ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/ZMet2012/bkg.tex
Revision: 1.18
Committed: Fri Jan 25 15:01:01 2013 UTC (12 years, 3 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.17: +180 -442 lines
Log Message:
update K plots and text

File Contents

# User Rev Content
1 benhoob 1.4 %\clearpage
2 benhoob 1.1 \section{Background Estimation Techniques}
3     \label{sec:bkg}
4    
5     In this section we describe the techniques used to estimate the SM backgrounds in our signal regions defined by requirements of large \MET.
6 benhoob 1.4 The SM backgrounds fall into three categories:
7 benhoob 1.1
8     \begin{itemize}
9 benhoob 1.2 \item \zjets: this is the dominant background after the preselection. The \MET\ in \zjets\ events is estimated with the
10 benhoob 1.1 ``\MET\ templates'' technique described in Sec.~\ref{sec:bkg_zjets};
11     \item Flavor-symmetric (FS) backgrounds: this category includes processes which produces 2 leptons of uncorrelated flavor. It is dominated
12     by \ttbar\ but also contains Z$\to\tau\tau$, WW, and single top processes. This is the dominant contribution in the signal regions, and it
13 benhoob 1.2 is estimated using a data control sample of e$\mu$ events as described in Sec.~\ref{sec:bkg_fs};
14 benhoob 1.1 \item WZ and ZZ backgrounds: this background is estimated from MC, after validating the MC modeling of these processes using data control
15 benhoob 1.2 samples with jets and exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample) as described in Sec.~\ref{sec:bkg_vz};
16 benhoob 1.4 %\item Rare SM backgrounds: this background contains rare processes such as $t\bar{t}$V and triple vector boson processes VVV (V=W,Z).
17     %This background is estimated from MC as described in Sec.~\ref{sec:bkg_raresm}. {\bf FIXME: add rare MC}
18 benhoob 1.1 \end{itemize}
19    
20     \subsection{Estimating the \zjets\ Background with \MET\ Templates}
21     \label{sec:bkg_zjets}
22    
23 benhoob 1.3 The premise of this data driven technique is that \MET\ in \zjets\ events
24 benhoob 1.1 is produced by the hadronic recoil system and {\it not} by the leptons making up the Z.
25     Therefore, the basic idea of the \MET\ template method is to measure the \MET\ distribution in
26     a control sample which has no true MET and the same general attributes regarding
27     fake MET as in \zjets\ events. We thus use a sample of \gjets\ events, since both \zjets\
28     and \gjets\ events consist of a well-measured object recoiling against hadronic jets.
29    
30     For selecting photon-like objects, the very loose photon selection described in Sec.~\ref{sec:phosel} is used.
31     It is not essential for the photon sample to have high purity. For our purposes, selecting jets with predominantly
32     electromagnetic energy deposition in a good fiducial volume suffices to ensure that
33     they are well measured and do not contribute to fake \MET. The \gjets\ events are selected with a suite of
34     single photon triggers with \pt thresholds varying from 22--90 GeV. The events are weighted by the trigger prescale
35     such that \gjets\ events evenly sample the conditions over the full period of data taking.
36     There remains a small difference in the PU conditions in the \gjets\ vs. \zjets\ samples due to the different
37     dependencies of the $\gamma$ vs. Z isolation efficiencies on PU. To account for this, we reweight the \gjets\ samples
38     to match the distribution of reconstructed primary vertices in the \zjets\ sample.
39    
40     To account for kinematic differences between the hadronic systems in the control vs. signal
41     samples, we measure the \MET\ distributions in the \gjets\ sample in bins of the number of jets
42 benhoob 1.3 and the scalar sum of jet transverse energies (\Ht). These \MET\ templates are extracted separately from the 5 single photon
43     triggers with thresholds 22, 36, 50, 75, and 90 GeV, so that the templates are effectively binned in photon \pt.
44     All \MET distributions are normalized to unit area to form ``MET templates''.
45     The prediction of the MET in each \Z event is the template which corresponds to the \njets,
46     \Ht, and Z \pt in the \zjets\ event. The prediction for the \Z sample is simply the sum of all such templates.
47     All templates are displayed in App.~\ref{app:templates}.
48 benhoob 1.1
49 benhoob 1.6 After preselection, there is a small contribution from backgrounds other than \zjets. To correct for this, the \MET\ templates
50     prediction is scaled such that the total background prediction matches the observed data yield in the \MET\ 0--60 GeV region.
51     Because the non-\zjets impurity in the low \MET\ region after preselection is very small, this results in
52     scaling factors of 0.985 (0.995) for the inclusive (targeted) search.
53 benhoob 1.1
54     \subsection{Estimating the Flavor-Symmetric Background with e$\mu$ Events}
55     \label{sec:bkg_fs}
56    
57     In this subsection we describe the background estimate for the FS background. Since this background produces equal rates of same-flavor (SF)
58     ee and $\mu\mu$ lepton pairs as opposite-flavor (OF) e$\mu$ lepton pairs, the OF yield can be used to estimate the SF yield, after
59     correcting for the different electron vs. muon offline selection efficiencies and the different efficiencies for the ee, $\mu\mu$, and e$\mu$ triggers.
