1 |
benhoob |
1.4 |
%\clearpage
|
2 |
benhoob |
1.1 |
\section{Background Estimation Techniques}
|
3 |
|
|
\label{sec:bkg}
|
4 |
|
|
|
5 |
|
|
In this section we describe the techniques used to estimate the SM backgrounds in our signal regions defined by requirements of large \MET.
|
6 |
benhoob |
1.4 |
The SM backgrounds fall into three categories:
|
7 |
benhoob |
1.1 |
|
8 |
|
|
\begin{itemize}
|
9 |
benhoob |
1.2 |
\item \zjets: this is the dominant background after the preselection. The \MET\ in \zjets\ events is estimated with the
|
10 |
benhoob |
1.1 |
``\MET\ templates'' technique described in Sec.~\ref{sec:bkg_zjets};
|
11 |
|
|
\item Flavor-symmetric (FS) backgrounds: this category includes processes which produces 2 leptons of uncorrelated flavor. It is dominated
|
12 |
|
|
by \ttbar\ but also contains Z$\to\tau\tau$, WW, and single top processes. This is the dominant contribution in the signal regions, and it
|
13 |
benhoob |
1.2 |
is estimated using a data control sample of e$\mu$ events as described in Sec.~\ref{sec:bkg_fs};
|
14 |
benhoob |
1.1 |
\item WZ and ZZ backgrounds: this background is estimated from MC, after validating the MC modeling of these processes using data control
|
15 |
benhoob |
1.2 |
samples with jets and exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample) as described in Sec.~\ref{sec:bkg_vz};
|
16 |
benhoob |
1.4 |
%\item Rare SM backgrounds: this background contains rare processes such as $t\bar{t}$V and triple vector boson processes VVV (V=W,Z).
|
17 |
|
|
%This background is estimated from MC as described in Sec.~\ref{sec:bkg_raresm}. {\bf FIXME: add rare MC}
|
18 |
benhoob |
1.1 |
\end{itemize}
|
19 |
|
|
|
20 |
|
|
\subsection{Estimating the \zjets\ Background with \MET\ Templates}
|
21 |
|
|
\label{sec:bkg_zjets}
|
22 |
|
|
|
23 |
benhoob |
1.3 |
The premise of this data driven technique is that \MET\ in \zjets\ events
|
24 |
benhoob |
1.1 |
is produced by the hadronic recoil system and {\it not} by the leptons making up the Z.
|
25 |
|
|
Therefore, the basic idea of the \MET\ template method is to measure the \MET\ distribution in
|
26 |
|
|
a control sample which has no true MET and the same general attributes regarding
|
27 |
|
|
fake MET as in \zjets\ events. We thus use a sample of \gjets\ events, since both \zjets\
|
28 |
|
|
and \gjets\ events consist of a well-measured object recoiling against hadronic jets.
|
29 |
|
|
|
30 |
|
|
For selecting photon-like objects, the very loose photon selection described in Sec.~\ref{sec:phosel} is used.
|
31 |
|
|
It is not essential for the photon sample to have high purity. For our purposes, selecting jets with predominantly
|
32 |
|
|
electromagnetic energy deposition in a good fiducial volume suffices to ensure that
|
33 |
|
|
they are well measured and do not contribute to fake \MET. The \gjets\ events are selected with a suite of
|
34 |
|
|
single photon triggers with \pt thresholds varying from 22--90 GeV. The events are weighted by the trigger prescale
|
35 |
|
|
such that \gjets\ events evenly sample the conditions over the full period of data taking.
|
36 |
|
|
There remains a small difference in the PU conditions in the \gjets\ vs. \zjets\ samples due to the different
|
37 |
|
|
dependencies of the $\gamma$ vs. Z isolation efficiencies on PU. To account for this, we reweight the \gjets\ samples
|
38 |
|
|
to match the distribution of reconstructed primary vertices in the \zjets\ sample.
|
39 |
|
|
|
40 |
|
|
To account for kinematic differences between the hadronic systems in the control vs. signal
|
41 |
|
|
samples, we measure the \MET\ distributions in the \gjets\ sample in bins of the number of jets
|
42 |
benhoob |
1.3 |
and the scalar sum of jet transverse energies (\Ht). These \MET\ templates are extracted separately from the 5 single photon
|
43 |
|
|
triggers with thresholds 22, 36, 50, 75, and 90 GeV, so that the templates are effectively binned in photon \pt.
|
44 |
|
|
All \MET distributions are normalized to unit area to form ``MET templates''.
|
45 |
|
|
The prediction of the MET in each \Z event is the template which corresponds to the \njets,
|
46 |
|
|
\Ht, and Z \pt in the \zjets\ event. The prediction for the \Z sample is simply the sum of all such templates.
|
47 |
|
|
All templates are displayed in App.~\ref{app:templates}.
|
48 |
benhoob |
1.1 |
|
49 |
benhoob |
1.6 |
After preselection, there is a small contribution from backgrounds other than \zjets. To correct for this, the \MET\ templates
|
50 |
|
|
prediction is scaled such that the total background prediction matches the observed data yield in the \MET\ 0--60 GeV region.
|
51 |
|
|
Because the non-\zjets impurity in the low \MET\ region after preselection is very small, this results in
|
52 |
|
|
scaling factors of 0.985 (0.995) for the inclusive (targeted) search.
|
53 |
benhoob |
1.1 |
|
54 |
|
|
\subsection{Estimating the Flavor-Symmetric Background with e$\mu$ Events}
|
55 |
|
|
\label{sec:bkg_fs}
|
56 |
|
|
|
57 |
|
|
In this subsection we describe the background estimate for the FS background. Since this background produces equal rates of same-flavor (SF)
|
58 |
|
|
ee and $\mu\mu$ lepton pairs as opposite-flavor (OF) e$\mu$ lepton pairs, the OF yield can be used to estimate the SF yield, after
|
59 |
|
|
correcting for the different electron vs. muon offline selection efficiencies and the different efficiencies for the ee, $\mu\mu$, and e$\mu$ triggers.
|
60 |
|
|
|
61 |
|
|
An important quantity needed to translate from the OF yield to a prediction for the background in the SF final state is the ratio
|
62 |
|
|
$R_{\mu e} = \epsilon_\mu / \epsilon_e$, where $\epsilon_\mu$ ($\epsilon_e$) indicates the offline muon (electron) selection efficiency.
|
63 |
|
|
This quantity can be extracted from data using the observed Z$\to\mu\mu$ and Z$\to$ee yields in the preselection region, after correcting
|
64 |
|
|
for the different trigger efficiencies.
|
65 |
|
|
|
66 |
|
|
Hence we define:
|
67 |
|
|
|
68 |
|
|
\begin{itemize}
|
69 |
|
|
\item $N_{ee}^{\rm{trig}} = \epsilon_{ee}^{\rm{trig}}N_{ee}^{\rm{offline}}$,
|
70 |
|
|
\item $N_{\mu\mu}^{\rm{trig}} = \epsilon_{\mu\mu}^{\rm{trig}}N_{\mu\mu}^{\rm{offline}}$,
|
71 |
|
|
\item $N_{e\mu}^{\rm{trig}} = \epsilon_{e\mu}^{\rm{trig}}N_{e\mu}^{\rm{offline}}$.
