ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/ZMet2012/bkg.tex
Revision: 1.6
Committed: Fri Sep 14 19:59:12 2012 UTC (12 years, 8 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.5: +744 -46 lines
Log Message:
updates for 9.2/fb

File Contents

# Content
1 %\clearpage
2 \section{Background Estimation Techniques}
3 \label{sec:bkg}
4
5 In this section we describe the techniques used to estimate the SM backgrounds in our signal regions defined by requirements of large \MET.
6 The SM backgrounds fall into three categories:
7
8 \begin{itemize}
9 \item \zjets: this is the dominant background after the preselection. The \MET\ in \zjets\ events is estimated with the
10 ``\MET\ templates'' technique described in Sec.~\ref{sec:bkg_zjets};
11 \item Flavor-symmetric (FS) backgrounds: this category includes processes which produces 2 leptons of uncorrelated flavor. It is dominated
12 by \ttbar\ but also contains Z$\to\tau\tau$, WW, and single top processes. This is the dominant contribution in the signal regions, and it
13 is estimated using a data control sample of e$\mu$ events as described in Sec.~\ref{sec:bkg_fs};
14 \item WZ and ZZ backgrounds: this background is estimated from MC, after validating the MC modeling of these processes using data control
15 samples with jets and exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample) as described in Sec.~\ref{sec:bkg_vz};
16 %\item Rare SM backgrounds: this background contains rare processes such as $t\bar{t}$V and triple vector boson processes VVV (V=W,Z).
17 %This background is estimated from MC as described in Sec.~\ref{sec:bkg_raresm}. {\bf FIXME: add rare MC}
18 \end{itemize}
19
20 \subsection{Estimating the \zjets\ Background with \MET\ Templates}
21 \label{sec:bkg_zjets}
22
23 The premise of this data driven technique is that \MET\ in \zjets\ events
24 is produced by the hadronic recoil system and {\it not} by the leptons making up the Z.
25 Therefore, the basic idea of the \MET\ template method is to measure the \MET\ distribution in
26 a control sample which has no true MET and the same general attributes regarding
27 fake MET as in \zjets\ events. We thus use a sample of \gjets\ events, since both \zjets\
28 and \gjets\ events consist of a well-measured object recoiling against hadronic jets.
29
30 For selecting photon-like objects, the very loose photon selection described in Sec.~\ref{sec:phosel} is used.
31 It is not essential for the photon sample to have high purity. For our purposes, selecting jets with predominantly
32 electromagnetic energy deposition in a good fiducial volume suffices to ensure that
33 they are well measured and do not contribute to fake \MET. The \gjets\ events are selected with a suite of
34 single photon triggers with \pt thresholds varying from 22--90 GeV. The events are weighted by the trigger prescale
35 such that \gjets\ events evenly sample the conditions over the full period of data taking.
36 There remains a small difference in the PU conditions in the \gjets\ vs. \zjets\ samples due to the different
37 dependencies of the $\gamma$ vs. Z isolation efficiencies on PU. To account for this, we reweight the \gjets\ samples
38 to match the distribution of reconstructed primary vertices in the \zjets\ sample.
39
40 To account for kinematic differences between the hadronic systems in the control vs. signal
41 samples, we measure the \MET\ distributions in the \gjets\ sample in bins of the number of jets
42 and the scalar sum of jet transverse energies (\Ht). These \MET\ templates are extracted separately from the 5 single photon
43 triggers with thresholds 22, 36, 50, 75, and 90 GeV, so that the templates are effectively binned in photon \pt.
44 All \MET distributions are normalized to unit area to form ``MET templates''.
45 The prediction of the MET in each \Z event is the template which corresponds to the \njets,
46 \Ht, and Z \pt in the \zjets\ event. The prediction for the \Z sample is simply the sum of all such templates.
47 All templates are displayed in App.~\ref{app:templates}.
48
49 After preselection, there is a small contribution from backgrounds other than \zjets. To correct for this, the \MET\ templates
50 prediction is scaled such that the total background prediction matches the observed data yield in the \MET\ 0--60 GeV region.
51 Because the non-\zjets impurity in the low \MET\ region after preselection is very small, this results in
52 scaling factors of 0.985 (0.995) for the inclusive (targeted) search.
