ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/ZMet2012/bkg.tex
Revision: 1.5
Committed: Wed Sep 12 08:24:01 2012 UTC (12 years, 8 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.4: +36 -17 lines
Log Message:
updates for 53X 9.2/fb

File Contents

# User Rev Content
1 benhoob 1.4 %\clearpage
2 benhoob 1.1 \section{Background Estimation Techniques}
3     \label{sec:bkg}
4    
5     In this section we describe the techniques used to estimate the SM backgrounds in our signal regions defined by requirements of large \MET.
6 benhoob 1.4 The SM backgrounds fall into three categories:
7 benhoob 1.1
8     \begin{itemize}
9 benhoob 1.2 \item \zjets: this is the dominant background after the preselection. The \MET\ in \zjets\ events is estimated with the
10 benhoob 1.1 ``\MET\ templates'' technique described in Sec.~\ref{sec:bkg_zjets};
11     \item Flavor-symmetric (FS) backgrounds: this category includes processes which produces 2 leptons of uncorrelated flavor. It is dominated
12     by \ttbar\ but also contains Z$\to\tau\tau$, WW, and single top processes. This is the dominant contribution in the signal regions, and it
13 benhoob 1.2 is estimated using a data control sample of e$\mu$ events as described in Sec.~\ref{sec:bkg_fs};
14 benhoob 1.1 \item WZ and ZZ backgrounds: this background is estimated from MC, after validating the MC modeling of these processes using data control
15 benhoob 1.2 samples with jets and exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample) as described in Sec.~\ref{sec:bkg_vz};
16 benhoob 1.4 %\item Rare SM backgrounds: this background contains rare processes such as $t\bar{t}$V and triple vector boson processes VVV (V=W,Z).
17     %This background is estimated from MC as described in Sec.~\ref{sec:bkg_raresm}. {\bf FIXME: add rare MC}
18 benhoob 1.1 \end{itemize}
19    
20     \subsection{Estimating the \zjets\ Background with \MET\ Templates}
21     \label{sec:bkg_zjets}
22    
23 benhoob 1.3 The premise of this data driven technique is that \MET\ in \zjets\ events
24 benhoob 1.1 is produced by the hadronic recoil system and {\it not} by the leptons making up the Z.
25     Therefore, the basic idea of the \MET\ template method is to measure the \MET\ distribution in
26     a control sample which has no true MET and the same general attributes regarding
27     fake MET as in \zjets\ events. We thus use a sample of \gjets\ events, since both \zjets\
28     and \gjets\ events consist of a well-measured object recoiling against hadronic jets.
29    
30     For selecting photon-like objects, the very loose photon selection described in Sec.~\ref{sec:phosel} is used.
31     It is not essential for the photon sample to have high purity. For our purposes, selecting jets with predominantly
32     electromagnetic energy deposition in a good fiducial volume suffices to ensure that
33     they are well measured and do not contribute to fake \MET. The \gjets\ events are selected with a suite of
34     single photon triggers with \pt thresholds varying from 22--90 GeV. The events are weighted by the trigger prescale
35     such that \gjets\ events evenly sample the conditions over the full period of data taking.
36     There remains a small difference in the PU conditions in the \gjets\ vs. \zjets\ samples due to the different
37     dependencies of the $\gamma$ vs. Z isolation efficiencies on PU. To account for this, we reweight the \gjets\ samples
38     to match the distribution of reconstructed primary vertices in the \zjets\ sample.
39    
40     To account for kinematic differences between the hadronic systems in the control vs. signal
41     samples, we measure the \MET\ distributions in the \gjets\ sample in bins of the number of jets
42 benhoob 1.3 and the scalar sum of jet transverse energies (\Ht). These \MET\ templates are extracted separately from the 5 single photon
43     triggers with thresholds 22, 36, 50, 75, and 90 GeV, so that the templates are effectively binned in photon \pt.
44     All \MET distributions are normalized to unit area to form ``MET templates''.
45     The prediction of the MET in each \Z event is the template which corresponds to the \njets,
46     \Ht, and Z \pt in the \zjets\ event. The prediction for the \Z sample is simply the sum of all such templates.
