
|
|
|
776 |
|
|
MC :
|
777 |
|
|
total : 84.8149
|
778 |
|
|
Z : 11.629
|
779 |
|
|
K : 0.14 +/- 0.009
|
780 |
|
|
--------------------------------------------------------------
|
781 |
|
|
|
782 |
|
|
|
783 |
|
|
--------------------------------------------------------------
|
784 |
|
|
pfmet>100
|
785 |
|
|
|
786 |
|
|
data :
|
787 |
|
|
total : 414
|
788 |
|
|
Z : 47
|
789 |
|
|
K : 0.11 +/- 0.017
|
790 |
|
|
|
791 |
|
|
MC :
|
792 |
|
|
total : 54.7604
|
793 |
|
|
Z : 6.94915
|
794 |
|
|
K : 0.13 +/- 0.011
|
795 |
|
|
--------------------------------------------------------------
|
796 |
|
|
|
797 |
|
|
|
798 |
|
|
--------------------------------------------------------------
|
799 |
|
|
pfmet>150
|
800 |
|
|
|
801 |
|
|
data :
|
802 |
|
|
total : 103
|
803 |
|
|
Z : 13
|
804 |
|
|
K : 0.13 +/- 0.035
|
805 |
|
|
|
806 |
|
|
MC :
|
807 |
|
|
total : 15.3125
|
808 |
|
|
Z : 1.92322
|
809 |
|
|
K : 0.13 +/- 0.019
|
810 |
|
|
--------------------------------------------------------------
|
811 |
|
|
|
812 |
|
|
|
813 |
|
|
--------------------------------------------------------------
|
814 |
|
|
pfmet>200
|
815 |
|
|
|
816 |
|
|
data :
|
817 |
|
|
total : 24
|
818 |
|
|
Z : 3
|
819 |
|
|
K : 0.12 +/- 0.072
|
820 |
|
|
|
821 |
|
|
MC :
|
822 |
|
|
total : 5.3503
|
823 |
|
|
Z : 0.425719
|
824 |
|
|
K : 0.08 +/- 0.027
|
825 |
|
|
--------------------------------------------------------------
|
826 |
|
|
|
827 |
|
|
|
828 |
benhoob |
1.1 |
\end{center}
|
829 |
|
|
\end{figure}
|
830 |
|
|
|
831 |
benhoob |
1.6 |
|
832 |
|
|
\end{comment}
|
833 |
|
|
|
834 |
|
|
|
835 |
benhoob |
1.1 |
\clearpage
|
836 |
|
|
|
837 |
|
|
\subsection{Estimating the WZ and ZZ Background with MC}
|
838 |
|
|
\label{sec:bkg_vz}
|
839 |
|
|
|
840 |
|
|
Backgrounds from W($\ell\nu$)Z($\ell\ell$) where the W lepton is not identified or is outside acceptance, and Z($\nu\nu$)Z($\ell\ell$),
|
841 |
|
|
are estimated from simulation. The MC modeling of these processes is validated by comparing the MC predictions with data in control samples
|
842 |
|
|
with exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample).
|
843 |
benhoob |
1.6 |
The critical samples are the WZJetsTo3LNu and ZZJetsTo4L, listed in Table~\ref{tab:mcsamples}
|
844 |
|
|
(the WZJetsTo2L2Q, ZZJetsTo2L2Q, and ZZJetsTo2L2Nu samples are also used in this analysis but their contribution to the 3-lepton and 4-lepton
|
845 |
|
|
control samples is negligible).
|
846 |
benhoob |
1.1 |
|
847 |
|
|
\subsubsection{WZ Validation Studies}
|
848 |
|
|
\label{sec:bkg_wz}
|
849 |
|
|
|
850 |
|
|
A pure WZ sample can be selected in data with the requirements:
|
851 |
|
|
|
852 |
|
|
\begin{itemize}
|
853 |
|
|
\item Exactly 3 $p_T>20$~GeV leptons passing analysis identication and isolation requirements,
|
854 |
|
|
\item 2 of the 3 leptons must fall in the Z window 81-101 GeV,
|
855 |
|
|
\item \MET $>$ 50 GeV (to suppress DY).
|
856 |
|
|
\end{itemize}
|
857 |
|
|
|
858 |
|
|
The data and MC yields passing the above selection are in Table~\ref{tab:wz}.