|
72 |
|
|
\end{itemize}
|
73 |
|
|
|
74 |
benhoob |
1.3 |
Here $N_{\ell\ell}^{\rm{trig}}$ denotes the number of selected Z events in the $\ell\ell$ channel passing the offline and trigger selection
|
75 |
|
|
(in other words, the number of recorded and selected events), $\epsilon_{\ell\ell}^{\rm{trig}}$ is the trigger efficiency, and
|
76 |
|
|
$N_{\ell\ell}^{\rm{offline}}$ is the number of events that would have passed the offline selection if the trigger had an efficiency of 100\%.
|
77 |
benhoob |
1.1 |
Thus we calculate the quantity:
|
78 |
|
|
|
79 |
|
|
\begin{equation}
|
80 |
|
|
R_{\mu e} = \sqrt{\frac{N_{\mu\mu}^{\rm{offline}}}{N_{ee}^{\rm{offline}}}} = \sqrt{\frac{N_{\mu\mu}^{\rm{trig}}/\epsilon_{\mu\mu}^{\rm{trig}}}{N_{ee}^{\rm{trig}}/\epsilon_{ee}^{\rm{trig}}}}
|
81 |
benhoob |
1.15 |
= \sqrt{\frac{304953/0.88}{239661/0.95}} = 1.17\pm0.07.
|
82 |
benhoob |
1.1 |
\end{equation}
|
83 |
|
|
|
84 |
|
|
Here we have used the Z$\to\mu\mu$ and Z$\to$ee yields from Table~\ref{table:zyields_2j} and the trigger efficiencies quoted in Sec.~\ref{sec:datasets}.
|
85 |
benhoob |
1.4 |
The indicated uncertainty is due to the 3\% uncertainties in the trigger efficiencies. %{\bf FIXME: check for variation w.r.t. lepton \pt}.
|
86 |
benhoob |
1.1 |
The predicted yields in the ee and $\mu\mu$ final states are calculated from the observed e$\mu$ yield as
|
87 |
|
|
|
88 |
|
|
\begin{itemize}
|
89 |
|
|
\item $N_{ee}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{ee}^{\rm{trig}}} {2 R_{\mu e}}
|
90 |
benhoob |
1.11 |
= \frac{N_{e\mu}^{\rm{trig}}}{0.92}\frac{0.95}{2\times1.17} = (0.44\pm0.05) \times N_{e\mu}^{\rm{trig}}$ ,
|
91 |
benhoob |
1.1 |
\item $N_{\mu\mu}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{\mu\mu}^{\rm{trig}} R_{\mu e}} {2}
|
92 |
benhoob |
1.11 |
= \frac {N_{e\mu}^{\rm{trig}}} {0.95} \frac {0.88 \times 1.17}{2} = (0.54\pm0.07) \times N_{e\mu}^{\rm{trig}}$,
|
93 |
benhoob |
1.1 |
\end{itemize}
|
94 |
|
|
|
95 |
|
|
and the predicted yield in the combined ee and $\mu\mu$ channel is simply the sum of these two predictions:
|
96 |
|
|
|
97 |
|
|
\begin{itemize}
|
98 |
benhoob |
1.11 |
\item $N_{ee+\mu\mu}^{\rm{predicted}} = (0.98\pm0.06)\times N_{e\mu}^{\rm{trig}}$.
|
99 |
benhoob |
1.1 |
\end{itemize}
|
100 |
|
|
|
101 |
benhoob |
1.3 |
Note that the relative uncertainty in the combined ee and $\mu\mu$ prediction is smaller than those for the individual ee and $\mu\mu$ predictions
|
102 |
benhoob |
1.4 |
because the uncertainty in $R_{\mu e}$ cancels when summing the ee and $\mu\mu$ predictions. %{\bf N.B. these uncertainties are preliminary}.
|
103 |
benhoob |
1.1 |
|
104 |
|
|
To improve the statistical precision of the FS background estimate, we remove the requirement that the e$\mu$ lepton pair falls in the Z mass window.
|
105 |
|
|
Instead we scale the e$\mu$ yield by $K$, the efficiency for e$\mu$ events to satisfy the Z mass requirement, extracted from simulation. In Fig.~\ref{fig:K_incl}
|
106 |
benhoob |
1.6 |
we display the value of $K$ in data and simulation, for a variety of \MET\ requirements, for the inclusive analysis.
|
107 |
|
|
Based on this we chose $K=0.14\pm0.02$ for the lower \MET\ regions, $K=0.14\pm0.04$ for the \MET\ $>$ 200 GeV region,and $K=0.14\pm0.09$ for \MET\ $>$ 300 GeV,
|
108 |
|
|
where the larger uncertainties reflect the reduced statistical precision at large \MET.
|
109 |
benhoob |
1.1 |
The corresponding plot for the targeted analysis, including the b-veto, is displayed in Fig.~\ref{fig:K_targeted}.
|
110 |
|
|
Based on this we chose $K=0.13\pm0.02$
|
111 |
benhoob |
1.6 |
for all \MET\ regions up to \MET\ $>$ 150 GeV. For the \MET\ $>$ 200 GeV region we choose $K=0.13\pm0.05$, due to the reduced statistical precision.
|
112 |
benhoob |
1.1 |
|
113 |
|
|
\begin{figure}[!ht]
|
114 |
|
|
\begin{center}
|
115 |
|
|
\begin{tabular}{cc}
|
116 |
benhoob |
1.18 |
\includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_19p5fb.pdf} &
|
117 |
|
|
\includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_19p5fb.pdf} \\
|
118 |
benhoob |
1.1 |
\end{tabular}
|
119 |
benhoob |
1.6 |
\caption{\label{fig:K_incl}
|
120 |
benhoob |
1.1 |
The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
|
121 |
benhoob |
1.6 |
exclusive \MET\ intervals (right) for the inclusive analysis.