47     All templates are displayed in App.~\ref{app:templates}.
48 benhoob 1.1
49     While there is in principle a small contribution from backgrounds other than \zjets\ in the preselection regions,
50     this contribution is only $\approx$3\% ($\approx$2\%) of the total sample in the inclusive search (targeted search),
51 benhoob 1.3 as shown in Table~\ref{table:zyields_2j} (Table~\ref{table:zyields_2j_targeted}), and is therefore negligible compared to the total
52 benhoob 1.1 background uncertainty.
53    
54     \subsection{Estimating the Flavor-Symmetric Background with e$\mu$ Events}
55     \label{sec:bkg_fs}
56    
57     In this subsection we describe the background estimate for the FS background. Since this background produces equal rates of same-flavor (SF)
58     ee and $\mu\mu$ lepton pairs as opposite-flavor (OF) e$\mu$ lepton pairs, the OF yield can be used to estimate the SF yield, after
59     correcting for the different electron vs. muon offline selection efficiencies and the different efficiencies for the ee, $\mu\mu$, and e$\mu$ triggers.
60    
61     An important quantity needed to translate from the OF yield to a prediction for the background in the SF final state is the ratio
62     $R_{\mu e} = \epsilon_\mu / \epsilon_e$, where $\epsilon_\mu$ ($\epsilon_e$) indicates the offline muon (electron) selection efficiency.
63     This quantity can be extracted from data using the observed Z$\to\mu\mu$ and Z$\to$ee yields in the preselection region, after correcting
64     for the different trigger efficiencies.
65    
66     Hence we define:
67    
68     \begin{itemize}
69     \item $N_{ee}^{\rm{trig}} = \epsilon_{ee}^{\rm{trig}}N_{ee}^{\rm{offline}}$,
70     \item $N_{\mu\mu}^{\rm{trig}} = \epsilon_{\mu\mu}^{\rm{trig}}N_{\mu\mu}^{\rm{offline}}$,
71     \item $N_{e\mu}^{\rm{trig}} = \epsilon_{e\mu}^{\rm{trig}}N_{e\mu}^{\rm{offline}}$.
72     \end{itemize}
73    
74 benhoob 1.3 Here $N_{\ell\ell}^{\rm{trig}}$ denotes the number of selected Z events in the $\ell\ell$ channel passing the offline and trigger selection
75     (in other words, the number of recorded and selected events), $\epsilon_{\ell\ell}^{\rm{trig}}$ is the trigger efficiency, and
76     $N_{\ell\ell}^{\rm{offline}}$ is the number of events that would have passed the offline selection if the trigger had an efficiency of 100\%.
77 benhoob 1.1 Thus we calculate the quantity:
78    
79     \begin{equation}
80     R_{\mu e} = \sqrt{\frac{N_{\mu\mu}^{\rm{offline}}}{N_{ee}^{\rm{offline}}}} = \sqrt{\frac{N_{\mu\mu}^{\rm{trig}}/\epsilon_{\mu\mu}^{\rm{trig}}}{N_{ee}^{\rm{trig}}/\epsilon_{ee}^{\rm{trig}}}}
81     = \sqrt{\frac{80367/0.88}{54426/0.95}} = 1.26\pm0.07.
82     \end{equation}
83    
84     Here we have used the Z$\to\mu\mu$ and Z$\to$ee yields from Table~\ref{table:zyields_2j} and the trigger efficiencies quoted in Sec.~\ref{sec:datasets}.
85 benhoob 1.4 The indicated uncertainty is due to the 3\% uncertainties in the trigger efficiencies. %{\bf FIXME: check for variation w.r.t. lepton \pt}.