53
54 \subsection{Estimating the Flavor-Symmetric Background with e$\mu$ Events}
55 \label{sec:bkg_fs}
56
57 In this subsection we describe the background estimate for the FS background. Since this background produces equal rates of same-flavor (SF)
58 ee and $\mu\mu$ lepton pairs as opposite-flavor (OF) e$\mu$ lepton pairs, the OF yield can be used to estimate the SF yield, after
59 correcting for the different electron vs. muon offline selection efficiencies and the different efficiencies for the ee, $\mu\mu$, and e$\mu$ triggers.
60
61 An important quantity needed to translate from the OF yield to a prediction for the background in the SF final state is the ratio
62 $R_{\mu e} = \epsilon_\mu / \epsilon_e$, where $\epsilon_\mu$ ($\epsilon_e$) indicates the offline muon (electron) selection efficiency.
63 This quantity can be extracted from data using the observed Z$\to\mu\mu$ and Z$\to$ee yields in the preselection region, after correcting
64 for the different trigger efficiencies.
65
66 Hence we define:
67
68 \begin{itemize}
69 \item $N_{ee}^{\rm{trig}} = \epsilon_{ee}^{\rm{trig}}N_{ee}^{\rm{offline}}$,
70 \item $N_{\mu\mu}^{\rm{trig}} = \epsilon_{\mu\mu}^{\rm{trig}}N_{\mu\mu}^{\rm{offline}}$,
71 \item $N_{e\mu}^{\rm{trig}} = \epsilon_{e\mu}^{\rm{trig}}N_{e\mu}^{\rm{offline}}$.
72 \end{itemize}
73
74 Here $N_{\ell\ell}^{\rm{trig}}$ denotes the number of selected Z events in the $\ell\ell$ channel passing the offline and trigger selection
75 (in other words, the number of recorded and selected events), $\epsilon_{\ell\ell}^{\rm{trig}}$ is the trigger efficiency, and
76 $N_{\ell\ell}^{\rm{offline}}$ is the number of events that would have passed the offline selection if the trigger had an efficiency of 100\%.
77 Thus we calculate the quantity:
78
79 \begin{equation}
80 R_{\mu e} = \sqrt{\frac{N_{\mu\mu}^{\rm{offline}}}{N_{ee}^{\rm{offline}}}} = \sqrt{\frac{N_{\mu\mu}^{\rm{trig}}/\epsilon_{\mu\mu}^{\rm{trig}}}{N_{ee}^{\rm{trig}}/\epsilon_{ee}^{\rm{trig}}}}
81 = \sqrt{\frac{144122/0.88}{110325/0.95}} = 1.19\pm0.07.
82 \end{equation}
83
84 Here we have used the Z$\to\mu\mu$ and Z$\to$ee yields from Table~\ref{table:zyields_2j} and the trigger efficiencies quoted in Sec.~\ref{sec:datasets}.
85 The indicated uncertainty is due to the 3\% uncertainties in the trigger efficiencies. %{\bf FIXME: check for variation w.r.t. lepton \pt}.
86 The predicted yields in the ee and $\mu\mu$ final states are calculated from the observed e$\mu$ yield as
87
88 \begin{itemize}
89 \item $N_{ee}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{ee}^{\rm{trig}}} {2 R_{\mu e}}
90 = \frac{N_{e\mu}^{\rm{trig}}}{0.92}\frac{0.95}{2\times1.26} = (0.43\pm0.05) \times N_{e\mu}^{\rm{trig}}$ ,
91 \item $N_{\mu\mu}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{\mu\mu}^{\rm{trig}} R_{\mu e}} {2}
92 = \frac {N_{e\mu}^{\rm{trig}}} {0.95} \frac {0.88 \times 1.26}{2} = (0.55\pm0.07) \times N_{e\mu}^{\rm{trig}}$,
93 \end{itemize}
94
95 and the predicted yield in the combined ee and $\mu\mu$ channel is simply the sum of these two predictions:
96
97 \begin{itemize}
98 \item $N_{ee+\mu\mu}^{\rm{predicted}} = (0.99\pm0.06)\times N_{e\mu}^{\rm{trig}}$.