60    
61     An important quantity needed to translate from the OF yield to a prediction for the background in the SF final state is the ratio
62     $R_{\mu e} = \epsilon_\mu / \epsilon_e$, where $\epsilon_\mu$ ($\epsilon_e$) indicates the offline muon (electron) selection efficiency.
63     This quantity can be extracted from data using the observed Z$\to\mu\mu$ and Z$\to$ee yields in the preselection region, after correcting
64     for the different trigger efficiencies.
65    
66     Hence we define:
67    
68     \begin{itemize}
69     \item $N_{ee}^{\rm{trig}} = \epsilon_{ee}^{\rm{trig}}N_{ee}^{\rm{offline}}$,
70     \item $N_{\mu\mu}^{\rm{trig}} = \epsilon_{\mu\mu}^{\rm{trig}}N_{\mu\mu}^{\rm{offline}}$,
71     \item $N_{e\mu}^{\rm{trig}} = \epsilon_{e\mu}^{\rm{trig}}N_{e\mu}^{\rm{offline}}$.
72     \end{itemize}
73    
74 benhoob 1.3 Here $N_{\ell\ell}^{\rm{trig}}$ denotes the number of selected Z events in the $\ell\ell$ channel passing the offline and trigger selection
75     (in other words, the number of recorded and selected events), $\epsilon_{\ell\ell}^{\rm{trig}}$ is the trigger efficiency, and
76     $N_{\ell\ell}^{\rm{offline}}$ is the number of events that would have passed the offline selection if the trigger had an efficiency of 100\%.
77 benhoob 1.1 Thus we calculate the quantity:
78    
79     \begin{equation}
80     R_{\mu e} = \sqrt{\frac{N_{\mu\mu}^{\rm{offline}}}{N_{ee}^{\rm{offline}}}} = \sqrt{\frac{N_{\mu\mu}^{\rm{trig}}/\epsilon_{\mu\mu}^{\rm{trig}}}{N_{ee}^{\rm{trig}}/\epsilon_{ee}^{\rm{trig}}}}
81 benhoob 1.15 = \sqrt{\frac{304953/0.88}{239661/0.95}} = 1.17\pm0.07.
82 benhoob 1.1 \end{equation}
83    
84     Here we have used the Z$\to\mu\mu$ and Z$\to$ee yields from Table~\ref{table:zyields_2j} and the trigger efficiencies quoted in Sec.~\ref{sec:datasets}.
85 benhoob 1.4 The indicated uncertainty is due to the 3\% uncertainties in the trigger efficiencies. %{\bf FIXME: check for variation w.r.t. lepton \pt}.
86 benhoob 1.1 The predicted yields in the ee and $\mu\mu$ final states are calculated from the observed e$\mu$ yield as
87    
88     \begin{itemize}
89     \item $N_{ee}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{ee}^{\rm{trig}}} {2 R_{\mu e}}
90 benhoob 1.11 = \frac{N_{e\mu}^{\rm{trig}}}{0.92}\frac{0.95}{2\times1.17} = (0.44\pm0.05) \times N_{e\mu}^{\rm{trig}}$ ,
91 benhoob 1.1 \item $N_{\mu\mu}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{\mu\mu}^{\rm{trig}} R_{\mu e}} {2}
92 benhoob 1.11 = \frac {N_{e\mu}^{\rm{trig}}} {0.95} \frac {0.88 \times 1.17}{2} = (0.54\pm0.07) \times N_{e\mu}^{\rm{trig}}$,
93 benhoob 1.1 \end{itemize}
94    
95     and the predicted yield in the combined ee and $\mu\mu$ channel is simply the sum of these two predictions:
96    
97     \begin{itemize}
98 benhoob 1.11 \item $N_{ee+\mu\mu}^{\rm{predicted}} = (0.98\pm0.06)\times N_{e\mu}^{\rm{trig}}$.
99 benhoob 1.1 \end{itemize}
100    
101 benhoob 1.3 Note that the relative uncertainty in the combined ee and $\mu\mu$ prediction is smaller than those for the individual ee and $\mu\mu$ predictions
102 benhoob 1.4 because the uncertainty in $R_{\mu e}$ cancels when summing the ee and $\mu\mu$ predictions. %{\bf N.B. these uncertainties are preliminary}.
103 benhoob 1.1
104     To improve the statistical precision of the FS background estimate, we remove the requirement that the e$\mu$ lepton pair falls in the Z mass window.
105     Instead we scale the e$\mu$ yield by $K$, the efficiency for e$\mu$ events to satisfy the Z mass requirement, extracted from simulation. In Fig.~\ref{fig:K_incl}
106 benhoob 1.6 we display the value of $K$ in data and simulation, for a variety of \MET\ requirements, for the inclusive analysis.
107     Based on this we chose $K=0.14\pm0.02$ for the lower \MET\ regions, $K=0.14\pm0.04$ for the \MET\ $>$ 200 GeV region,and $K=0.14\pm0.09$ for \MET\ $>$ 300 GeV,
108     where the larger uncertainties reflect the reduced statistical precision at large \MET.
109 benhoob 1.1 The corresponding plot for the targeted analysis, including the b-veto, is displayed in Fig.~\ref{fig:K_targeted}.
110     Based on this we chose $K=0.13\pm0.02$
111 benhoob 1.6 for all \MET\ regions up to \MET\ $>$ 150 GeV. For the \MET\ $>$ 200 GeV region we choose $K=0.13\pm0.05$, due to the reduced statistical precision.