86 benhoob 1.1 The predicted yields in the ee and $\mu\mu$ final states are calculated from the observed e$\mu$ yield as
87    
88     \begin{itemize}
89     \item $N_{ee}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{ee}^{\rm{trig}}} {2 R_{\mu e}}
90 benhoob 1.3 = \frac{N_{e\mu}^{\rm{trig}}}{0.92}\frac{0.95}{2\times1.26} = (0.41\pm0.05) \times N_{e\mu}^{\rm{trig}}$ ,
91 benhoob 1.1 \item $N_{\mu\mu}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{\mu\mu}^{\rm{trig}} R_{\mu e}} {2}
92 benhoob 1.3 = \frac {N_{e\mu}^{\rm{trig}}} {0.95} \frac {0.88 \times 1.26}{2} = (0.58\pm0.07) \times N_{e\mu}^{\rm{trig}}$,
93 benhoob 1.1 \end{itemize}
94    
95     and the predicted yield in the combined ee and $\mu\mu$ channel is simply the sum of these two predictions:
96    
97     \begin{itemize}
98     \item $N_{ee+\mu\mu}^{\rm{predicted}} = (0.99\pm0.06)\times N_{e\mu}^{\rm{trig}}$.
99     \end{itemize}
100    
101 benhoob 1.3 Note that the relative uncertainty in the combined ee and $\mu\mu$ prediction is smaller than those for the individual ee and $\mu\mu$ predictions
102 benhoob 1.4 because the uncertainty in $R_{\mu e}$ cancels when summing the ee and $\mu\mu$ predictions. %{\bf N.B. these uncertainties are preliminary}.
103 benhoob 1.1
104     To improve the statistical precision of the FS background estimate, we remove the requirement that the e$\mu$ lepton pair falls in the Z mass window.
105     Instead we scale the e$\mu$ yield by $K$, the efficiency for e$\mu$ events to satisfy the Z mass requirement, extracted from simulation. In Fig.~\ref{fig:K_incl}
106     we display the value of $K$ in data and simulation, for a variety of \MET\ requirements, for the inclusive analysis. Based on this we chose $K=0.14\pm0.02$
107     for all \MET\ regions except for \MET\ $>$ 300 GeV. For this region the statistical precision is reduced, so that we inflate the uncertainty and chose $K=0.14\pm0.08$.
108     The corresponding plot for the targeted analysis, including the b-veto, is displayed in Fig.~\ref{fig:K_targeted}.
109     Based on this we chose $K=0.13\pm0.02$
110     for all \MET\ regions up to \MET\ $>$ 100 GeV. For higher \MET\ regions (\MET\ $>$ 150 GeV and above) the statistical precision is reduced,
111     so that we inflate the uncertainty and chose $K=0.13\pm0.07$.
112    
113     \begin{figure}[!ht]
114     \begin{center}
115     \begin{tabular}{cc}
116     \includegraphics[width=0.4\textwidth]{plots/K_incl.pdf} &
117     \includegraphics[width=0.4\textwidth]{plots/K_excl.pdf} \\
118     \end{tabular}
119     \caption{
120     The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
121     exclusive \MET\ intervals (right) for the inclusive analysis. Based on this we chose $K=0.14\pm0.02$ for all \MET\ regions except \MET\ $>$ 300 GeV,
122     where we chose $K=0.14\pm0.08$.
123 benhoob 1.4 %{\bf FIXME plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
124 benhoob 1.1 \label{fig:K_incl}
125     }
126     \end{center}
127     \end{figure}
128    
129     \begin{figure}[!hb]
130     \begin{center}
131     \begin{tabular}{cc}
132     \includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_bveto.pdf} &
133     \includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_bveto.pdf} \\
134     \end{tabular}
135     \caption{
136     The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
137     exclusive \MET\ intervals (right) for the targeted analysis, including the b-veto.
138     Based on this we chose $K=0.13\pm0.02$ for the \MET\ regions up to \MET\ $>$ 100 GeV.
139     For higher \MET\ regions we chose $K=0.13\pm0.07$.
140 benhoob 1.4 %{\bf FIXME plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
141 benhoob 1.1 \label{fig:K_targeted}
142     }
143     \end{center}
144     \end{figure}
145    
146     \clearpage
147    
148     \subsection{Estimating the WZ and ZZ Background with MC}
149     \label{sec:bkg_vz}
150    
151     Backgrounds from W($\ell\nu$)Z($\ell\ell$) where the W lepton is not identified or is outside acceptance, and Z($\nu\nu$)Z($\ell\ell$),
152     are estimated from simulation. The MC modeling of these processes is validated by comparing the MC predictions with data in control samples
153     with exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample).