|
122 |
benhoob |
1.1 |
}
|
123 |
benhoob |
1.6 |
|
124 |
|
|
\begin{comment}
|
125 |
|
|
|
126 |
|
|
Using selection : ((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20)
|
127 |
|
|
Using weight : vtxweight * weight
|
128 |
benhoob |
1.18 |
OF entries (total) 43808
|
129 |
|
|
OF entries (Z mass) 6021
|
130 |
|
|
K 0.137441
|
131 |
|
|
Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
|
132 |
benhoob |
1.6 |
|
133 |
|
|
--------------------------------------------------------------
|
134 |
benhoob |
1.18 |
pfmet>0
|
135 |
benhoob |
1.6 |
|
136 |
|
|
data :
|
137 |
benhoob |
1.18 |
total : 43808
|
138 |
|
|
Z : 6021
|
139 |
|
|
K : 0.14 +/- 0.002
|
140 |
benhoob |
1.6 |
|
141 |
|
|
MC :
|
142 |
benhoob |
1.18 |
total : 2378.42
|
143 |
|
|
Z : 344.559
|
144 |
|
|
K : 0.14 +/- 0.002
|
145 |
benhoob |
1.6 |
--------------------------------------------------------------
|
146 |
|
|
|
147 |
|
|
|
148 |
|
|
--------------------------------------------------------------
|
149 |
benhoob |
1.18 |
pfmet>30
|
150 |
benhoob |
1.6 |
|
151 |
|
|
data :
|
152 |
benhoob |
1.18 |
total : 36603
|
153 |
|
|
Z : 5084
|
154 |
|
|
K : 0.14 +/- 0.002
|
155 |
benhoob |
1.6 |
|
156 |
|
|
MC :
|
157 |
benhoob |
1.18 |
total : 2012.6
|
158 |
|
|
Z : 297.342
|
159 |
|
|
K : 0.15 +/- 0.002
|
160 |
benhoob |
1.6 |
--------------------------------------------------------------
|
161 |
|
|
|
162 |
|
|
|
163 |
|
|
--------------------------------------------------------------
|
164 |
benhoob |
1.18 |
pfmet>60
|
165 |
benhoob |
1.6 |
|
166 |
|
|
data :
|
167 |
benhoob |
1.18 |
total : 22692
|
168 |
|
|
Z : 3209
|
169 |
|
|
K : 0.14 +/- 0.002
|
170 |
benhoob |
1.6 |
|
171 |
|
|
MC :
|
172 |
benhoob |
1.18 |
total : 1285.07
|
173 |
|
|
Z : 189.292
|
174 |
|
|
K : 0.15 +/- 0.002
|
175 |
benhoob |
1.6 |
--------------------------------------------------------------
|
176 |
|
|
|
177 |
|
|
|
178 |
|
|
--------------------------------------------------------------
|
179 |
benhoob |
1.18 |
pfmet>100
|
180 |
benhoob |
1.6 |
|
181 |
|
|
data :
|
182 |
benhoob |
1.18 |
total : 7862
|
183 |
|
|
Z : 1093
|
184 |
benhoob |
1.11 |
K : 0.14 +/- 0.004
|
185 |
benhoob |
1.6 |
|
186 |
|
|
MC :
|
187 |
benhoob |
1.18 |
total : 470.932
|
188 |
|
|
Z : 68.9364
|
189 |
|
|
K : 0.15 +/- 0.003
|
190 |
benhoob |
1.6 |
--------------------------------------------------------------
|
191 |
|
|
|
192 |
|
|
|
193 |
|
|
--------------------------------------------------------------
|
194 |
benhoob |
1.18 |
pfmet>200
|
195 |
benhoob |
1.6 |
|
196 |
|
|
data :
|
197 |
benhoob |
1.18 |
total : 424
|
198 |
|
|
Z : 50
|
199 |
|
|
K : 0.12 +/- 0.017
|
200 |
benhoob |
1.6 |
|
201 |
|
|
MC :
|
202 |
benhoob |
1.18 |
total : 28.2757
|
203 |
|
|
Z : 2.87288
|
204 |
|
|
K : 0.10 +/- 0.011
|
205 |
benhoob |
1.6 |
--------------------------------------------------------------
|
206 |
|
|
|
207 |
|
|
|
208 |
|
|
--------------------------------------------------------------
|
209 |
|
|
pfmet>300
|
210 |
|
|
|
211 |
|
|
data :
|
212 |
benhoob |
1.18 |
total : 52
|
213 |
|
|
Z : 5
|
214 |
|
|
K : 0.10 +/- 0.043
|
215 |
benhoob |
1.6 |
|
216 |
|
|
MC :
|
217 |
benhoob |
1.18 |
total : 3.77378
|
218 |
|
|
Z : 0.235632
|
219 |
|
|
K : 0.06 +/- 0.023
|
220 |
benhoob |
1.6 |
--------------------------------------------------------------
|
221 |
|
|
|
222 |
|
|
Using selection : ((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20)
|
223 |
|
|
Using weight : vtxweight * weight
|
224 |
benhoob |
1.18 |
OF entries (total) 43808
|
225 |
|
|
OF entries (Z mass) 6021
|
226 |
|
|
K 0.137441
|
227 |
benhoob |
1.6 |
Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
|
228 |
|
|
Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
|
229 |
|
|
|
230 |
|
|
--------------------------------------------------------------
|
231 |
benhoob |
1.18 |
pfmet>0 && pfmet<30
|
232 |
benhoob |
1.6 |
|
233 |
|
|
data :
|
234 |
benhoob |
1.18 |
total : 7205
|
235 |
|
|
Z : 937
|
236 |
|
|
K : 0.13 +/- 0.004
|
237 |
benhoob |
1.6 |
|
238 |
|
|
MC :
|
239 |
benhoob |
1.18 |
total : 366.332
|
240 |
|
|
Z : 47.2379
|
241 |
|
|
K : 0.13 +/- 0.004
|
242 |
benhoob |
1.6 |
--------------------------------------------------------------
|
243 |
|
|
|
244 |
|
|
|
245 |
|
|
--------------------------------------------------------------
|
246 |
benhoob |
1.18 |
pfmet>30 && pfmet<60
|
247 |
benhoob |
1.6 |
|
248 |
|
|
data :
|
249 |
benhoob |
1.18 |
total : 13911
|
250 |
|
|
Z : 1875
|
251 |
|
|
K : 0.13 +/- 0.003
|
252 |
benhoob |
1.6 |
|
253 |
|
|
MC :
|
254 |
benhoob |
1.18 |
total : 727.951
|
255 |
|
|
Z : 108.068
|
256 |
|
|
K : 0.15 +/- 0.003
|
257 |
benhoob |
1.6 |
--------------------------------------------------------------
|
258 |
|
|
|
259 |
|
|
|
260 |
|
|
--------------------------------------------------------------
|
261 |
benhoob |
1.18 |
pfmet>60 && pfmet<100
|
262 |
benhoob |
1.6 |
|
263 |
|
|
data :
|
264 |
benhoob |
1.18 |
total : 14830
|
265 |
|
|
Z : 2116
|
266 |
|
|
K : 0.14 +/- 0.003
|
267 |
benhoob |
1.6 |
|
268 |
|
|
MC :
|
269 |
benhoob |
1.18 |
total : 814.344
|
270 |
|
|
Z : 120.355
|
271 |
|
|
K : 0.15 +/- 0.003
|
272 |
benhoob |
1.6 |
--------------------------------------------------------------
|
273 |
|
|
|
274 |
|
|
|
275 |
|
|
--------------------------------------------------------------
|
276 |
benhoob |
1.18 |
pfmet>100 && pfmet<200
|
277 |
benhoob |
1.6 |
|
278 |
|
|
data :
|
279 |
benhoob |
1.18 |
total : 7438
|
280 |
|
|
Z : 1043
|
281 |
benhoob |
1.11 |
K : 0.14 +/- 0.004
|
282 |
benhoob |
1.6 |
|
283 |
|
|
MC :
|
284 |
benhoob |
1.18 |
total : 442.657
|
285 |
|
|
Z : 66.0631
|
286 |
benhoob |
1.6 |
K : 0.15 +/- 0.004
|
287 |
|
|
--------------------------------------------------------------
|
288 |
|
|
|
289 |
|
|
|
290 |
|
|
--------------------------------------------------------------
|
291 |
benhoob |
1.18 |
pfmet>200 && pfmet<300
|
292 |
benhoob |
1.6 |
|
293 |
|
|
data :
|
294 |
benhoob |
1.18 |
total : 372
|
295 |
|
|
Z : 45
|
296 |
|
|
K : 0.12 +/- 0.018
|
297 |
benhoob |
1.6 |
|
298 |
|
|
MC :
|
299 |
benhoob |
1.18 |
total : 24.502
|
300 |
|
|
Z : 2.63725
|
301 |
|
|
K : 0.11 +/- 0.012
|
302 |
benhoob |
1.6 |
--------------------------------------------------------------
|
303 |
|
|
|
304 |
|
|
|
305 |
|
|
--------------------------------------------------------------
|
306 |
|
|
pfmet>300
|
307 |
|
|
|
308 |
|
|
data :
|
309 |
benhoob |
1.18 |
total : 52
|
310 |
|
|
Z : 5
|
311 |
|
|
K : 0.10 +/- 0.043
|
312 |
benhoob |
1.6 |
|
313 |
|
|
MC :
|
314 |
benhoob |
1.18 |
total : 3.77378
|
315 |
|
|
Z : 0.235632
|
316 |
|
|
K : 0.06 +/- 0.023
|
317 |
benhoob |
1.6 |
--------------------------------------------------------------
|
318 |
|
|
|
319 |
benhoob |
1.18 |
|
320 |
benhoob |
1.6 |
\end{comment}
|
321 |
|
|
|
322 |
benhoob |
1.1 |
\end{center}
|
323 |
|
|
\end{figure}
|
324 |
|
|
|
325 |
|
|
\begin{figure}[!hb]
|
326 |
|
|
\begin{center}
|
327 |
|
|
\begin{tabular}{cc}
|
328 |
benhoob |
1.18 |
\includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_bveto_19p5fb.pdf} &
|
329 |
|
|
\includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_bveto_19p5fb.pdf} \\
|
330 |
benhoob |
1.1 |
\end{tabular}
|
331 |
|
|
\caption{
|
332 |
|
|
The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
|
333 |
|
|
exclusive \MET\ intervals (right) for the targeted analysis, including the b-veto.