99 \end{itemize}
100
101 Note that the relative uncertainty in the combined ee and $\mu\mu$ prediction is smaller than those for the individual ee and $\mu\mu$ predictions
102 because the uncertainty in $R_{\mu e}$ cancels when summing the ee and $\mu\mu$ predictions. %{\bf N.B. these uncertainties are preliminary}.
103
104 To improve the statistical precision of the FS background estimate, we remove the requirement that the e$\mu$ lepton pair falls in the Z mass window.
105 Instead we scale the e$\mu$ yield by $K$, the efficiency for e$\mu$ events to satisfy the Z mass requirement, extracted from simulation. In Fig.~\ref{fig:K_incl}
106 we display the value of $K$ in data and simulation, for a variety of \MET\ requirements, for the inclusive analysis.
107 Based on this we chose $K=0.14\pm0.02$ for the lower \MET\ regions, $K=0.14\pm0.04$ for the \MET\ $>$ 200 GeV region,and $K=0.14\pm0.09$ for \MET\ $>$ 300 GeV,
108 where the larger uncertainties reflect the reduced statistical precision at large \MET.
109 The corresponding plot for the targeted analysis, including the b-veto, is displayed in Fig.~\ref{fig:K_targeted}.
110 Based on this we chose $K=0.13\pm0.02$
111 for all \MET\ regions up to \MET\ $>$ 150 GeV. For the \MET\ $>$ 200 GeV region we choose $K=0.13\pm0.05$, due to the reduced statistical precision.
112
113 \begin{figure}[!ht]
114 \begin{center}
115 \begin{tabular}{cc}
116 \includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_92fb.pdf} &
117 \includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_92fb.pdf} \\
118 \end{tabular}
119 \caption{\label{fig:K_incl}
120 The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
121 exclusive \MET\ intervals (right) for the inclusive analysis.
122 }
123
124 \begin{comment}
125
126 ----------------------------------------
127 EXCLUSIVE RESULTS
128 ----------------------------------------
129
130 root [3] extractK(true,false,false)
131 Using selection : ((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20)
132 Using weight : vtxweight * weight
133 OF entries (total) 21691
134 OF entries (Z mass) 2934
135 K 0.135263
136 Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
137 Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
138
139 --------------------------------------------------------------
140 pfmet>0 && pfmet<30
141
142 data :
143 total : 3650
144 Z : 461
145 K : 0.13 +/- 0.006
146
147 MC :
148 total : 399.019
149 Z : 51.0493
150 K : 0.13 +/- 0.007
151 --------------------------------------------------------------
152
153
154 --------------------------------------------------------------
155 pfmet>30 && pfmet<60
156
157 data :
158 total : 6951
159 Z : 904
160 K : 0.13 +/- 0.004
161
162 MC :
163 total : 755.309
164 Z : 111.206
165 K : 0.15 +/- 0.003
166 --------------------------------------------------------------
167
168
169 --------------------------------------------------------------
170 pfmet>60 && pfmet<100
171
172 data :
173 total : 7206
174 Z : 1037
175 K : 0.14 +/- 0.004
176
177 MC :
178 total : 838.418
179 Z : 123.554
180 K : 0.15 +/- 0.003
181 --------------------------------------------------------------
182
183
184 --------------------------------------------------------------
185 pfmet>100 && pfmet<200
186
187 data :
188 total : 3690
189 Z : 512
190 K : 0.14 +/- 0.006
191
192 MC :
193 total : 451.624
194 Z : 67.7098
195 K : 0.15 +/- 0.004
196 --------------------------------------------------------------
197
198
199 --------------------------------------------------------------
200 pfmet>200 && pfmet<300
201
202 data :
203 total : 172
204 Z : 17
205 K : 0.10 +/- 0.024
206
207 MC :
208 total : 24.2441
209 Z : 2.67077
210 K : 0.11 +/- 0.013
211 --------------------------------------------------------------
212
213
214 --------------------------------------------------------------
215 pfmet>300
216
217 data :
218 total : 22
219 Z : 3
220 K : 0.14 +/- 0.079
221
222 MC :
223 total : 4.53108
224 Z : 0.230071
225 K : 0.05 +/- 0.022
226 --------------------------------------------------------------
227
228
229
230 ----------------------------------------
231 INCLUSIVE RESULTS
232 ----------------------------------------
233