154     The relevant WZ and ZZ MC samples are:
155    
156     \begin{itemize}
157     \footnotesize{
158     \item \verb=/WZJetsTo3LNu_TuneZ2_8TeV-madgraph-tauola/Summer12-PU_S7_START52_V9-v2/AODSIM= ($\sigma=1.058$ pb),
159     \item \verb=/ZZJetsTo4L_TuneZ2star_8TeV-madgraph-tauola/Summer12-PU_S7_START52_V9-v3/AODSIM= ($\sigma=0.093$ pb),
160     }
161     \end{itemize}
162     The WZJetsTo2L2Q, ZZJetsTo2L2Q, and ZZJetsTo2L2Nu samples are also used in this analysis but their contribution to the 3-lepton and 4-lepton
163     control samples is negligible.
164    
165     \subsubsection{WZ Validation Studies}
166     \label{sec:bkg_wz}
167    
168     A pure WZ sample can be selected in data with the requirements:
169    
170     \begin{itemize}
171     \item Exactly 3 $p_T>20$~GeV leptons passing analysis identication and isolation requirements,
172     \item 2 of the 3 leptons must fall in the Z window 81-101 GeV,
173     \item \MET $>$ 50 GeV (to suppress DY).
174     \end{itemize}
175    
176     The data and MC yields passing the above selection are in Table~\ref{tab:wz}.
177     The inclusive yields (without any jet requirements) agree within 17\%, which is approximately equal
178     to the uncertainty in the measured WZ cross section. A data vs. MC comparison of kinematic
179     distributions (jet multiplicity, \MET, Z \pt) is given in Fig.~\ref{fig:wz}. High \MET\
180     values in WZ and ZZ events arise from highly boosted W or Z bosons that decay leptonically,
181     and we therefore check that the MC does a reasonable job of reproducing the \pt distributions of the
182     leptonically decaying \Z. While the inclusive WZ yields are in reasonable agreement, we observe
183     an excess in data in events with at least 2 jets, corresponding to the jet multiplicity requirement
184 benhoob 1.3 in our preselection. We observe 60 events in data while the MC predicts $34\pm5.2$~(stat), representing an excess of 78\%,
185     as indicated in Table~\ref{tab:wz2j}. We note some possible contributions to this discrepancy:
186 benhoob 1.1
187     \begin{itemize}
188    
189     \item The \zjets\ contribution is under-estimated here, for 2 reasons: first, because the \zjets\
190     yield passing a \MET $>$ 50 GeV requirement is under-estimated in MC and second, because the fake
191     rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends
192     on the \zjets\ yield, if the \zjets\ yield is doubled then the excess is reduced from 78\% to 55\%.
193 benhoob 1.4 Also note that we are currently using 10\% of the \zjets\ MC sample and there is 1 event with a weight
194     of about 5, so the plots and tables will be remade with full \zjets\ sample.
195 benhoob 1.1
196     \item The \ttbar\ contribution is under-estimated here because the fake
197     rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends
198     on the \ttbar\ yield, if the \ttbar\ yield is doubled then the excess is reduced from 78\% to 57\%.
199    
200     \item Currently no attempt is made to reject jets from pile-up interactions, which may be responsible
201 benhoob 1.3 for some of the excess at large \njets. To check this, we increase the jet \pt threhsold to 40 GeV, which
202     helps to suppress PU jets, and observe 39 events in data vs. an MC prediction of $25\pm5.2$~(stat),
203 benhoob 1.1 decreasing the excess from 78\% to 58\%. In the future this may be improved by explicitly
204     requiring the jets to be consistent with originating from the signal primary vertex.