|
334 |
|
|
Based on this we chose $K=0.13\pm0.02$ for the \MET\ regions up to \MET\ $>$ 100 GeV.
|
335 |
|
|
For higher \MET\ regions we chose $K=0.13\pm0.07$.
|
336 |
benhoob |
1.4 |
%{\bf FIXME plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
|
337 |
benhoob |
1.1 |
\label{fig:K_targeted}
|
338 |
|
|
}
|
339 |
benhoob |
1.6 |
\begin{comment}
|
340 |
|
|
|
341 |
|
|
Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvm==0)
|
342 |
|
|
Using weight : vtxweight * weight
|
343 |
benhoob |
1.18 |
OF entries (total) 11172
|
344 |
|
|
OF entries (Z mass) 1331
|
345 |
|
|
K 0.119137
|
346 |
|
|
Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
|
347 |
benhoob |
1.6 |
|
348 |
|
|
--------------------------------------------------------------
|
349 |
|
|
pfmet>0
|
350 |
|
|
|
351 |
|
|
data :
|
352 |
benhoob |
1.18 |
total : 11172
|
353 |
|
|
Z : 1331
|
354 |
benhoob |
1.11 |
K : 0.12 +/- 0.003
|
355 |
benhoob |
1.6 |
|
356 |
|
|
MC :
|
357 |
benhoob |
1.18 |
total : 556.3
|
358 |
|
|
Z : 72.3357
|
359 |
|
|
K : 0.13 +/- 0.003
|
360 |
benhoob |
1.6 |
--------------------------------------------------------------
|
361 |
|
|
|
362 |
|
|
|
363 |
|
|
--------------------------------------------------------------
|
364 |
|
|
pfmet>30
|
365 |
|
|
|
366 |
|
|
data :
|
367 |
benhoob |
1.18 |
total : 8811
|
368 |
|
|
Z : 1085
|
369 |
benhoob |
1.11 |
K : 0.12 +/- 0.004
|
370 |
benhoob |
1.6 |
|
371 |
|
|
MC :
|
372 |
benhoob |
1.18 |
total : 447.641
|
373 |
|
|
Z : 60.0542
|
374 |
|
|
K : 0.13 +/- 0.003
|
375 |
benhoob |
1.6 |
--------------------------------------------------------------
|
376 |
|
|
|
377 |
|
|
|
378 |
|
|
--------------------------------------------------------------
|
379 |
|
|
pfmet>60
|
380 |
|
|
|
381 |
|
|
data :
|
382 |
benhoob |
1.18 |
total : 5263
|
383 |
|
|
Z : 677
|
384 |
benhoob |
1.11 |
K : 0.13 +/- 0.005
|
385 |
benhoob |
1.6 |
|
386 |
|
|
MC :
|
387 |
benhoob |
1.18 |
total : 285.463
|
388 |
|
|
Z : 39.2608
|
389 |
|
|
K : 0.14 +/- 0.004
|
390 |
benhoob |
1.6 |
--------------------------------------------------------------
|
391 |
|
|
|
392 |
|
|
|
393 |
|
|
--------------------------------------------------------------
|
394 |
|
|
pfmet>80
|
395 |
|
|
|
396 |
|
|
data :
|
397 |
benhoob |
1.18 |
total : 3325
|
398 |
|
|
Z : 422
|
399 |
benhoob |
1.11 |
K : 0.13 +/- 0.006
|
400 |
benhoob |
1.6 |
|
401 |
|
|
MC :
|
402 |
benhoob |
1.18 |
total : 183.689
|
403 |
|
|
Z : 25.7671
|
404 |
|
|
K : 0.14 +/- 0.005
|
405 |
benhoob |
1.6 |
--------------------------------------------------------------
|
406 |
|
|
|
407 |
|
|
|
408 |
|
|
--------------------------------------------------------------
|
409 |
|
|
pfmet>100
|
410 |
|
|
|
411 |
|
|
data :
|
412 |
benhoob |
1.18 |
total : 1883
|
413 |
|
|
Z : 234
|
414 |
benhoob |
1.11 |
K : 0.12 +/- 0.008
|
415 |
benhoob |
1.6 |
|
416 |
|
|
MC :
|
417 |
benhoob |
1.18 |
total : 111.774
|
418 |
|
|
Z : 14.7812
|
419 |
|
|
K : 0.13 +/- 0.006
|
420 |
benhoob |
1.6 |
--------------------------------------------------------------
|
421 |
|
|
|
422 |
|
|
|
423 |
|
|
--------------------------------------------------------------
|
424 |
|
|
pfmet>150
|
425 |
|
|
|
426 |
|
|
data :
|
427 |
benhoob |
1.18 |
total : 451
|
428 |
|
|
Z : 46
|
429 |
benhoob |
1.11 |
K : 0.10 +/- 0.015
|
430 |
benhoob |
1.6 |
|
431 |
|
|
MC :
|
432 |
benhoob |
1.18 |
total : 29.4551
|
433 |
|
|
Z : 3.57377
|
434 |
|
|
K : 0.12 +/- 0.012
|
435 |
benhoob |
1.6 |
--------------------------------------------------------------
|
436 |
|
|
|
437 |
|
|
|
438 |
|
|
--------------------------------------------------------------
|
439 |
|
|
pfmet>200
|
440 |
|
|
|
441 |
|
|
data :
|
442 |
benhoob |
1.18 |
total : 138
|
443 |
|
|
Z : 15
|
444 |
|
|
K : 0.11 +/- 0.028
|
445 |
benhoob |
1.6 |
|
446 |
|
|
MC :
|
447 |
benhoob |
1.18 |
total : 8.60692
|
448 |
|
|
Z : 0.775129
|
449 |
|
|
K : 0.09 +/- 0.017
|
450 |
benhoob |
1.6 |
--------------------------------------------------------------
|
451 |
|
|
|
452 |
benhoob |
1.18 |
Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvm==0)
|
453 |
benhoob |
1.6 |
Using weight : vtxweight * weight
|
454 |
benhoob |
1.18 |
OF entries (total) 11172
|
455 |
|
|
OF entries (Z mass) 1331
|
456 |
|
|
K 0.119137
|
457 |
|
|
Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
|
458 |
|
|
Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
|
459 |
benhoob |
1.6 |
|
460 |
|
|
--------------------------------------------------------------
|
461 |
|
|
pfmet>0 && pfmet<30
|
462 |
|
|
|
463 |
|
|
data :
|
464 |
benhoob |
1.18 |
total : 2361
|
465 |
|
|
Z : 246
|
466 |
|
|