234 root [4] extractK(false,false,false)
235 Using selection : ((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20)
236 Using weight : vtxweight * weight
237 OF entries (total) 21691
238 OF entries (Z mass) 2934
239 K 0.135263
240 Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
241 Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
242
243 --------------------------------------------------------------
244 pfmet>0
245
246 data :
247 total : 21691
248 Z : 2934
249 K : 0.14 +/- 0.002
250
251 MC :
252 total : 2472.89
253 Z : 356.434
254 K : 0.14 +/- 0.002
255 --------------------------------------------------------------
256
257
258 --------------------------------------------------------------
259 pfmet>30
260
261 data :
262 total : 18041
263 Z : 2473
264 K : 0.14 +/- 0.003
265
266 MC :
267 total : 2074.05
268 Z : 305.382
269 K : 0.15 +/- 0.002
270 --------------------------------------------------------------
271
272
273 --------------------------------------------------------------
274 pfmet>60
275
276 data :
277 total : 11090
278 Z : 1569
279 K : 0.14 +/- 0.004
280
281 MC :
282 total : 1318.79
283 Z : 194.166
284 K : 0.15 +/- 0.002
285 --------------------------------------------------------------
286
287
288 --------------------------------------------------------------
289 pfmet>100
290
291 data :
292 total : 3884
293 Z : 532
294 K : 0.14 +/- 0.006
295
296 MC :
297 total : 480.402
298 Z : 70.6107
299 K : 0.15 +/- 0.004
300 --------------------------------------------------------------
301
302
303 --------------------------------------------------------------
304 pfmet>200
305
306 data :
307 total : 194
308 Z : 20
309 K : 0.10 +/- 0.023
310
311 MC :
312 total : 28.7751
313 Z : 2.90084
314 K : 0.10 +/- 0.012
315 --------------------------------------------------------------
316
317
318 --------------------------------------------------------------
319 pfmet>300
320
321 data :
322 total : 22
323 Z : 3
324 K : 0.14 +/- 0.079
325
326 MC :
327 total : 4.53108
328 Z : 0.230071
329 K : 0.05 +/- 0.022
330 --------------------------------------------------------------
331
332 \end{comment}
333
334 \end{center}
335 \end{figure}
336
337 \begin{figure}[!hb]
338 \begin{center}
339 \begin{tabular}{cc}
340 \includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_bvetoMedium_92fb.pdf} &
341 \includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_bvetoMedium_92fb.pdf} \\
342 \end{tabular}
343 \caption{
344 The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
345 exclusive \MET\ intervals (right) for the targeted analysis, including the b-veto.
346 Based on this we chose $K=0.13\pm0.02$ for the \MET\ regions up to \MET\ $>$ 100 GeV.
347 For higher \MET\ regions we chose $K=0.13\pm0.07$.
348 %{\bf FIXME plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
349 \label{fig:K_targeted}
350 }
351 \begin{comment}
352
353 root [2] extractK(true,false,true)
354 Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvm==0)
355 Using weight : vtxweight * weight
356 OF entries (total) 5756
357 OF entries (Z mass) 654
358 K 0.113621
359 Warning in <TStreamerInfo::Compile>: Counter fNClusterRange should not be skipped from class TTree
360 Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
361
362 --------------------------------------------------------------
363 pfmet>0 && pfmet<30
364
365 data :
366 total : 1303
367 Z : 126
368 K : 0.10 +/- 0.009
369
370 MC :
371 total : 131.974
372 Z : 15.1946
373 K : 0.12 +/- 0.020
374 --------------------------------------------------------------
375
376
377 --------------------------------------------------------------
378 pfmet>30 && pfmet<60
379
380 data :
381 total : 1818
382 Z : 190
383 K : 0.10 +/- 0.008
384
385 MC :
386 total : 172.956
387 Z : 21.9369
388 K : 0.13 +/- 0.007
389 --------------------------------------------------------------
390
391
392 --------------------------------------------------------------
393 pfmet>60 && pfmet<80
394
395 data :
396 total : 994
397 Z : 122
398 K : 0.12 +/- 0.011
399
400 MC :
401 total : 109.789
402 Z : 13.9792
403 K : 0.13 +/- 0.008
404 --------------------------------------------------------------
405
406
407 --------------------------------------------------------------