205    
206     \end{itemize}
207    
208     Based on these studies we currently assess an uncertainty of 80\% on the WZ yield.
209    
210     \begin{table}[htb]
211     \begin{center}
212     \caption{\label{tab:wz} Data and Monte Carlo yields passing the WZ preselection. }
213     \begin{tabular}{lccccc}
214     \hline
215 benhoob 1.3 \hline
216 benhoob 1.1 Sample & ee & $\mu\mu$ & e$\mu$ & total \\
217     \hline
218 benhoob 1.5
219     %Loading babies at : ../output/V00-01-04
220     %Using selection : ((((((isdata==0 || (run<197556 || run>198913))&&(((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0))))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101)
221     %Using weight : weight * 9.2 * trgeff * vtxweight
222    
223     WZ &116.7 $\pm$ 0.8 &151.5 $\pm$ 0.8 & 8.1 $\pm$ 0.2 &276.3 $\pm$ 1.2 \\
224     ttV & 4.1 $\pm$ 0.2 & 4.9 $\pm$ 0.2 & 1.2 $\pm$ 0.1 & 10.2 $\pm$ 0.3 \\
225     \ttbar & 1.2 $\pm$ 0.6 & 3.2 $\pm$ 0.9 & 3.6 $\pm$ 1.0 & 7.9 $\pm$ 1.5 \\
226     ZZ & 2.5 $\pm$ 0.0 & 3.4 $\pm$ 0.0 & 0.2 $\pm$ 0.0 & 6.1 $\pm$ 0.0 \\
227     \zjets & 1.2 $\pm$ 0.9 & 3.0 $\pm$ 1.8 & 0.0 $\pm$ 0.0 & 4.2 $\pm$ 2.1 \\
228     vvv & 1.6 $\pm$ 0.1 & 2.1 $\pm$ 0.1 & 0.3 $\pm$ 0.0 & 4.0 $\pm$ 0.1 \\
229     single top & 0.0 $\pm$ 0.0 & 0.2 $\pm$ 0.2 & 0.0 $\pm$ 0.0 & 0.2 $\pm$ 0.2 \\
230     WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.1 $\pm$ 0.0 & 0.1 $\pm$ 0.1 \\
231     \hline
232     tot SM MC &127.3 $\pm$ 1.4 &168.4 $\pm$ 2.3 & 13.5 $\pm$ 1.0 &309.2 $\pm$ 2.8 \\
233 benhoob 1.1 \hline
234 benhoob 1.5 data & 156 & 178 & 16 & 350 \\
235 benhoob 1.1 \hline
236     \hline
237    
238     \end{tabular}
239     \end{center}
240     \end{table}
241    
242     \begin{table}[htb]
243     \begin{center}
244     \caption{\label{tab:wz2j} Data and Monte Carlo yields passing the WZ preselection and \njets\ $>$ 2. }
245     \begin{tabular}{lccccc}
246     \hline
247 benhoob 1.3 \hline
248 benhoob 1.1 Sample & ee & $\mu\mu$ & e$\mu$ & total \\
249     \hline
250 benhoob 1.5
251     %Loading babies at : ../output/V00-01-04
252     %Using selection : (((((((isdata==0 || (run<197556 || run>198913))&&(((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0))))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101))&&(njets>=2)
253     %Using weight : weight * 9.2 * trgeff * vtxweight
254    
255     WZ & 19.1 $\pm$ 0.3 & 24.6 $\pm$ 0.3 & 1.3 $\pm$ 0.1 & 44.9 $\pm$ 0.5 \\
256     ttV & 3.8 $\pm$ 0.2 & 4.5 $\pm$ 0.2 & 1.0 $\pm$ 0.1 & 9.3 $\pm$ 0.3 \\
257     \ttbar & 0.8 $\pm$ 0.5 & 1.6 $\pm$ 0.7 & 0.9 $\pm$ 0.5 & 3.3 $\pm$ 1.0 \\
258     ZZ & 0.5 $\pm$ 0.0 & 0.7 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 1.2 $\pm$ 0.0 \\
259     \zjets & 0.9 $\pm$ 0.9 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.9 $\pm$ 0.9 \\
260     vvv & 0.9 $\pm$ 0.0 & 1.2 $\pm$ 0.1 & 0.1 $\pm$ 0.0 & 2.2 $\pm$ 0.1 \\
261     single top & 0.0 $\pm$ 0.0 & 0.2 $\pm$ 0.2 & 0.0 $\pm$ 0.0 & 0.2 $\pm$ 0.2 \\
262     WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
263     \hline
264     tot SM MC & 25.9 $\pm$ 1.1 & 32.9 $\pm$ 0.8 & 3.3 $\pm$ 0.5 & 62.1 $\pm$ 1.5 \\
265 benhoob 1.1 \hline
266 benhoob 1.5 data & 47 & 51 & 8 & 106 \\
267 benhoob 1.1 \hline
268     \hline
269    
270     \end{tabular}
271     \end{center}
272     \end{table}
273    
274     \begin{figure}[tbh]