K : 0.10 +/- 0.007
|
467 |
benhoob |
1.6 |
|
468 |
|
|
MC :
|
469 |
benhoob |
1.18 |
total : 108.378
|
470 |
|
|
Z : 12.2795
|
471 |
|
|
K : 0.11 +/- 0.008
|
472 |
benhoob |
1.6 |
--------------------------------------------------------------
|
473 |
|
|
|
474 |
|
|
|
475 |
|
|
--------------------------------------------------------------
|
476 |
|
|
pfmet>30 && pfmet<60
|
477 |
|
|
|
478 |
|
|
data :
|
479 |
benhoob |
1.18 |
total : 3548
|
480 |
|
|
Z : 408
|
481 |
|
|
K : 0.11 +/- 0.006
|
482 |
benhoob |
1.6 |
|
483 |
|
|
MC :
|
484 |
benhoob |
1.18 |
total : 162.246
|
485 |
|
|
Z : 20.7935
|
486 |
|
|
K : 0.13 +/- 0.006
|
487 |
benhoob |
1.6 |
--------------------------------------------------------------
|
488 |
|
|
|
489 |
|
|
|
490 |
|
|
--------------------------------------------------------------
|
491 |
|
|
pfmet>60 && pfmet<80
|
492 |
|
|
|
493 |
|
|
data :
|
494 |
benhoob |
1.18 |
total : 1938
|
495 |
|
|
Z : 255
|
496 |
|
|
K : 0.13 +/- 0.008
|
497 |
benhoob |
1.6 |
|
498 |
|
|
MC :
|
499 |
benhoob |
1.18 |
total : 101.801
|
500 |
|
|
Z : 13.4941
|
501 |
|
|
K : 0.13 +/- 0.007
|
502 |
benhoob |
1.6 |
--------------------------------------------------------------
|
503 |
|
|
|
504 |
|
|
|
505 |
|
|
--------------------------------------------------------------
|
506 |
|
|
pfmet>80 && pfmet<100
|
507 |
|
|
|
508 |
|
|
data :
|
509 |
benhoob |
1.18 |
total : 1442
|
510 |
|
|
Z : 188
|
511 |
|
|
K : 0.13 +/- 0.010
|
512 |
benhoob |
1.6 |
|
513 |
|
|
MC :
|
514 |
benhoob |
1.18 |
total : 71.9073
|
515 |
|
|
Z : 10.986
|
516 |
|
|
K : 0.15 +/- 0.009
|
517 |
benhoob |
1.6 |
--------------------------------------------------------------
|
518 |
|
|
|
519 |
|
|
|
520 |
|
|
--------------------------------------------------------------
|
521 |
|
|
pfmet>100 && pfmet<150
|
522 |
|
|
|
523 |
|
|
data :
|
524 |
benhoob |
1.18 |
total : 1432
|
525 |
|
|
Z : 188
|
526 |
|
|
K : 0.13 +/- 0.010
|
527 |
benhoob |
1.6 |
|
528 |
|
|
MC :
|
529 |
benhoob |
1.18 |
total : 82.3186
|
530 |
|
|
Z : 11.2075
|
531 |
|
|
K : 0.14 +/- 0.008
|
532 |
benhoob |
1.6 |
--------------------------------------------------------------
|
533 |
|
|
|
534 |
|
|
|
535 |
|
|
--------------------------------------------------------------
|
536 |
|
|
pfmet>150 && pfmet<200
|
537 |
|
|
|
538 |
|
|
data :
|
539 |
benhoob |
1.18 |
total : 313
|
540 |
|
|
Z : 31
|
541 |
|
|
K : 0.10 +/- 0.018
|
542 |
benhoob |
1.6 |
|
543 |
|
|
MC :
|
544 |
benhoob |
1.18 |
total : 20.8482
|
545 |
|
|
Z : 2.79864
|
546 |
|
|
K : 0.13 +/- 0.015
|
547 |
benhoob |
1.6 |
--------------------------------------------------------------
|
548 |
|
|
|
549 |
|
|
|
550 |
|
|
--------------------------------------------------------------
|
551 |
|
|
pfmet>200
|
552 |
|
|
|
553 |
|
|
data :
|
554 |
benhoob |
1.18 |
total : 138
|
555 |
|
|
Z : 15
|
556 |
|
|
K : 0.11 +/- 0.028
|
557 |
benhoob |
1.6 |
|
558 |
|
|
MC :
|
559 |
benhoob |
1.18 |
total : 8.60692
|
560 |
|
|
Z : 0.775129
|
561 |
|
|
K : 0.09 +/- 0.017
|
562 |
benhoob |
1.6 |
--------------------------------------------------------------
|
563 |
|
|
|
564 |
|
|
|
565 |
|
|
|
566 |
|
|
|
567 |
benhoob |
1.18 |
\end{comment}
|
568 |
benhoob |
1.6 |
|
569 |
benhoob |
1.1 |
\end{center}
|
570 |
|
|
\end{figure}
|
571 |
|
|
|
572 |
benhoob |
1.6 |
|
573 |
benhoob |
1.1 |
\clearpage
|
574 |
|
|
|
575 |
|
|
\subsection{Estimating the WZ and ZZ Background with MC}
|
576 |
|
|
\label{sec:bkg_vz}
|
577 |
|
|
|
578 |
|
|
Backgrounds from W($\ell\nu$)Z($\ell\ell$) where the W lepton is not identified or is outside acceptance, and Z($\nu\nu$)Z($\ell\ell$),
|
579 |
|
|
are estimated from simulation. The MC modeling of these processes is validated by comparing the MC predictions with data in control samples
|
580 |
|
|
with exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample).
|
581 |
benhoob |
1.6 |
The critical samples are the WZJetsTo3LNu and ZZJetsTo4L, listed in Table~\ref{tab:mcsamples}
|
582 |
|
|
(the WZJetsTo2L2Q, ZZJetsTo2L2Q, and ZZJetsTo2L2Nu samples are also used in this analysis but their contribution to the 3-lepton and 4-lepton
|
583 |
|
|
control samples is negligible).
|
584 |
benhoob |
1.1 |
|
585 |
|
|
\subsubsection{WZ Validation Studies}
|
586 |
|
|
\label{sec:bkg_wz}
|
587 |
|
|
|
588 |
|
|
A pure WZ sample can be selected in data with the requirements:
|
589 |
|
|
|
590 |
|
|
\begin{itemize}
|
591 |
|
|
\item Exactly 3 $p_T>20$~GeV leptons passing analysis identication and isolation requirements,
|
592 |
|
|
\item 2 of the 3 leptons must fall in the Z window 81-101 GeV,
|
593 |
|
|
\item \MET $>$ 50 GeV (to suppress DY).