112 benhoob 1.1
113     \begin{figure}[!ht]
114     \begin{center}
115     \begin{tabular}{cc}
116 benhoob 1.18 \includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_19p5fb.pdf} &
117     \includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_19p5fb.pdf} \\
118 benhoob 1.1 \end{tabular}
119 benhoob 1.6 \caption{\label{fig:K_incl}
120 benhoob 1.1 The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
121 benhoob 1.6 exclusive \MET\ intervals (right) for the inclusive analysis.
122 benhoob 1.1 }
123 benhoob 1.6
124     \begin{comment}
125    
126     Using selection : ((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20)
127     Using weight : vtxweight * weight
128 benhoob 1.18 OF entries (total) 43808
129     OF entries (Z mass) 6021
130     K 0.137441
131     Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
132 benhoob 1.6
133     --------------------------------------------------------------
134 benhoob 1.18 pfmet>0
135 benhoob 1.6
136     data :
137 benhoob 1.18 total : 43808
138     Z : 6021
139     K : 0.14 +/- 0.002
140 benhoob 1.6
141     MC :
142 benhoob 1.18 total : 2378.42
143     Z : 344.559
144     K : 0.14 +/- 0.002
145 benhoob 1.6 --------------------------------------------------------------
146    
147    
148     --------------------------------------------------------------
149 benhoob 1.18 pfmet>30
150 benhoob 1.6
151     data :
152 benhoob 1.18 total : 36603
153     Z : 5084
154     K : 0.14 +/- 0.002
155 benhoob 1.6
156     MC :
157 benhoob 1.18 total : 2012.6
158     Z : 297.342
159     K : 0.15 +/- 0.002
160 benhoob 1.6 --------------------------------------------------------------
161    
162    
163     --------------------------------------------------------------
164 benhoob 1.18 pfmet>60
165 benhoob 1.6
166     data :
167 benhoob 1.18 total : 22692
168     Z : 3209
169     K : 0.14 +/- 0.002
170 benhoob 1.6
171     MC :
172 benhoob 1.18 total : 1285.07
173     Z : 189.292
174     K : 0.15 +/- 0.002
175 benhoob 1.6 --------------------------------------------------------------
176    
177    
178     --------------------------------------------------------------
179 benhoob 1.18 pfmet>100
180 benhoob 1.6
181     data :
182 benhoob 1.18 total : 7862
183     Z : 1093
184 benhoob 1.11 K : 0.14 +/- 0.004
185 benhoob 1.6
186     MC :
187 benhoob 1.18 total : 470.932
188     Z : 68.9364
189     K : 0.15 +/- 0.003
190 benhoob 1.6 --------------------------------------------------------------
191    
192    
193     --------------------------------------------------------------
194 benhoob 1.18 pfmet>200
195 benhoob 1.6
196     data :
197 benhoob 1.18 total : 424
198     Z : 50
199     K : 0.12 +/- 0.017
200 benhoob 1.6
201     MC :
202 benhoob 1.18 total : 28.2757
203     Z : 2.87288
204     K : 0.10 +/- 0.011
205 benhoob 1.6 --------------------------------------------------------------
206    
207    
208     --------------------------------------------------------------
209     pfmet>300
210    
211     data :
212 benhoob 1.18 total : 52
213     Z : 5
214     K : 0.10 +/- 0.043
215 benhoob 1.6
216     MC :
217 benhoob 1.18 total : 3.77378
218     Z : 0.235632
219     K : 0.06 +/- 0.023
220 benhoob 1.6 --------------------------------------------------------------
221    
222     Using selection : ((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20)
223     Using weight : vtxweight * weight
224 benhoob 1.18 OF entries (total) 43808
225     OF entries (Z mass) 6021
226     K 0.137441
227 benhoob 1.6 Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
228     Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
229    
230     --------------------------------------------------------------
231 benhoob 1.18 pfmet>0 && pfmet<30
232 benhoob 1.6
233     data :
234 benhoob 1.18 total : 7205
235     Z : 937
236     K : 0.13 +/- 0.004
237 benhoob 1.6
238     MC :
239 benhoob 1.18 total : 366.332
240     Z : 47.2379
241     K : 0.13 +/- 0.004
242 benhoob 1.6 --------------------------------------------------------------
243    
244    
245     --------------------------------------------------------------
246 benhoob 1.18 pfmet>30 && pfmet<60
247 benhoob 1.6
248     data :
249 benhoob 1.18 total : 13911
250     Z : 1875
251     K : 0.13 +/- 0.003
252 benhoob 1.6
253     MC :
254 benhoob 1.18 total : 727.951
255     Z : 108.068
256     K : 0.15 +/- 0.003
257 benhoob 1.6 --------------------------------------------------------------
258    
259    
260     --------------------------------------------------------------
261 benhoob 1.18 pfmet>60 && pfmet<100
262 benhoob 1.6
263     data :
264 benhoob 1.18 total : 14830
265     Z : 2116
266     K : 0.14 +/- 0.003
267 benhoob 1.6
268     MC :
269 benhoob 1.18 total : 814.344
270     Z : 120.355
271     K : 0.15 +/- 0.003
272 benhoob 1.6 --------------------------------------------------------------