408 pfmet>80 && pfmet<100
409
410 data :
411 total : 699
412 Z : 99
413 K : 0.14 +/- 0.014
414
415 MC :
416 total : 73.3643
417 Z : 11.5154
418 K : 0.16 +/- 0.010
419 --------------------------------------------------------------
420
421
422 --------------------------------------------------------------
423 pfmet>100 && pfmet<150
424
425 data :
426 total : 722
427 Z : 93
428 K : 0.13 +/- 0.013
429
430 MC :
431 total : 86.7947
432 Z : 11.742
433 K : 0.14 +/- 0.009
434 --------------------------------------------------------------
435
436
437 --------------------------------------------------------------
438 pfmet>150 && pfmet<200
439
440 data :
441 total : 163
442 Z : 18
443 K : 0.11 +/- 0.026
444
445 MC :
446 total : 19.4473
447 Z : 2.97965
448 K : 0.15 +/- 0.017
449 --------------------------------------------------------------
450
451
452 --------------------------------------------------------------
453 pfmet>200
454
455 data :
456 total : 57
457 Z : 6
458 K : 0.11 +/- 0.043
459
460 MC :
461 total : 8.99801
462 Z : 0.794136
463 K : 0.09 +/- 0.021
464 --------------------------------------------------------------
465
466 root [3] Info in <TCanvas::Print>: pdf file /Users/benhoob/tas/ZMet2012/plots/extractK_exclusive_bvetoMedium_92fb.pdf has been created
467
468 root [3]
469 root [3] extractK(false,false,true)
470 Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvm==0)
471 Using weight : vtxweight * weight
472 OF entries (total) 5756
473 OF entries (Z mass) 654
474 K 0.113621
475 Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
476 Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
477
478 --------------------------------------------------------------
479 pfmet>0
480
481 data :
482 total : 5756
483 Z : 654
484 K : 0.11 +/- 0.004
485
486 MC :
487 total : 603.333
488 Z : 78.1422
489 K : 0.13 +/- 0.005
490 --------------------------------------------------------------
491
492
493 --------------------------------------------------------------
494 pfmet>30
495
496 data :
497 total : 4453
498 Z : 528
499 K : 0.12 +/- 0.005
500
501 MC :
502 total : 471.396
503 Z : 62.9476
504 K : 0.13 +/- 0.004
505 --------------------------------------------------------------
506
507
508 --------------------------------------------------------------
509 pfmet>60
510
511 data :
512 total : 2635
513 Z : 338
514 K : 0.13 +/- 0.007
515
516 MC :
517 total : 298.41
518 Z : 41.0107
519 K : 0.14 +/- 0.005
520 --------------------------------------------------------------
521
522
523 --------------------------------------------------------------
524 pfmet>80
525
526 data :
527 total : 1641
528 Z : 216
529 K : 0.13 +/- 0.009
530
531 MC :
532 total : 188.602
533 Z : 27.0313
534 K : 0.14 +/- 0.006
535 --------------------------------------------------------------
536
537
538 --------------------------------------------------------------
539 pfmet>100
540
541 data :
542 total : 942
543 Z : 117
544 K : 0.12 +/- 0.011
545
546 MC :
547 total : 115.24
548 Z : 15.5158
549 K : 0.13 +/- 0.008
550 --------------------------------------------------------------
551
552
553 --------------------------------------------------------------
554 pfmet>150
555
556 data :
557 total : 220
558 Z : 24
559 K : 0.11 +/- 0.022
560
561 MC :
562 total : 28.4454
563 Z : 3.77378
564 K : 0.13 +/- 0.014
565 --------------------------------------------------------------
566
567
568 --------------------------------------------------------------
569 pfmet>200
570
571 data :
572 total : 57
573 Z : 6
574 K : 0.11 +/- 0.043
575
576 MC :
577 total : 8.99801
578 Z : 0.794136
579 K : 0.09 +/- 0.021
580 --------------------------------------------------------------
581
582 \end{comment}
583
584 \end{center}
585 \end{figure}
586
587
588 \begin{comment}
589
590 \begin{figure}[!hb]
591 \begin{center}
592 \begin{tabular}{cc}
593 \includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_bvetoLoose_92fb.pdf} &
594 \includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_bvetoLoose_92fb.pdf} \\
595 \end{tabular}
596 \caption{
597 The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
598 exclusive \MET\ intervals (right) for the targeted analysis, including the b-veto.