|
859 |
benhoob |
1.17 |
The inclusive yields (without any jet requirements) agree within 16\%, which is consistent within
|
860 |
|
|
the $\approx$15\% uncertainty in the theory prediction for the WZ cross section. A data vs. MC comparison of kinematic
|
861 |
benhoob |
1.1 |
distributions (jet multiplicity, \MET, Z \pt) is given in Fig.~\ref{fig:wz}. High \MET\
|
862 |
|
|
values in WZ and ZZ events arise from highly boosted W or Z bosons that decay leptonically,
|
863 |
|
|
and we therefore check that the MC does a reasonable job of reproducing the \pt distributions of the
|
864 |
|
|
leptonically decaying \Z. While the inclusive WZ yields are in reasonable agreement, we observe
|
865 |
|
|
an excess in data in events with at least 2 jets, corresponding to the jet multiplicity requirement
|
866 |
benhoob |
1.17 |
in our preselection. We observe 200 events in data while the MC predicts $130\pm3.1$~(stat), representing an excess of 53\%,
|
867 |
|
|
as indicated in Table~\ref{tab:wz2j}, and we therefore assess an uncertainty of 50\% on the WZ background.
|
868 |
|
|
%We note that the contributions from fake leptons and from \zjets\ with mismeasured \MET\
|
869 |
|
|
%is underestimated in the MC.
|
870 |
|
|
%This excess will be studied further. For the time being, based on these studies we currently assess an uncertainty of 50\% on the WZ yield.
|
871 |
|
|
%A data vs. MC comparison of several kinematic quantities in the sample with 3 leptons and at least 2 jets can be found in App.~\ref{app:WZ}.
|
872 |
benhoob |
1.7 |
|
873 |
|
|
\begin{comment}
|
874 |
|
|
We note some possible contributions to this discrepancy:
|
875 |
benhoob |
1.1 |
|
876 |
|
|
\begin{itemize}
|
877 |
|
|
|
878 |
benhoob |
1.6 |
\item {\bf The following checks refer to the 5.2 fb$^{-1}$ results and will be updated.}
|
879 |
|
|
|
880 |
benhoob |
1.1 |
\item The \zjets\ contribution is under-estimated here, for 2 reasons: first, because the \zjets\
|
881 |
|
|
yield passing a \MET $>$ 50 GeV requirement is under-estimated in MC and second, because the fake
|
882 |
|
|
rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends
|
883 |
|
|
on the \zjets\ yield, if the \zjets\ yield is doubled then the excess is reduced from 78\% to 55\%.
|
884 |
benhoob |
1.4 |
Also note that we are currently using 10\% of the \zjets\ MC sample and there is 1 event with a weight
|
885 |
|
|
of about 5, so the plots and tables will be remade with full \zjets\ sample.
|
886 |
benhoob |
1.1 |
|
887 |
|
|
\item The \ttbar\ contribution is under-estimated here because the fake
|
888 |
|
|
rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends
|
889 |
|
|
on the \ttbar\ yield, if the \ttbar\ yield is doubled then the excess is reduced from 78\% to 57\%.
|
890 |
|
|
|
891 |
|
|
\item Currently no attempt is made to reject jets from pile-up interactions, which may be responsible
|
892 |
benhoob |
1.3 |
for some of the excess at large \njets. To check this, we increase the jet \pt threhsold to 40 GeV, which
|
893 |
|
|
helps to suppress PU jets, and observe 39 events in data vs. an MC prediction of $25\pm5.2$~(stat),
|
894 |
benhoob |
1.1 |
decreasing the excess from 78\% to 58\%. In the future this may be improved by explicitly
|
895 |
|
|
requiring the jets to be consistent with originating from the signal primary vertex.