273    
274    
275     --------------------------------------------------------------
276 benhoob 1.18 pfmet>100 && pfmet<200
277 benhoob 1.6
278     data :
279 benhoob 1.18 total : 7438
280     Z : 1043
281 benhoob 1.11 K : 0.14 +/- 0.004
282 benhoob 1.6
283     MC :
284 benhoob 1.18 total : 442.657
285     Z : 66.0631
286 benhoob 1.6 K : 0.15 +/- 0.004
287     --------------------------------------------------------------
288    
289    
290     --------------------------------------------------------------
291 benhoob 1.18 pfmet>200 && pfmet<300
292 benhoob 1.6
293     data :
294 benhoob 1.18 total : 372
295     Z : 45
296     K : 0.12 +/- 0.018
297 benhoob 1.6
298     MC :
299 benhoob 1.18 total : 24.502
300     Z : 2.63725
301     K : 0.11 +/- 0.012
302 benhoob 1.6 --------------------------------------------------------------
303    
304    
305     --------------------------------------------------------------
306     pfmet>300
307    
308     data :
309 benhoob 1.18 total : 52
310     Z : 5
311     K : 0.10 +/- 0.043
312 benhoob 1.6
313     MC :
314 benhoob 1.18 total : 3.77378
315     Z : 0.235632
316     K : 0.06 +/- 0.023
317 benhoob 1.6 --------------------------------------------------------------
318    
319 benhoob 1.18
320 benhoob 1.6 \end{comment}
321    
322 benhoob 1.1 \end{center}
323     \end{figure}
324    
325     \begin{figure}[!hb]
326     \begin{center}
327     \begin{tabular}{cc}
328 benhoob 1.18 \includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_bveto_19p5fb.pdf} &
329     \includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_bveto_19p5fb.pdf} \\
330 benhoob 1.1 \end{tabular}
331     \caption{
332     The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
333     exclusive \MET\ intervals (right) for the targeted analysis, including the b-veto.
334     Based on this we chose $K=0.13\pm0.02$ for the \MET\ regions up to \MET\ $>$ 100 GeV.
335     For higher \MET\ regions we chose $K=0.13\pm0.07$.
336 benhoob 1.4 %{\bf FIXME plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
337 benhoob 1.1 \label{fig:K_targeted}
338     }
339 benhoob 1.6 \begin{comment}
340    
341     Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvm==0)
342     Using weight : vtxweight * weight
343 benhoob 1.18 OF entries (total) 11172
344     OF entries (Z mass) 1331
345     K 0.119137
346     Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
347 benhoob 1.6
348     --------------------------------------------------------------
349     pfmet>0
350    
351     data :
352 benhoob 1.18 total : 11172
353     Z : 1331
354 benhoob 1.11 K : 0.12 +/- 0.003
355 benhoob 1.6
356     MC :
357 benhoob 1.18 total : 556.3
358     Z : 72.3357
359     K : 0.13 +/- 0.003
360 benhoob 1.6 --------------------------------------------------------------
361    
362    
363     --------------------------------------------------------------
364     pfmet>30
365    
366     data :
367 benhoob 1.18 total : 8811
368     Z : 1085
369 benhoob 1.11 K : 0.12 +/- 0.004
370 benhoob 1.6
371     MC :
372 benhoob 1.18 total : 447.641
373     Z : 60.0542
374     K : 0.13 +/- 0.003
375 benhoob 1.6 --------------------------------------------------------------
376    
377    
378     --------------------------------------------------------------
379     pfmet>60
380    
381     data :
382 benhoob 1.18 total : 5263
383     Z : 677
384 benhoob 1.11 K : 0.13 +/- 0.005
385 benhoob 1.6
386     MC :
387 benhoob 1.18 total : 285.463
388     Z : 39.2608
389     K : 0.14 +/- 0.004
390 benhoob 1.6 --------------------------------------------------------------
391    
392    
393     --------------------------------------------------------------
394     pfmet>80
395    
396     data :
397 benhoob 1.18 total : 3325
398     Z : 422
399 benhoob 1.11 K : 0.13 +/- 0.006
400 benhoob 1.6
401     MC :
402 benhoob 1.18 total : 183.689
403     Z : 25.7671
404     K : 0.14 +/- 0.005
405 benhoob 1.6 --------------------------------------------------------------
406    
407    
408     --------------------------------------------------------------
409     pfmet>100
410    
411     data :
412 benhoob 1.18 total : 1883
413     Z : 234
414 benhoob 1.11 K : 0.12 +/- 0.008
415 benhoob 1.6
416     MC :
417 benhoob 1.18 total : 111.774
418     Z : 14.7812
419     K : 0.13 +/- 0.006
420 benhoob 1.6 --------------------------------------------------------------
421    
422    
423     --------------------------------------------------------------
424     pfmet>150
425    
426     data :
427 benhoob 1.18 total : 451
428     Z : 46
429 benhoob 1.11 K : 0.10 +/- 0.015
430 benhoob 1.6
431     MC :
432 benhoob 1.18 total : 29.4551
433     Z : 3.57377
434     K : 0.12 +/- 0.012
435 benhoob 1.6 --------------------------------------------------------------
436    
437    