275     \begin{center}
276 benhoob 1.5 \includegraphics[width=1\linewidth]{plots/WZ_92fb.pdf}
277 benhoob 1.1 \caption{\label{fig:wz}\protect
278     Data vs. MC comparisons for the WZ selection discussed in the text for \lumi.
279     The number of jets, missing transverse energy, and Z boson transverse momentum are displayed.
280 benhoob 1.5 %Loading babies at : ../output/V00-01-04
281     %Using selection : ((((((isdata==0 || (run<197556 || run>198913))&&(((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0))))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101)
282     %Using weight : weight * 9.2 * trgeff * vtxweight
283 benhoob 1.1 }
284     \end{center}
285     \end{figure}
286    
287     \clearpage
288    
289     \subsubsection{ZZ Validation Studies}
290     \label{sec:bkg_zz}
291    
292     A pure ZZ sample can be selected in data with the requirements:
293    
294     \begin{itemize}
295     \item Exactly 4 $p_T>20$~GeV leptons passing analysis identication and isolation requirements,
296     \item 2 of the 4 leptons must fall in the $Z$ window 81-101 GeV.
297     \end{itemize}
298    
299     The data and MC yields passing the above selection are in Table~\ref{tab:zz}. Again we observe an
300     excess in data with respect to the MC prediction (29 observed vs. $17.3\pm0.1$~(stat) MC predicted).
301     After requiring at least 2 jets, we observe 2 events and the MC predicts $1.5\pm0.1$~(stat).
302 benhoob 1.4 However, we have recently discovered that we may be using the wrong (too small) cross section for the ZZ sample,
303     and we are in contact with the MC generator group to determine the correct cross section.
304     Based on this we currently apply an uncertainty of 80\% to the ZZ background.
305 benhoob 1.1
306     \begin{table}[htb]
307     \begin{center}
308     \caption{\label{tab:zz} Data and Monte Carlo yields for the ZZ preselection. }
309     \begin{tabular}{lccccc}
310     \hline
311 benhoob 1.3 \hline
312 benhoob 1.1 Sample & ee & $\mu\mu$ & e$\mu$ & total \\
313     \hline
314     ZZ & 6.6 $\pm$ 0.0 & 9.9 $\pm$ 0.0 & 0.4 $\pm$ 0.0 & 17.0 $\pm$ 0.1 \\
315     WZ & 0.1 $\pm$ 0.0 & 0.2 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.3 $\pm$ 0.0 \\
316     \zjets & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
317     \ttbar & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
318     WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
319     single top & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
320     \hline
321     total SM MC & 6.7 $\pm$ 0.0 & 10.1 $\pm$ 0.1 & 0.5 $\pm$ 0.0 & 17.3 $\pm$ 0.1 \\
322     data & 13 & 16 & 0 & 29 \\
323     \hline
324     \hline
325     \end{tabular}
326     \end{center}
327     \end{table}
328    
329     \begin{figure}[tbh]
330     \begin{center}
331     \includegraphics[width=1\linewidth]{plots/ZZ.pdf}
332     \caption{\label{fig:zz}\protect
333 benhoob 1.3 Data vs. MC comparisons for the ZZ selection discussed in the text for \lumi.
334     The number of jets, missing transverse energy, and Z boson transverse momentum are displayed.
335 benhoob 1.1 }
336     \end{center}
337     \end{figure}
338    
339    
340    
341    
342 benhoob 1.4 %\subsection{Estimating the Rare SM Backgrounds with MC}
343     %\label{sec:bkg_raresm}
344 benhoob 1.1
345 benhoob 1.4 %{\bf TODO: list samples, yields in preselection region, and show \MET\ distribution}