|
896 |
|
|
|
897 |
|
|
\end{itemize}
|
898 |
benhoob |
1.7 |
\end{comment}
|
899 |
|
|
|
900 |
benhoob |
1.1 |
|
901 |
|
|
|
902 |
|
|
\begin{table}[htb]
|
903 |
|
|
\begin{center}
|
904 |
|
|
\caption{\label{tab:wz} Data and Monte Carlo yields passing the WZ preselection. }
|
905 |
|
|
\begin{tabular}{lccccc}
|
906 |
benhoob |
1.12 |
|
907 |
|
|
%Loading babies at : ../output/V00-02-00
|
908 |
|
|
%Using selection : (((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101)
|
909 |
|
|
%Using weight : weight * 19.3 * trgeff * vtxweight
|
910 |
|
|
|
911 |
benhoob |
1.1 |
\hline
|
912 |
benhoob |
1.3 |
\hline
|
913 |
benhoob |
1.12 |
Sample & ee & $\mu\mu$ & e$\mu$ & total \\
|
914 |
benhoob |
1.1 |
\hline
|
915 |
benhoob |
1.12 |
%SCALING ZJETS BY 111/946
|
916 |
|
|
WZ &244.9 $\pm$ 1.6 &317.9 $\pm$ 1.8 & 17.0 $\pm$ 0.4 &579.7 $\pm$ 2.4 \\
|
917 |
|
|
\zjets & 2.5 $\pm$ 2.0 & 6.4 $\pm$ 3.9 & 0.0 $\pm$ 0.0 & 8.9 $\pm$ 4.3 \\
|
918 |
|
|
ZZ & 5.3 $\pm$ 0.0 & 7.1 $\pm$ 0.1 & 0.4 $\pm$ 0.0 & 12.8 $\pm$ 0.1 \\
|
919 |
|
|
\ttbar & 2.5 $\pm$ 1.3 & 6.7 $\pm$ 2.0 & 7.5 $\pm$ 2.1 & 16.7 $\pm$ 3.2 \\
|
920 |
|
|
single top & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 \\
|
921 |
|
|
WW & 0.0 $\pm$ 0.0 & 0.1 $\pm$ 0.1 & 0.2 $\pm$ 0.1 & 0.3 $\pm$ 0.1 \\
|
922 |
|
|
ttV & 8.6 $\pm$ 0.4 & 10.3 $\pm$ 0.4 & 2.5 $\pm$ 0.2 & 21.5 $\pm$ 0.7 \\
|
923 |
|
|
VVV & 3.4 $\pm$ 0.1 & 4.3 $\pm$ 0.1 & 0.6 $\pm$ 0.1 & 8.3 $\pm$ 0.2 \\
|
924 |
benhoob |
1.5 |
\hline
|
925 |
benhoob |
1.12 |
tot SM MC &267.1 $\pm$ 2.9 &353.3 $\pm$ 4.7 & 28.2 $\pm$ 2.2 &648.6 $\pm$ 6.0 \\
|
926 |
benhoob |
1.1 |
\hline
|
927 |
benhoob |
1.12 |
data & 312 & 391 & 50 & 753 \\
|
928 |
benhoob |
1.1 |
\hline
|
929 |
|
|
\hline
|
930 |
|
|
|
931 |
|
|
\end{tabular}
|
932 |
|
|
\end{center}
|
933 |
|
|
\end{table}
|
934 |
|
|
|
935 |
|
|
\begin{table}[htb]
|
936 |
|
|
\begin{center}
|
937 |
benhoob |
1.8 |
\caption{\label{tab:wz2j} Data and Monte Carlo yields passing the WZ preselection and \njets\ $\geq$ 2. }
|
938 |
benhoob |
1.1 |
\begin{tabular}{lccccc}
|
939 |
benhoob |
1.12 |
|
940 |
|
|
%Loading babies at : ../output/V00-02-00
|
941 |
|
|
%-------------------------------------
|
942 |
|
|
%USING SKIMMED SAMPLES WITH NJETS >= 2
|
943 |
|
|
%-------------------------------------
|
944 |
|
|
|
945 |
|
|
%Using selection : ((((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101))&&(njets>=2)
|
946 |
|
|
%Using weight : weight * 19.3 * trgeff * vtxweight
|
947 |
|
|
|
948 |
benhoob |
1.1 |
\hline
|
949 |
benhoob |
1.3 |
\hline
|
950 |
benhoob |
1.12 |
Sample & ee & $\mu\mu$ & e$\mu$ & total \\
|
951 |
benhoob |
1.1 |
\hline
|
952 |
benhoob |
1.12 |
%SCALING ZJETS BY 111/946
|
953 |
|
|
\ttbar & 1.6 $\pm$ 0.9 & 3.4 $\pm$ 1.5 & 1.8 $\pm$ 1.1 & 6.9 $\pm$ 2.0 \\
|
954 |
|
|
\zjets & 1.9 $\pm$ 1.9 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 1.9 $\pm$ 1.9 \\
|
955 |
|
|
WZ & 40.0 $\pm$ 0.7 & 51.5 $\pm$ 0.7 & 2.7 $\pm$ 0.2 & 94.3 $\pm$ 1.0 \\
|
956 |
|
|
ZZ & 1.0 $\pm$ 0.0 & 1.4 $\pm$ 0.0 & 0.1 $\pm$ 0.0 & 2.6 $\pm$ 0.0 \\
|
957 |
|
|
single top & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 \\
|
958 |
benhoob |