438     --------------------------------------------------------------
439     pfmet>200
440    
441     data :
442 benhoob 1.18 total : 138
443     Z : 15
444     K : 0.11 +/- 0.028
445 benhoob 1.6
446     MC :
447 benhoob 1.18 total : 8.60692
448     Z : 0.775129
449     K : 0.09 +/- 0.017
450 benhoob 1.6 --------------------------------------------------------------
451    
452 benhoob 1.18 Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvm==0)
453 benhoob 1.6 Using weight : vtxweight * weight
454 benhoob 1.18 OF entries (total) 11172
455     OF entries (Z mass) 1331
456     K 0.119137
457     Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
458     Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
459 benhoob 1.6
460     --------------------------------------------------------------
461     pfmet>0 && pfmet<30
462    
463     data :
464 benhoob 1.18 total : 2361
465     Z : 246
466     K : 0.10 +/- 0.007
467 benhoob 1.6
468     MC :
469 benhoob 1.18 total : 108.378
470     Z : 12.2795
471     K : 0.11 +/- 0.008
472 benhoob 1.6 --------------------------------------------------------------
473    
474    
475     --------------------------------------------------------------
476     pfmet>30 && pfmet<60
477    
478     data :
479 benhoob 1.18 total : 3548
480     Z : 408
481     K : 0.11 +/- 0.006
482 benhoob 1.6
483     MC :
484 benhoob 1.18 total : 162.246
485     Z : 20.7935
486     K : 0.13 +/- 0.006
487 benhoob 1.6 --------------------------------------------------------------
488    
489    
490     --------------------------------------------------------------
491     pfmet>60 && pfmet<80
492    
493     data :
494 benhoob 1.18 total : 1938
495     Z : 255
496     K : 0.13 +/- 0.008
497 benhoob 1.6
498     MC :
499 benhoob 1.18 total : 101.801
500     Z : 13.4941
501     K : 0.13 +/- 0.007
502 benhoob 1.6 --------------------------------------------------------------
503    
504    
505     --------------------------------------------------------------
506     pfmet>80 && pfmet<100
507    
508     data :
509 benhoob 1.18 total : 1442
510     Z : 188
511     K : 0.13 +/- 0.010
512 benhoob 1.6
513     MC :
514 benhoob 1.18 total : 71.9073
515     Z : 10.986
516     K : 0.15 +/- 0.009
517 benhoob 1.6 --------------------------------------------------------------
518    
519    
520     --------------------------------------------------------------
521     pfmet>100 && pfmet<150
522    
523     data :
524 benhoob 1.18 total : 1432
525     Z : 188
526     K : 0.13 +/- 0.010
527 benhoob 1.6
528     MC :
529 benhoob 1.18 total : 82.3186
530     Z : 11.2075
531     K : 0.14 +/- 0.008
532 benhoob 1.6 --------------------------------------------------------------
533    
534    
535     --------------------------------------------------------------
536     pfmet>150 && pfmet<200
537    
538     data :
539 benhoob 1.18 total : 313
540     Z : 31
541     K : 0.10 +/- 0.018
542 benhoob 1.6
543     MC :
544 benhoob 1.18 total : 20.8482
545     Z : 2.79864
546     K : 0.13 +/- 0.015
547 benhoob 1.6 --------------------------------------------------------------
548    
549    
550     --------------------------------------------------------------
551     pfmet>200
552    
553     data :
554 benhoob 1.18 total : 138
555     Z : 15
556     K : 0.11 +/- 0.028
557 benhoob 1.6
558     MC :
559 benhoob 1.18 total : 8.60692
560     Z : 0.775129
561     K : 0.09 +/- 0.017
562 benhoob 1.6 --------------------------------------------------------------
563    
564    
565    
566    
567 benhoob 1.18 \end{comment}
568 benhoob 1.6
569 benhoob 1.1 \end{center}
570     \end{figure}
571    
572 benhoob 1.6
573 benhoob 1.1 \clearpage
574    
575     \subsection{Estimating the WZ and ZZ Background with MC}
576     \label{sec:bkg_vz}
577    
578     Backgrounds from W($\ell\nu$)Z($\ell\ell$) where the W lepton is not identified or is outside acceptance, and Z($\nu\nu$)Z($\ell\ell$),
579     are estimated from simulation. The MC modeling of these processes is validated by comparing the MC predictions with data in control samples
580     with exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample).
581 benhoob 1.6 The critical samples are the WZJetsTo3LNu and ZZJetsTo4L, listed in Table~\ref{tab:mcsamples}
582     (the WZJetsTo2L2Q, ZZJetsTo2L2Q, and ZZJetsTo2L2Nu samples are also used in this analysis but their contribution to the 3-lepton and 4-lepton
583     control samples is negligible).
584 benhoob 1.1
585     \subsubsection{WZ Validation Studies}
586     \label{sec:bkg_wz}
587    
588     A pure WZ sample can be selected in data with the requirements:
589    
590     \begin{itemize}
591     \item Exactly 3 $p_T>20$~GeV leptons passing analysis identication and isolation requirements,
592     \item 2 of the 3 leptons must fall in the Z window 81-101 GeV,
593     \item \MET $>$ 50 GeV (to suppress DY).