599 %{\bf FIXME plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
600 \label{fig:K_targeted}}
601
602
603 root [2] extractK(true,false,true)
604 Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvl==0)
605 Using weight : vtxweight * weight
606 OF entries (total) 2715
607 OF entries (Z mass) 279
608 K 0.102762
609 Warning in <TStreamerInfo::Compile>: Counter fNClusterRange should not be skipped from class TTree
610 Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
611
612 --------------------------------------------------------------
613 pfmet>0 && pfmet<30
614
615 data :
616 total : 713
617 Z : 59
618 K : 0.08 +/- 0.011
619
620 MC :
621 total : 74.2549
622 Z : 7.09789
623 K : 0.10 +/- 0.025
624 --------------------------------------------------------------
625
626
627 --------------------------------------------------------------
628 pfmet>30 && pfmet<60
629
630 data :
631 total : 850
632 Z : 79
633 K : 0.09 +/- 0.010
634
635 MC :
636 total : 84.6973
637 Z : 9.55105
638 K : 0.11 +/- 0.009
639 --------------------------------------------------------------
640
641
642 --------------------------------------------------------------
643 pfmet>60 && pfmet<80
644
645 data :
646 total : 469
647 Z : 61
648 K : 0.13 +/- 0.017
649
650 MC :
651 total : 50.1496
652 Z : 5.92081
653 K : 0.12 +/- 0.012
654 --------------------------------------------------------------
655
656
657 --------------------------------------------------------------
658 pfmet>80 && pfmet<100
659
660 data :
661 total : 269
662 Z : 33
663 K : 0.12 +/- 0.021
664
665 MC :
666 total : 30.0547
667 Z : 4.67993
668 K : 0.16 +/- 0.014
669 --------------------------------------------------------------
670
671
672 --------------------------------------------------------------
673 pfmet>100 && pfmet<150
674
675 data :
676 total : 311
677 Z : 34
678 K : 0.11 +/- 0.019
679
680 MC :
681 total : 39.4475
682 Z : 5.02593
683 K : 0.13 +/- 0.014
684 --------------------------------------------------------------
685
686
687 --------------------------------------------------------------
688 pfmet>150 && pfmet<200
689
690 data :
691 total : 79
692 Z : 10
693 K : 0.13 +/- 0.040
694
695 MC :
696 total : 9.96228
697 Z : 1.4975
698 K : 0.15 +/- 0.023
699 --------------------------------------------------------------
700
701
702 --------------------------------------------------------------
703 pfmet>200
704
705 data :
706 total : 24
707 Z : 3
708 K : 0.12 +/- 0.072
709
710 MC :
711 total : 5.3503
712 Z : 0.425719
713 K : 0.08 +/- 0.027
714 --------------------------------------------------------------
715
716 root [3] Info in <TCanvas::Print>: pdf file /Users/benhoob/tas/ZMet2012/plots/extractK_exclusive_bvetoLoose_92fb.pdf has been created
717
718 root [3]
719 root [3] extractK(false,false,true)
720 Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvl==0)
721 Using weight : vtxweight * weight
722 OF entries (total) 2715
723 OF entries (Z mass) 279
724 K 0.102762
725 Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
726 Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
727
728 --------------------------------------------------------------
729 pfmet>0
730
731 data :
732 total : 2715
733 Z : 279
734 K : 0.10 +/- 0.006
735
736 MC :
737 total : 293.912
738 Z : 34.199
739 K : 0.12 +/- 0.008
740 --------------------------------------------------------------
741
742
743 --------------------------------------------------------------
744 pfmet>30
745
746 data :
747 total : 2002
748 Z : 220
749 K : 0.11 +/- 0.007
750
751 MC :
752 total : 219.661
753 Z : 27.101
754 K : 0.12 +/- 0.006
755 --------------------------------------------------------------
756
757
758 --------------------------------------------------------------
759 pfmet>60
760
761 data :
762 total : 1152
763 Z : 141
764 K : 0.12 +/- 0.010
765
766 MC :
767 total : 134.962
768 Z : 17.5498
769 K : 0.13 +/- 0.007
770 --------------------------------------------------------------