1.5 |
WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
|
959 |
benhoob |
1.12 |
ttV & 8.0 $\pm$ 0.4 & 9.5 $\pm$ 0.4 & 2.2 $\pm$ 0.2 & 19.6 $\pm$ 0.6 \\
|
960 |
|
|
VVV & 1.9 $\pm$ 0.1 & 2.6 $\pm$ 0.1 & 0.2 $\pm$ 0.0 & 4.6 $\pm$ 0.2 \\
|
961 |
benhoob |
1.5 |
\hline
|
962 |
benhoob |
1.12 |
tot SM MC & 54.4 $\pm$ 2.2 & 69.0 $\pm$ 1.8 & 6.9 $\pm$ 1.1 &130.4 $\pm$ 3.1 \\
|
963 |
benhoob |
1.1 |
\hline
|
964 |
benhoob |
1.12 |
data & 87 & 91 & 22 & 200 \\
|
965 |
benhoob |
1.1 |
\hline
|
966 |
|
|
\hline
|
967 |
|
|
|
968 |
|
|
\end{tabular}
|
969 |
|
|
\end{center}
|
970 |
|
|
\end{table}
|
971 |
|
|
|
972 |
|
|
\begin{figure}[tbh]
|
973 |
|
|
\begin{center}
|
974 |
benhoob |
1.13 |
\includegraphics[width=1\linewidth]{plots/WZ_19fb.pdf}
|
975 |
benhoob |
1.1 |
\caption{\label{fig:wz}\protect
|
976 |
|
|
Data vs. MC comparisons for the WZ selection discussed in the text for \lumi.
|
977 |
|
|
The number of jets, missing transverse energy, and Z boson transverse momentum are displayed.
|
978 |
|
|
}
|
979 |
benhoob |
1.13 |
\begin{comment}
|
980 |
|
|
Loading babies at : ../output/V00-02-00
|
981 |
|
|
Using selection : (((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101)
|
982 |
|
|
Using weight : weight * 19.3 * trgeff * vtxweight
|
983 |
|
|
Plotting var njets flavor sf
|
984 |
|
|
compareDataMC : apply trigeff 1
|
985 |
|
|
MC yield VVV 7.73
|
986 |
|
|
MC yield ttV 18.95
|
987 |
|
|
MC yield single top 0.51
|
988 |
|
|
MC yield WW 0.09
|
989 |
|
|
MC yield ZZ 12.38
|
990 |
|
|
MC yield WZ 562.71
|
991 |
|
|
MC yield ttbar 9.18
|
992 |
|
|
SCALING ZJETS BY 111/946
|
993 |
|
|
MC yield zjets 8.85
|
994 |
|
|
MC total yield 620.39
|
995 |
|
|
data yield 703
|
996 |
|
|
Plotting var pfmet flavor sf
|
997 |
|
|
compareDataMC : apply trigeff 1
|
998 |
|
|
MC yield VVV 7.73
|
999 |
|
|
MC yield ttV 18.95
|
1000 |
|
|
MC yield single top 0.51
|
1001 |
|
|
MC yield WW 0.09
|
1002 |
|
|
MC yield ZZ 12.38
|
1003 |
|
|
MC yield WZ 562.72
|
1004 |
|
|
MC yield ttbar 9.18
|
1005 |
|
|
SCALING ZJETS BY 111/946
|
1006 |
|
|
MC yield zjets 8.85
|
1007 |
|
|
MC total yield 620.40
|
1008 |
|
|
data yield 703
|
1009 |
|
|
Plotting var dileppt flavor sf
|
1010 |
|
|
compareDataMC : apply trigeff 1
|
1011 |
|
|
MC yield VVV 7.73
|
1012 |
|
|
MC yield ttV 18.95
|
1013 |
|
|
MC yield single top 0.51
|
1014 |
|
|
MC yield WW 0.09
|
1015 |
|
|
MC yield ZZ 12.38
|
1016 |
|
|
MC yield WZ 562.71
|
1017 |
|
|
MC yield ttbar 9.18
|
1018 |
|
|
SCALING ZJETS BY 111/946
|
1019 |
|
|
MC yield zjets 8.85
|
1020 |
|
|
MC total yield 620.38
|
1021 |
|
|
data yield 703
|
1022 |
|
|
\end{comment}
|
1023 |
|
|
|
1024 |
benhoob |
1.1 |
\end{center}
|
1025 |
|
|
\end{figure}
|
1026 |
|
|
|
1027 |
|
|
\clearpage
|
1028 |
|
|
|
1029 |
|
|
\subsubsection{ZZ Validation Studies}
|
1030 |
|
|
\label{sec:bkg_zz}
|
1031 |
|
|
|
1032 |
|
|
A pure ZZ sample can be selected in data with the requirements:
|
1033 |
|
|
|
1034 |
|
|
\begin{itemize}
|
1035 |
|
|
\item Exactly 4 $p_T>20$~GeV leptons passing analysis identication and isolation requirements,
|
1036 |
|
|
\item 2 of the 4 leptons must fall in the $Z$ window 81-101 GeV.