594     \end{itemize}
595    
596     The data and MC yields passing the above selection are in Table~\ref{tab:wz}.
597 benhoob 1.17 The inclusive yields (without any jet requirements) agree within 16\%, which is consistent within
598     the $\approx$15\% uncertainty in the theory prediction for the WZ cross section. A data vs. MC comparison of kinematic
599 benhoob 1.1 distributions (jet multiplicity, \MET, Z \pt) is given in Fig.~\ref{fig:wz}. High \MET\
600     values in WZ and ZZ events arise from highly boosted W or Z bosons that decay leptonically,
601     and we therefore check that the MC does a reasonable job of reproducing the \pt distributions of the
602     leptonically decaying \Z. While the inclusive WZ yields are in reasonable agreement, we observe
603     an excess in data in events with at least 2 jets, corresponding to the jet multiplicity requirement
604 benhoob 1.17 in our preselection. We observe 200 events in data while the MC predicts $130\pm3.1$~(stat), representing an excess of 53\%,
605     as indicated in Table~\ref{tab:wz2j}, and we therefore assess an uncertainty of 50\% on the WZ background.
606     %We note that the contributions from fake leptons and from \zjets\ with mismeasured \MET\
607     %is underestimated in the MC.
608     %This excess will be studied further. For the time being, based on these studies we currently assess an uncertainty of 50\% on the WZ yield.
609     %A data vs. MC comparison of several kinematic quantities in the sample with 3 leptons and at least 2 jets can be found in App.~\ref{app:WZ}.
610 benhoob 1.7
611     \begin{comment}
612     We note some possible contributions to this discrepancy:
613 benhoob 1.1
614     \begin{itemize}
615    
616 benhoob 1.6 \item {\bf The following checks refer to the 5.2 fb$^{-1}$ results and will be updated.}
617    
618 benhoob 1.1 \item The \zjets\ contribution is under-estimated here, for 2 reasons: first, because the \zjets\
619     yield passing a \MET $>$ 50 GeV requirement is under-estimated in MC and second, because the fake
620     rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends
621     on the \zjets\ yield, if the \zjets\ yield is doubled then the excess is reduced from 78\% to 55\%.
622 benhoob 1.4 Also note that we are currently using 10\% of the \zjets\ MC sample and there is 1 event with a weight
623     of about 5, so the plots and tables will be remade with full \zjets\ sample.
624 benhoob 1.1
625     \item The \ttbar\ contribution is under-estimated here because the fake
626     rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends
627     on the \ttbar\ yield, if the \ttbar\ yield is doubled then the excess is reduced from 78\% to 57\%.
628    
629     \item Currently no attempt is made to reject jets from pile-up interactions, which may be responsible
630 benhoob 1.3 for some of the excess at large \njets. To check this, we increase the jet \pt threhsold to 40 GeV, which
631     helps to suppress PU jets, and observe 39 events in data vs. an MC prediction of $25\pm5.2$~(stat),
632 benhoob 1.1 decreasing the excess from 78\% to 58\%. In the future this may be improved by explicitly
633     requiring the jets to be consistent with originating from the signal primary vertex.
634    
635     \end{itemize}
636 benhoob 1.7 \end{comment}
637    
638 benhoob 1.1
639    
640     \begin{table}[htb]
641     \begin{center}
642     \caption{\label{tab:wz} Data and Monte Carlo yields passing the WZ preselection. }
643     \begin{tabular}{lccccc}
644 benhoob 1.12
645     %Loading babies at : ../output/V00-02-00
646     %Using selection : (((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101)
647     %Using weight : weight * 19.3 * trgeff * vtxweight
648    
649 benhoob 1.1 \hline
650 benhoob 1.3 \hline
651 benhoob 1.12 Sample & ee & $\mu\mu$ & e$\mu$ & total \\
652 benhoob 1.1 \hline
653 benhoob 1.12 %SCALING ZJETS BY 111/946
654     WZ &244.9 $\pm$ 1.6 &317.9 $\pm$ 1.8 & 17.0 $\pm$ 0.4 &579.7 $\pm$ 2.4 \\
655     \zjets & 2.5 $\pm$ 2.0 & 6.4 $\pm$ 3.9 & 0.0 $\pm$ 0.0 & 8.9 $\pm$ 4.3 \\
656     ZZ & 5.3 $\pm$ 0.0 & 7.1 $\pm$ 0.1 & 0.4 $\pm$ 0.0 & 12.8 $\pm$ 0.1 \\
657     \ttbar & 2.5 $\pm$ 1.3 & 6.7 $\pm$ 2.0 & 7.5 $\pm$ 2.1 & 16.7 $\pm$ 3.2 \\
658     single top & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 \\
659     WW & 0.0 $\pm$ 0.0 & 0.1 $\pm$ 0.1 & 0.2 $\pm$ 0.1 & 0.3 $\pm$ 0.1 \\
660     ttV & 8.6 $\pm$ 0.4 & 10.3 $\pm$ 0.4 & 2.5 $\pm$ 0.2 & 21.5 $\pm$ 0.7 \\