771
772
773 --------------------------------------------------------------
774 pfmet>80
775
776 data :
777 total : 683
778 Z : 80
779 K : 0.12 +/- 0.013
780
781 MC :
782 total : 84.8149
783 Z : 11.629
784 K : 0.14 +/- 0.009
785 --------------------------------------------------------------
786
787
788 --------------------------------------------------------------
789 pfmet>100
790
791 data :
792 total : 414
793 Z : 47
794 K : 0.11 +/- 0.017
795
796 MC :
797 total : 54.7604
798 Z : 6.94915
799 K : 0.13 +/- 0.011
800 --------------------------------------------------------------
801
802
803 --------------------------------------------------------------
804 pfmet>150
805
806 data :
807 total : 103
808 Z : 13
809 K : 0.13 +/- 0.035
810
811 MC :
812 total : 15.3125
813 Z : 1.92322
814 K : 0.13 +/- 0.019
815 --------------------------------------------------------------
816
817
818 --------------------------------------------------------------
819 pfmet>200
820
821 data :
822 total : 24
823 Z : 3
824 K : 0.12 +/- 0.072
825
826 MC :
827 total : 5.3503
828 Z : 0.425719
829 K : 0.08 +/- 0.027
830 --------------------------------------------------------------
831
832
833 \end{center}
834 \end{figure}
835
836
837 \end{comment}
838
839
840 \clearpage
841
842 \subsection{Estimating the WZ and ZZ Background with MC}
843 \label{sec:bkg_vz}
844
845 Backgrounds from W($\ell\nu$)Z($\ell\ell$) where the W lepton is not identified or is outside acceptance, and Z($\nu\nu$)Z($\ell\ell$),
846 are estimated from simulation. The MC modeling of these processes is validated by comparing the MC predictions with data in control samples
847 with exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample).
848 The critical samples are the WZJetsTo3LNu and ZZJetsTo4L, listed in Table~\ref{tab:mcsamples}
849 (the WZJetsTo2L2Q, ZZJetsTo2L2Q, and ZZJetsTo2L2Nu samples are also used in this analysis but their contribution to the 3-lepton and 4-lepton
850 control samples is negligible).
851
852 \subsubsection{WZ Validation Studies}
853 \label{sec:bkg_wz}
854
855 A pure WZ sample can be selected in data with the requirements:
856
857 \begin{itemize}
858 \item Exactly 3 $p_T>20$~GeV leptons passing analysis identication and isolation requirements,
859 \item 2 of the 3 leptons must fall in the Z window 81-101 GeV,
860 \item \MET $>$ 50 GeV (to suppress DY).
861 \end{itemize}
862
863 The data and MC yields passing the above selection are in Table~\ref{tab:wz}.
864 The inclusive yields (without any jet requirements) agree within 13\%, which is consistent within
865 the uncertainty in the CMS measured WZ cross section (17\%). A data vs. MC comparison of kinematic
866 distributions (jet multiplicity, \MET, Z \pt) is given in Fig.~\ref{fig:wz}. High \MET\
867 values in WZ and ZZ events arise from highly boosted W or Z bosons that decay leptonically,
868 and we therefore check that the MC does a reasonable job of reproducing the \pt distributions of the
869 leptonically decaying \Z. While the inclusive WZ yields are in reasonable agreement, we observe
870 an excess in data in events with at least 2 jets, corresponding to the jet multiplicity requirement
871 in our preselection. We observe 106 events in data while the MC predicts $62\pm1.5$~(stat), representing an excess of 71\%,
872 as indicated in Table~\ref{tab:wz2j}. We note some possible contributions to this discrepancy:
873
874 \begin{itemize}
875
876 \item {\bf The following checks refer to the 5.2 fb$^{-1}$ results and will be updated.}
877
878 \item The \zjets\ contribution is under-estimated here, for 2 reasons: first, because the \zjets\
879 yield passing a \MET $>$ 50 GeV requirement is under-estimated in MC and second, because the fake
880 rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends
881 on the \zjets\ yield, if the \zjets\ yield is doubled then the excess is reduced from 78\% to 55\%.