|
594 |
|
|
\end{itemize}
|
595 |
|
|
|
596 |
|
|
The data and MC yields passing the above selection are in Table~\ref{tab:wz}.
|
597 |
benhoob |
1.17 |
The inclusive yields (without any jet requirements) agree within 16\%, which is consistent within
|
598 |
|
|
the $\approx$15\% uncertainty in the theory prediction for the WZ cross section. A data vs. MC comparison of kinematic
|
599 |
benhoob |
1.1 |
distributions (jet multiplicity, \MET, Z \pt) is given in Fig.~\ref{fig:wz}. High \MET\
|
600 |
|
|
values in WZ and ZZ events arise from highly boosted W or Z bosons that decay leptonically,
|
601 |
|
|
and we therefore check that the MC does a reasonable job of reproducing the \pt distributions of the
|
602 |
|
|
leptonically decaying \Z. While the inclusive WZ yields are in reasonable agreement, we observe
|
603 |
|
|
an excess in data in events with at least 2 jets, corresponding to the jet multiplicity requirement
|
604 |
benhoob |
1.17 |
in our preselection. We observe 200 events in data while the MC predicts $130\pm3.1$~(stat), representing an excess of 53\%,
|
605 |
|
|
as indicated in Table~\ref{tab:wz2j}, and we therefore assess an uncertainty of 50\% on the WZ background.
|
606 |
|
|
%We note that the contributions from fake leptons and from \zjets\ with mismeasured \MET\
|
607 |
|
|
%is underestimated in the MC.
|
608 |
|
|
%This excess will be studied further. For the time being, based on these studies we currently assess an uncertainty of 50\% on the WZ yield.
|
609 |
|
|
%A data vs. MC comparison of several kinematic quantities in the sample with 3 leptons and at least 2 jets can be found in App.~\ref{app:WZ}.
|
610 |
benhoob |
1.7 |
|
611 |
|
|
\begin{comment}
|
612 |
|
|
We note some possible contributions to this discrepancy:
|
613 |
benhoob |
1.1 |
|
614 |
|
|
\begin{itemize}
|
615 |
|
|
|
616 |
benhoob |
1.6 |
\item {\bf The following checks refer to the 5.2 fb$^{-1}$ results and will be updated.}
|
617 |
|
|
|
618 |
benhoob |
1.1 |
\item The \zjets\ contribution is under-estimated here, for 2 reasons: first, because the \zjets\
|
619 |
|
|
yield passing a \MET $>$ 50 GeV requirement is under-estimated in MC and second, because the fake
|
620 |
|
|
rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends
|
621 |
|
|
on the \zjets\ yield, if the \zjets\ yield is doubled then the excess is reduced from 78\% to 55\%.
|
622 |
benhoob |
1.4 |
Also note that we are currently using 10\% of the \zjets\ MC sample and there is 1 event with a weight
|
623 |
|
|
of about 5, so the plots and tables will be remade with full \zjets\ sample.
|
624 |
benhoob |
1.1 |
|
625 |
|
|
\item The \ttbar\ contribution is under-estimated here because the fake
|
626 |
|
|
rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends
|
627 |
|
|
on the \ttbar\ yield, if the \ttbar\ yield is doubled then the excess is reduced from 78\% to 57\%.
|
628 |
|
|
|
629 |
|
|
\item Currently no attempt is made to reject jets from pile-up interactions, which may be responsible
|
630 |
benhoob |
1.3 |
for some of the excess at large \njets. To check this, we increase the jet \pt threhsold to 40 GeV, which
|
631 |
|
|
helps to suppress PU jets, and observe 39 events in data vs. an MC prediction of $25\pm5.2$~(stat),
|
632 |
benhoob |
1.1 |
decreasing the excess from 78\% to 58\%. In the future this may be improved by explicitly
|
633 |
|
|
requiring the jets to be consistent with originating from the signal primary vertex.
|
634 |
|
|
|
635 |
|
|
\end{itemize}
|
636 |
benhoob |
1.7 |
\end{comment}
|
637 |
|
|
|
638 |
benhoob |
1.1 |
|
639 |
|
|
|
640 |
|
|
\begin{table}[htb]
|
641 |
|
|
\begin{center}
|
642 |
|
|
\caption{\label{tab:wz} Data and Monte Carlo yields passing the WZ preselection. }
|
643 |
|
|
\begin{tabular}{lccccc}
|
644 |
benhoob |
1.12 |
|
645 |
|
|
%Loading babies at : ../output/V00-02-00
|
646 |
|
|
%Using selection : (((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101)
|
647 |
|
|
%Using weight : weight * 19.3 * trgeff * vtxweight
|
648 |
|
|
|
649 |
benhoob |
1.1 |
\hline
|
650 |
benhoob |
1.3 |
\hline
|
651 |
benhoob |
1.12 |
Sample & ee & $\mu\mu$ & e$\mu$ & total \\
|
652 |
benhoob |
1.1 |
\hline
|
653 |
benhoob |
1.12 |
%SCALING ZJETS BY 111/946
|
654 |
|
|
WZ &244.9 $\pm$ 1.6 &317.9 $\pm$ 1.8 & 17.0 $\pm$ 0.4 &579.7 $\pm$ 2.4 \\
|
655 |
|
|
\zjets & 2.5 $\pm$ 2.0 & 6.4 $\pm$ 3.9 & 0.0 $\pm$ 0.0 & 8.9 $\pm$ 4.3 \\
|
656 |
|
|
ZZ & 5.3 $\pm$ 0.0 & 7.1 $\pm$ 0.1 & 0.4 $\pm$ 0.0 & 12.8 $\pm$ 0.1 \\
|
657 |
|
|
\ttbar & 2.5 $\pm$ 1.3 & 6.7 $\pm$ 2.0 & 7.5 $\pm$ 2.1 & 16.7 $\pm$ 3.2 \\
|
658 |
|
|
single top & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 \\
|
659 |
|
|
WW & 0.0 $\pm$ 0.0 & 0.1 $\pm$ 0.1 & 0.2 $\pm$ 0.1 & 0.3 $\pm$ 0.1 \\
|
660 |
|
|
ttV & 8.6 $\pm$ 0.4 & 10.3 $\pm$ 0.4 & 2.5 $\pm$ 0.2 & 21.5 $\pm$ 0.7 \\
|
661 |
|
|
VVV & 3.4 $\pm$ 0.1 & 4.3 $\pm$ 0.1 & 0.6 $\pm$ 0.1 & 8.3 $\pm$ 0.2 \\
|
662 |
benhoob |
1.5 |