661     VVV & 3.4 $\pm$ 0.1 & 4.3 $\pm$ 0.1 & 0.6 $\pm$ 0.1 & 8.3 $\pm$ 0.2 \\
662 benhoob 1.5 \hline
663 benhoob 1.12 tot SM MC &267.1 $\pm$ 2.9 &353.3 $\pm$ 4.7 & 28.2 $\pm$ 2.2 &648.6 $\pm$ 6.0 \\
664 benhoob 1.1 \hline
665 benhoob 1.12 data & 312 & 391 & 50 & 753 \\
666 benhoob 1.1 \hline
667     \hline
668    
669     \end{tabular}
670     \end{center}
671     \end{table}
672    
673     \begin{table}[htb]
674     \begin{center}
675 benhoob 1.8 \caption{\label{tab:wz2j} Data and Monte Carlo yields passing the WZ preselection and \njets\ $\geq$ 2. }
676 benhoob 1.1 \begin{tabular}{lccccc}
677 benhoob 1.12
678     %Loading babies at : ../output/V00-02-00
679     %-------------------------------------
680     %USING SKIMMED SAMPLES WITH NJETS >= 2
681     %-------------------------------------
682    
683     %Using selection : ((((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101))&&(njets>=2)
684     %Using weight : weight * 19.3 * trgeff * vtxweight
685    
686 benhoob 1.1 \hline
687 benhoob 1.3 \hline
688 benhoob 1.12 Sample & ee & $\mu\mu$ & e$\mu$ & total \\
689 benhoob 1.1 \hline
690 benhoob 1.12 %SCALING ZJETS BY 111/946
691     \ttbar & 1.6 $\pm$ 0.9 & 3.4 $\pm$ 1.5 & 1.8 $\pm$ 1.1 & 6.9 $\pm$ 2.0 \\
692     \zjets & 1.9 $\pm$ 1.9 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 1.9 $\pm$ 1.9 \\
693     WZ & 40.0 $\pm$ 0.7 & 51.5 $\pm$ 0.7 & 2.7 $\pm$ 0.2 & 94.3 $\pm$ 1.0 \\
694     ZZ & 1.0 $\pm$ 0.0 & 1.4 $\pm$ 0.0 & 0.1 $\pm$ 0.0 & 2.6 $\pm$ 0.0 \\
695     single top & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 \\
696 benhoob 1.5 WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
697 benhoob 1.12 ttV & 8.0 $\pm$ 0.4 & 9.5 $\pm$ 0.4 & 2.2 $\pm$ 0.2 & 19.6 $\pm$ 0.6 \\
698     VVV & 1.9 $\pm$ 0.1 & 2.6 $\pm$ 0.1 & 0.2 $\pm$ 0.0 & 4.6 $\pm$ 0.2 \\
699 benhoob 1.5 \hline
700 benhoob 1.12 tot SM MC & 54.4 $\pm$ 2.2 & 69.0 $\pm$ 1.8 & 6.9 $\pm$ 1.1 &130.4 $\pm$ 3.1 \\
701 benhoob 1.1 \hline
702 benhoob 1.12 data & 87 & 91 & 22 & 200 \\
703 benhoob 1.1 \hline
704     \hline
705    
706     \end{tabular}
707     \end{center}
708     \end{table}
709    
710     \begin{figure}[tbh]
711     \begin{center}
712 benhoob 1.13 \includegraphics[width=1\linewidth]{plots/WZ_19fb.pdf}
713 benhoob 1.1 \caption{\label{fig:wz}\protect
714     Data vs. MC comparisons for the WZ selection discussed in the text for \lumi.
715     The number of jets, missing transverse energy, and Z boson transverse momentum are displayed.
716     }
717 benhoob 1.13 \begin{comment}
718     Loading babies at : ../output/V00-02-00
719     Using selection : (((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101)
720     Using weight : weight * 19.3 * trgeff * vtxweight
721     Plotting var njets flavor sf
722     compareDataMC : apply trigeff 1
723     MC yield VVV 7.73
724     MC yield ttV 18.95
725     MC yield single top 0.51
726     MC yield WW 0.09
727     MC yield ZZ 12.38
728     MC yield WZ 562.71
729     MC yield ttbar 9.18
730     SCALING ZJETS BY 111/946
731     MC yield zjets 8.85
732     MC total yield 620.39
733     data yield 703
734     Plotting var pfmet flavor sf
735     compareDataMC : apply trigeff 1
736     MC yield VVV 7.73
737     MC yield ttV 18.95
738     MC yield single top 0.51
739     MC yield WW 0.09
740     MC yield ZZ 12.38
741     MC yield WZ 562.72
742     MC yield ttbar 9.18
743     SCALING ZJETS BY 111/946
744     MC yield zjets 8.85
745     MC total yield 620.40
746     data yield 703
747     Plotting var dileppt flavor sf
748     compareDataMC : apply trigeff 1
749     MC yield VVV 7.73
750     MC yield ttV 18.95
751     MC yield single top 0.51
752     MC yield WW 0.09
753     MC yield ZZ 12.38
754     MC yield WZ 562.71
755     MC yield ttbar 9.18
756     SCALING ZJETS BY 111/946
757     MC yield zjets 8.85
758     MC total yield 620.38
759     data yield 703
760     \end{comment}
761    
762 benhoob 1.1 \end{center}
763     \end{figure}
764    
765     \clearpage
766    
767     \subsubsection{ZZ Validation Studies}
768     \label{sec:bkg_zz}
769    
770     A pure ZZ sample can be selected in data with the requirements:
771    
772     \begin{itemize}
773     \item Exactly 4 $p_T>20$~GeV leptons passing analysis identication and isolation requirements,
774     \item 2 of the 4 leptons must fall in the $Z$ window 81-101 GeV.
775     \end{itemize}
776    
777 benhoob 1.6 The data and MC yields passing the above selection are in Table~\ref{tab:zz}.