|
1037 |
|
|
\end{itemize}
|
1038 |
|
|
|
1039 |
benhoob |
1.6 |
The data and MC yields passing the above selection are in Table~\ref{tab:zz}.
|
1040 |
|
|
In this ZZ-dominated sample we observe good agreement between the data yield and the MC prediction.
|
1041 |
benhoob |
1.16 |
After requiring 2 jets (corresponding to the requirement in the analysis selection), we observe 14 events
|
1042 |
|
|
in data and the MC predicts $13.2\pm0.2$ events. Due to the limited statistical precision we assign an uncertainty
|
1043 |
|
|
of 50\% on the ZZ yield.
|
1044 |
benhoob |
1.1 |
|
1045 |
|
|
\begin{table}[htb]
|
1046 |
|
|
\begin{center}
|
1047 |
|
|
\caption{\label{tab:zz} Data and Monte Carlo yields for the ZZ preselection. }
|
1048 |
|
|
\begin{tabular}{lccccc}
|
1049 |
benhoob |
1.13 |
|
1050 |
|
|
%Loading babies at : ../output/V00-02-00
|
1051 |
|
|
%Using selection : ((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==4 && lep3.pt()>20.0 && lep4.pt()>20.0))&&(dilmass>81 && dilmass<101)
|
1052 |
|
|
%Using weight : weight * 19.3 * trgeff * vtxweight
|
1053 |
|
|
|
1054 |
benhoob |
1.1 |
\hline
|
1055 |
benhoob |
1.3 |
\hline
|
1056 |
benhoob |
1.1 |
Sample & ee & $\mu\mu$ & e$\mu$ & total \\
|
1057 |
|
|
\hline
|
1058 |
benhoob |
1.13 |
%SCALING ZZ BY 1.92
|
1059 |
|
|
ZZ & 52.7 $\pm$ 0.2 & 73.3 $\pm$ 0.2 & 3.4 $\pm$ 0.0 &129.4 $\pm$ 0.3 \\
|
1060 |
|
|
WZ & 0.1 $\pm$ 0.0 & 0.1 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.3 $\pm$ 0.1 \\
|
1061 |
benhoob |
1.6 |
%SCALING ZJETS BY 111/946
|
1062 |
benhoob |
1.1 |
\zjets & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
|
1063 |
|
|
\ttbar & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
|
1064 |
benhoob |
1.13 |
WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
|
1065 |
benhoob |
1.6 |
single top & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
|
1066 |
benhoob |
1.13 |
ttV & 1.3 $\pm$ 0.2 & 1.4 $\pm$ 0.2 & 0.3 $\pm$ 0.1 & 3.0 $\pm$ 0.2 \\
|
1067 |
|
|
VVV & 0.6 $\pm$ 0.1 & 0.8 $\pm$ 0.1 & 0.0 $\pm$ 0.0 & 1.4 $\pm$ 0.1 \\
|
1068 |
benhoob |
1.1 |
\hline
|
1069 |
benhoob |
1.13 |
tot SM MC & 54.7 $\pm$ 0.3 & 75.6 $\pm$ 0.3 & 3.8 $\pm$ 0.1 &134.1 $\pm$ 0.4 \\
|
1070 |
benhoob |
1.6 |
\hline
|
1071 |
benhoob |
1.13 |
data & 56 & 80 & 5 & 141 \\
|
1072 |
benhoob |
1.1 |
\hline
|
1073 |
|
|
\hline
|
1074 |
benhoob |
1.13 |
|
1075 |
benhoob |
1.1 |
\end{tabular}
|
1076 |
|
|
\end{center}
|
1077 |
|
|
\end{table}
|
1078 |
|
|
|
1079 |
|
|
\begin{figure}[tbh]
|
1080 |
|
|
\begin{center}
|
1081 |
benhoob |
1.14 |
\includegraphics[width=1\linewidth]{plots/ZZ_19fb.pdf}
|
1082 |
benhoob |
1.1 |
\caption{\label{fig:zz}\protect
|
1083 |
benhoob |
1.3 |
Data vs. MC comparisons for the ZZ selection discussed in the text for \lumi.