\hline
|
663 |
benhoob |
1.12 |
tot SM MC &267.1 $\pm$ 2.9 &353.3 $\pm$ 4.7 & 28.2 $\pm$ 2.2 &648.6 $\pm$ 6.0 \\
|
664 |
benhoob |
1.1 |
\hline
|
665 |
benhoob |
1.12 |
data & 312 & 391 & 50 & 753 \\
|
666 |
benhoob |
1.1 |
\hline
|
667 |
|
|
\hline
|
668 |
|
|
|
669 |
|
|
\end{tabular}
|
670 |
|
|
\end{center}
|
671 |
|
|
\end{table}
|
672 |
|
|
|
673 |
|
|
\begin{table}[htb]
|
674 |
|
|
\begin{center}
|
675 |
benhoob |
1.8 |
\caption{\label{tab:wz2j} Data and Monte Carlo yields passing the WZ preselection and \njets\ $\geq$ 2. }
|
676 |
benhoob |
1.1 |
\begin{tabular}{lccccc}
|
677 |
benhoob |
1.12 |
|
678 |
|
|
%Loading babies at : ../output/V00-02-00
|
679 |
|
|
%-------------------------------------
|
680 |
|
|
%USING SKIMMED SAMPLES WITH NJETS >= 2
|
681 |
|
|
%-------------------------------------
|
682 |
|
|
|
683 |
|
|
%Using selection : ((((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101))&&(njets>=2)
|
684 |
|
|
%Using weight : weight * 19.3 * trgeff * vtxweight
|
685 |
|
|
|
686 |
benhoob |
1.1 |
\hline
|
687 |
benhoob |
1.3 |
\hline
|
688 |
benhoob |
1.12 |
Sample & ee & $\mu\mu$ & e$\mu$ & total \\
|
689 |
benhoob |
1.1 |
\hline
|
690 |
benhoob |
1.12 |
%SCALING ZJETS BY 111/946
|
691 |
|
|
\ttbar & 1.6 $\pm$ 0.9 & 3.4 $\pm$ 1.5 & 1.8 $\pm$ 1.1 & 6.9 $\pm$ 2.0 \\
|
692 |
|
|
\zjets & 1.9 $\pm$ 1.9 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 1.9 $\pm$ 1.9 \\
|
693 |
|
|
WZ & 40.0 $\pm$ 0.7 & 51.5 $\pm$ 0.7 & 2.7 $\pm$ 0.2 & 94.3 $\pm$ 1.0 \\
|
694 |
|
|
ZZ & 1.0 $\pm$ 0.0 & 1.4 $\pm$ 0.0 & 0.1 $\pm$ 0.0 & 2.6 $\pm$ 0.0 \\
|
695 |
|
|
single top & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 \\
|
696 |
benhoob |
1.5 |
WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
|
697 |
benhoob |
1.12 |
ttV & 8.0 $\pm$ 0.4 & 9.5 $\pm$ 0.4 & 2.2 $\pm$ 0.2 & 19.6 $\pm$ 0.6 \\
|
698 |
|
|
VVV & 1.9 $\pm$ 0.1 & 2.6 $\pm$ 0.1 & 0.2 $\pm$ 0.0 & 4.6 $\pm$ 0.2 \\
|
699 |
benhoob |
1.5 |
\hline
|
700 |
benhoob |
1.12 |
tot SM MC & 54.4 $\pm$ 2.2 & 69.0 $\pm$ 1.8 & 6.9 $\pm$ 1.1 &130.4 $\pm$ 3.1 \\
|
701 |
benhoob |
1.1 |
\hline
|
702 |
benhoob |
1.12 |
data & 87 & 91 & 22 & 200 \\
|
703 |
benhoob |
1.1 |
\hline
|
704 |
|
|
\hline
|
705 |
|
|
|
706 |
|
|
\end{tabular}
|
707 |
|
|
\end{center}
|
708 |
|
|
\end{table}
|
709 |
|
|
|
710 |
|
|
\begin{figure}[tbh]
|
711 |
|
|
\begin{center}
|
712 |
benhoob |
1.13 |
\includegraphics[width=1\linewidth]{plots/WZ_19fb.pdf}
|
713 |
benhoob |
1.1 |
\caption{\label{fig:wz}\protect
|
714 |
|
|
Data vs. MC comparisons for the WZ selection discussed in the text for \lumi.
|
715 |
|
|
The number of jets, missing transverse energy, and Z boson transverse momentum are displayed.
|
716 |
|
|
}
|
717 |
benhoob |
1.13 |
\begin{comment}
|
718 |
|
|
Loading babies at : ../output/V00-02-00
|
719 |
|
|
Using selection : (((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101)
|
720 |
|
|
Using weight : weight * 19.3 * trgeff * vtxweight
|
721 |
|
|
Plotting var njets flavor sf
|
722 |
|
|
compareDataMC : apply trigeff 1
|
723 |
|
|
MC yield VVV 7.73
|
724 |
|
|
MC yield ttV 18.95
|
725 |
|
|
MC yield single top 0.51
|
726 |
|
|
MC yield WW 0.09
|
727 |
|
|
MC yield ZZ 12.38
|
728 |
|
|
MC yield WZ 562.71
|
729 |
|
|
MC yield ttbar 9.18
|
730 |
|
|
SCALING ZJETS BY 111/946
|
731 |
|
|
MC yield zjets 8.85
|
732 |
|
|
MC total yield 620.39
|
733 |
|
|
data yield 703
|
734 |
|
|
Plotting var pfmet flavor sf
|
735 |
|
|
compareDataMC : apply trigeff 1
|
736 |
|
|
MC yield VVV 7.73
|
737 |
|
|
MC yield ttV 18.95
|
738 |
|
|
MC yield single top 0.51
|
739 |
|
|
MC yield WW 0.09
|
740 |
|
|
MC yield ZZ 12.38
|
741 |
|
|
MC yield WZ 562.72
|
742 |
|
|
MC yield ttbar 9.18
|
743 |
|
|
SCALING ZJETS BY 111/946
|
744 |
|
|
MC yield zjets 8.85
|
745 |
|
|
MC total yield 620.40
|
746 |
|
|
data yield 703
|
747 |
|
|
Plotting var dileppt flavor sf
|
748 |
|
|
compareDataMC : apply trigeff 1
|
749 |
|
|
MC yield VVV 7.73
|
750 |
|
|
MC yield ttV 18.95
|
751 |
|
|
MC yield single top 0.51
|
752 |
|
|
MC yield WW 0.09
|
753 |
|
|
MC yield ZZ 12.38
|
754 |
|
|
MC yield WZ 562.71
|
755 |
|
|
MC yield ttbar 9.18
|
756 |
|
|
SCALING ZJETS BY 111/946
|
757 |
|
|
MC yield zjets 8.85
|
758 |
|
|
MC total yield 620.38
|
759 |
|
|
data yield 703
|
760 |
|
|
\end{comment}
|
761 |
|
|
|
762 |
benhoob |
1.1 |
\end{center}
|
763 |
|
|
\end{figure}
|
764 |
|
|
|
765 |
|
|
\clearpage
|
766 |
|
|
|
767 |
|
|
\subsubsection{ZZ Validation Studies}
|
768 |
|
|
\label{sec:bkg_zz}
|
769 |
|
|
|
770 |
|
|
A pure ZZ sample can be selected in data with the requirements:
|
771 |
|
|
|
772 |
|
|
\begin{itemize}
|
773 |
|
|
\item Exactly 4 $p_T>20$~GeV leptons passing analysis identication and isolation requirements,
|
774 |
|
|
\item 2 of the 4 leptons must fall in the $Z$ window 81-101 GeV.
|
775 |
|
|
\end{itemize}
|
776 |
|
|
|
777 |
benhoob |
1.6 |
The data and MC yields passing the above selection are in Table~\ref{tab:zz}.