778     In this ZZ-dominated sample we observe good agreement between the data yield and the MC prediction.
779 benhoob 1.16 After requiring 2 jets (corresponding to the requirement in the analysis selection), we observe 14 events
780     in data and the MC predicts $13.2\pm0.2$ events. Due to the limited statistical precision we assign an uncertainty
781     of 50\% on the ZZ yield.
782 benhoob 1.1
783     \begin{table}[htb]
784     \begin{center}
785     \caption{\label{tab:zz} Data and Monte Carlo yields for the ZZ preselection. }
786     \begin{tabular}{lccccc}
787 benhoob 1.13
788     %Loading babies at : ../output/V00-02-00
789     %Using selection : ((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==4 && lep3.pt()>20.0 && lep4.pt()>20.0))&&(dilmass>81 && dilmass<101)
790     %Using weight : weight * 19.3 * trgeff * vtxweight
791    
792 benhoob 1.1 \hline
793 benhoob 1.3 \hline
794 benhoob 1.1 Sample & ee & $\mu\mu$ & e$\mu$ & total \\
795     \hline
796 benhoob 1.13 %SCALING ZZ BY 1.92
797     ZZ & 52.7 $\pm$ 0.2 & 73.3 $\pm$ 0.2 & 3.4 $\pm$ 0.0 &129.4 $\pm$ 0.3 \\
798     WZ & 0.1 $\pm$ 0.0 & 0.1 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.3 $\pm$ 0.1 \\
799 benhoob 1.6 %SCALING ZJETS BY 111/946
800 benhoob 1.1 \zjets & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
801     \ttbar & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
802 benhoob 1.13 WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
803 benhoob 1.6 single top & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
804 benhoob 1.13 ttV & 1.3 $\pm$ 0.2 & 1.4 $\pm$ 0.2 & 0.3 $\pm$ 0.1 & 3.0 $\pm$ 0.2 \\
805     VVV & 0.6 $\pm$ 0.1 & 0.8 $\pm$ 0.1 & 0.0 $\pm$ 0.0 & 1.4 $\pm$ 0.1 \\
806 benhoob 1.1 \hline
807 benhoob 1.13 tot SM MC & 54.7 $\pm$ 0.3 & 75.6 $\pm$ 0.3 & 3.8 $\pm$ 0.1 &134.1 $\pm$ 0.4 \\
808 benhoob 1.6 \hline
809 benhoob 1.13 data & 56 & 80 & 5 & 141 \\
810 benhoob 1.1 \hline
811     \hline
812 benhoob 1.13
813 benhoob 1.1 \end{tabular}
814     \end{center}
815     \end{table}
816    
817     \begin{figure}[tbh]
818     \begin{center}
819 benhoob 1.14 \includegraphics[width=1\linewidth]{plots/ZZ_19fb.pdf}
820 benhoob 1.1 \caption{\label{fig:zz}\protect
821 benhoob 1.3 Data vs. MC comparisons for the ZZ selection discussed in the text for \lumi.
822     The number of jets, missing transverse energy, and Z boson transverse momentum are displayed.
823 benhoob 1.1 }
824     \end{center}
825     \end{figure}
826    
827 benhoob 1.15 \begin{comment}
828     Loading babies at : ../output/V00-02-00
829     Using selection : ((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==4 && lep3.pt()>20.0 && lep4.pt()>20.0))&&(dilmass>81 && dilmass<101)
830     Using weight : weight * 19.3 * trgeff * vtxweight
831     Plotting var njets flavor sf
832     compareDataMC : apply trigeff 1
833    
834     MC yield VVV 1.40
835     MC yield ttV 2.64
836     MC yield single top 0.00
837     MC yield WW 0.00
838     MC yield ttbar 0.00
839     SCALING ZJETS BY 111/946
840     MC yield zjets 0.00
841     MC yield WZ 0.27
842     SCALING ZJETS BY 1.92
843     MC yield ZZ 125.99
844     MC total yield 130.31
845     data yield 136
846     Plotting var pfmet flavor sf
847     compareDataMC : apply trigeff 1
848     MC yield VVV 1.40
849     MC yield ttV 2.64
850     MC yield single top 0.00
851     MC yield WW 0.00
852     MC yield ttbar 0.00
853     SCALING ZJETS BY 111/946
854     MC yield zjets 0.00
855     MC yield WZ 0.27
856     SCALING ZJETS BY 1.92
857     MC yield ZZ 126.00
858     MC total yield 130.32
859     data yield 136
860     Plotting var dileppt flavor sf
861     compareDataMC : apply trigeff 1
862     MC yield VVV 1.40
863     MC yield ttV 2.64
864     MC yield single top 0.00
865     MC yield WW 0.00
866     MC yield ttbar 0.00
867     SCALING ZJETS BY 111/946
868     MC yield zjets 0.00
869     MC yield WZ 0.27
870     SCALING ZJETS BY 1.92
871     MC yield ZZ 126.00
872     MC total yield 130.33
873     data yield 136
874     \end{comment}
875 benhoob 1.1
876    
877    
878 benhoob 1.4 %\subsection{Estimating the Rare SM Backgrounds with MC}
879     %\label{sec:bkg_raresm}
880 benhoob 1.1
881 benhoob 1.4 %{\bf TODO: list samples, yields in preselection region, and show \MET\ distribution}