|
1084 |
|
|
The number of jets, missing transverse energy, and Z boson transverse momentum are displayed.
|
1085 |
benhoob |
1.1 |
}
|
1086 |
|
|
\end{center}
|
1087 |
|
|
\end{figure}
|
1088 |
|
|
|
1089 |
benhoob |
1.15 |
\begin{comment}
|
1090 |
|
|
Loading babies at : ../output/V00-02-00
|
1091 |
|
|
Using selection : ((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==4 && lep3.pt()>20.0 && lep4.pt()>20.0))&&(dilmass>81 && dilmass<101)
|
1092 |
|
|
Using weight : weight * 19.3 * trgeff * vtxweight
|
1093 |
|
|
Plotting var njets flavor sf
|
1094 |
|
|
compareDataMC : apply trigeff 1
|
1095 |
|
|
|
1096 |
|
|
MC yield VVV 1.40
|
1097 |
|
|
MC yield ttV 2.64
|
1098 |
|
|
MC yield single top 0.00
|
1099 |
|
|
MC yield WW 0.00
|
1100 |
|
|
MC yield ttbar 0.00
|
1101 |
|
|
SCALING ZJETS BY 111/946
|
1102 |
|
|
MC yield zjets 0.00
|
1103 |
|
|
MC yield WZ 0.27
|
1104 |
|
|
SCALING ZJETS BY 1.92
|
1105 |
|
|
MC yield ZZ 125.99
|
1106 |
|
|
MC total yield 130.31
|
1107 |
|
|
data yield 136
|
1108 |
|
|
Plotting var pfmet flavor sf
|
1109 |
|
|
compareDataMC : apply trigeff 1
|
1110 |
|
|
MC yield VVV 1.40
|
1111 |
|
|
MC yield ttV 2.64
|
1112 |
|
|
MC yield single top 0.00
|
1113 |
|
|
MC yield WW 0.00
|
1114 |
|
|
MC yield ttbar 0.00
|
1115 |
|
|
SCALING ZJETS BY 111/946
|
1116 |
|
|
MC yield zjets 0.00
|
1117 |
|
|
MC yield WZ 0.27
|
1118 |
|
|
SCALING ZJETS BY 1.92
|
1119 |
|
|
MC yield ZZ 126.00
|
1120 |
|
|
MC total yield 130.32
|
1121 |
|
|
data yield 136
|
1122 |
|
|
Plotting var dileppt flavor sf
|
1123 |
|
|
compareDataMC : apply trigeff 1
|
1124 |
|
|
MC yield VVV 1.40
|
1125 |
|
|
MC yield ttV 2.64
|
1126 |
|
|
MC yield single top 0.00
|
1127 |
|
|
MC yield WW 0.00
|
1128 |
|
|
MC yield ttbar 0.00
|
1129 |
|
|
SCALING ZJETS BY 111/946
|
1130 |
|
|
MC yield zjets 0.00
|
1131 |
|
|
MC yield WZ 0.27
|
1132 |
|
|
SCALING ZJETS BY 1.92
|
1133 |
|
|
MC yield ZZ 126.00
|
1134 |
|
|
MC total yield 130.33
|
1135 |
|
|
data yield 136
|
1136 |
|
|
\end{comment}
|
1137 |
benhoob |
1.1 |
|
1138 |
|
|
|
1139 |
|
|
|
1140 |
benhoob |
1.4 |
%\subsection{Estimating the Rare SM Backgrounds with MC}
|
1141 |
|
|
%\label{sec:bkg_raresm}
|
1142 |
benhoob |
1.1 |
|
1143 |
benhoob |
1.4 |
%{\bf TODO: list samples, yields in preselection region, and show \MET\ distribution}
|