|
778 |
|
|
In this ZZ-dominated sample we observe good agreement between the data yield and the MC prediction.
|
779 |
benhoob |
1.16 |
After requiring 2 jets (corresponding to the requirement in the analysis selection), we observe 14 events
|
780 |
|
|
in data and the MC predicts $13.2\pm0.2$ events. Due to the limited statistical precision we assign an uncertainty
|
781 |
|
|
of 50\% on the ZZ yield.
|
782 |
benhoob |
1.1 |
|
783 |
|
|
\begin{table}[htb]
|
784 |
|
|
\begin{center}
|
785 |
|
|
\caption{\label{tab:zz} Data and Monte Carlo yields for the ZZ preselection. }
|
786 |
|
|
\begin{tabular}{lccccc}
|
787 |
benhoob |
1.13 |
|
788 |
|
|
%Loading babies at : ../output/V00-02-00
|
789 |
|
|
%Using selection : ((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==4 && lep3.pt()>20.0 && lep4.pt()>20.0))&&(dilmass>81 && dilmass<101)
|
790 |
|
|
%Using weight : weight * 19.3 * trgeff * vtxweight
|
791 |
|
|
|
792 |
benhoob |
1.1 |
\hline
|
793 |
benhoob |
1.3 |
\hline
|
794 |
benhoob |
1.1 |
Sample & ee & $\mu\mu$ & e$\mu$ & total \\
|
795 |
|
|
\hline
|
796 |
benhoob |
1.13 |
%SCALING ZZ BY 1.92
|
797 |
|
|
ZZ & 52.7 $\pm$ 0.2 & 73.3 $\pm$ 0.2 & 3.4 $\pm$ 0.0 &129.4 $\pm$ 0.3 \\
|
798 |
|
|
WZ & 0.1 $\pm$ 0.0 & 0.1 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.3 $\pm$ 0.1 \\
|
799 |
benhoob |
1.6 |
%SCALING ZJETS BY 111/946
|
800 |
benhoob |
1.1 |
\zjets & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
|
801 |
|
|
\ttbar & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
|
802 |
benhoob |
1.13 |
WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
|
803 |
benhoob |
1.6 |
single top & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
|
804 |
benhoob |
1.13 |
ttV & 1.3 $\pm$ 0.2 & 1.4 $\pm$ 0.2 & 0.3 $\pm$ 0.1 & 3.0 $\pm$ 0.2 \\
|
805 |
|
|
VVV & 0.6 $\pm$ 0.1 & 0.8 $\pm$ 0.1 & 0.0 $\pm$ 0.0 & 1.4 $\pm$ 0.1 \\
|
806 |
benhoob |
1.1 |
\hline
|
807 |
benhoob |
1.13 |
tot SM MC & 54.7 $\pm$ 0.3 & 75.6 $\pm$ 0.3 & 3.8 $\pm$ 0.1 &134.1 $\pm$ 0.4 \\
|
808 |
benhoob |
1.6 |
\hline
|
809 |
benhoob |
1.13 |
data & 56 & 80 & 5 & 141 \\
|
810 |
benhoob |
1.1 |
\hline
|
811 |
|
|
\hline
|
812 |
benhoob |
1.13 |
|
813 |
benhoob |
1.1 |
\end{tabular}
|
814 |
|
|
\end{center}
|
815 |
|
|
\end{table}
|
816 |
|
|
|
817 |
|
|
\begin{figure}[tbh]
|
818 |
|
|
\begin{center}
|
819 |
benhoob |
1.14 |
\includegraphics[width=1\linewidth]{plots/ZZ_19fb.pdf}
|
820 |
benhoob |
1.1 |
\caption{\label{fig:zz}\protect
|
821 |
benhoob |
1.3 |
Data vs. MC comparisons for the ZZ selection discussed in the text for \lumi.
|
822 |
|
|
The number of jets, missing transverse energy, and Z boson transverse momentum are displayed.
|
823 |
benhoob |
1.1 |
}
|
824 |
|
|
\end{center}
|
825 |
|
|
\end{figure}
|
826 |
|
|
|
827 |
benhoob |
1.15 |
\begin{comment}
|
828 |
|
|
Loading babies at : ../output/V00-02-00
|
829 |
|
|
Using selection : ((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==4 && lep3.pt()>20.0 && lep4.pt()>20.0))&&(dilmass>81 && dilmass<101)
|
830 |
|
|
Using weight : weight * 19.3 * trgeff * vtxweight
|
831 |
|
|
Plotting var njets flavor sf
|
832 |
|
|
compareDataMC : apply trigeff 1
|
833 |
|
|
|
834 |
|
|
MC yield VVV 1.40
|
835 |
|
|
MC yield ttV 2.64
|
836 |
|
|
MC yield single top 0.00
|
837 |
|
|
MC yield WW 0.00
|
838 |
|
|
MC yield ttbar 0.00
|
839 |
|
|
SCALING ZJETS BY 111/946
|
840 |
|
|
MC yield zjets 0.00
|
841 |
|
|
MC yield WZ 0.27
|
842 |
|
|
SCALING ZJETS BY 1.92
|
843 |
|
|
MC yield ZZ 125.99
|
844 |
|
|
MC total yield 130.31
|
845 |
|
|
data yield 136
|
846 |
|
|
Plotting var pfmet flavor sf
|
847 |
|
|
compareDataMC : apply trigeff 1
|
848 |
|
|
MC yield VVV 1.40
|
849 |
|
|
MC yield ttV 2.64
|
850 |
|
|
MC yield single top 0.00
|
851 |
|
|
MC yield WW 0.00
|
852 |
|
|
MC yield ttbar 0.00
|
853 |
|
|
SCALING ZJETS BY 111/946
|
854 |
|
|
MC yield zjets 0.00
|
855 |
|
|
MC yield WZ 0.27
|
856 |
|
|
SCALING ZJETS BY 1.92
|
857 |
|
|
MC yield ZZ 126.00
|
858 |
|
|
MC total yield 130.32
|
859 |
|
|
data yield 136
|
860 |
|
|
Plotting var dileppt flavor sf
|
861 |
|
|
compareDataMC : apply trigeff 1
|
862 |
|
|
MC yield VVV 1.40
|
863 |
|
|
MC yield ttV 2.64
|
864 |
|
|
MC yield single top 0.00
|
865 |
|
|
MC yield WW 0.00
|
866 |
|
|
MC yield ttbar 0.00
|
867 |
|
|
SCALING ZJETS BY 111/946
|
868 |
|
|
MC yield zjets 0.00
|
869 |
|
|
MC yield WZ 0.27
|
870 |
|
|
SCALING ZJETS BY 1.92
|
871 |
|
|
MC yield ZZ 126.00
|
872 |
|
|
MC total yield 130.33
|
873 |
|
|
data yield 136
|
874 |
|
|
\end{comment}
|
875 |
benhoob |
1.1 |
|
876 |
|
|
|
877 |
|
|
|
878 |
benhoob |
1.4 |
%\subsection{Estimating the Rare SM Backgrounds with MC}
|
879 |
|
|
%\label{sec:bkg_raresm}
|
880 |
benhoob |
1.1 |
|
881 |
benhoob |
1.4 |
%{\bf TODO: list samples, yields in preselection region, and show \MET\ distribution}
|