882 Also note that we are currently using 10\% of the \zjets\ MC sample and there is 1 event with a weight
883 of about 5, so the plots and tables will be remade with full \zjets\ sample.
884
885 \item The \ttbar\ contribution is under-estimated here because the fake
886 rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends
887 on the \ttbar\ yield, if the \ttbar\ yield is doubled then the excess is reduced from 78\% to 57\%.
888
889 \item Currently no attempt is made to reject jets from pile-up interactions, which may be responsible
890 for some of the excess at large \njets. To check this, we increase the jet \pt threhsold to 40 GeV, which
891 helps to suppress PU jets, and observe 39 events in data vs. an MC prediction of $25\pm5.2$~(stat),
892 decreasing the excess from 78\% to 58\%. In the future this may be improved by explicitly
893 requiring the jets to be consistent with originating from the signal primary vertex.
894
895 \end{itemize}
896
897 Based on these studies we currently assess an uncertainty of 70\% on the WZ yield.
898
899 \begin{table}[htb]
900 \begin{center}
901 \caption{\label{tab:wz} Data and Monte Carlo yields passing the WZ preselection. }
902 \begin{tabular}{lccccc}
903 \hline
904 \hline
905 Sample & ee & $\mu\mu$ & e$\mu$ & total \\
906 \hline
907
908 %Loading babies at : ../output/V00-01-04
909 %Using selection : ((((((isdata==0 || (run<197556 || run>198913))&&(((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0))))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101)
910 %Using weight : weight * 9.2 * trgeff * vtxweight
911
912 WZ &116.7 $\pm$ 0.8 &151.5 $\pm$ 0.8 & 8.1 $\pm$ 0.2 &276.3 $\pm$ 1.2 \\
913 ttV & 4.1 $\pm$ 0.2 & 4.9 $\pm$ 0.2 & 1.2 $\pm$ 0.1 & 10.2 $\pm$ 0.3 \\
914 \ttbar & 1.2 $\pm$ 0.6 & 3.2 $\pm$ 0.9 & 3.6 $\pm$ 1.0 & 7.9 $\pm$ 1.5 \\
915 ZZ & 2.5 $\pm$ 0.0 & 3.4 $\pm$ 0.0 & 0.2 $\pm$ 0.0 & 6.1 $\pm$ 0.0 \\
916 \zjets & 1.2 $\pm$ 0.9 & 3.0 $\pm$ 1.8 & 0.0 $\pm$ 0.0 & 4.2 $\pm$ 2.1 \\
917 vvv & 1.6 $\pm$ 0.1 & 2.1 $\pm$ 0.1 & 0.3 $\pm$ 0.0 & 4.0 $\pm$ 0.1 \\
918 single top & 0.0 $\pm$ 0.0 & 0.2 $\pm$ 0.2 & 0.0 $\pm$ 0.0 & 0.2 $\pm$ 0.2 \\
919 WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.1 $\pm$ 0.0 & 0.1 $\pm$ 0.1 \\
920 \hline
921 tot SM MC &127.3 $\pm$ 1.4 &168.4 $\pm$ 2.3 & 13.5 $\pm$ 1.0 &309.2 $\pm$ 2.8 \\
922 \hline
923 data & 156 & 178 & 16 & 350 \\
924 \hline
925 \hline
926
927 \end{tabular}
928 \end{center}
929 \end{table}
930
931 \begin{table}[htb]
932 \begin{center}
933 \caption{\label{tab:wz2j} Data and Monte Carlo yields passing the WZ preselection and \njets\ $>$ 2. }
934 \begin{tabular}{lccccc}
935 \hline
936 \hline
937 Sample & ee & $\mu\mu$ & e$\mu$ & total \\
938 \hline
939
940 %Loading babies at : ../output/V00-01-04
941 %Using selection : (((((((isdata==0 || (run<197556 || run>198913))&&(((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0))))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101))&&(njets>=2)
942 %Using weight : weight * 9.2 * trgeff * vtxweight
943
944 WZ & 19.1 $\pm$ 0.3 & 24.6 $\pm$ 0.3 & 1.3 $\pm$ 0.1 & 44.9 $\pm$ 0.5 \\
945 ttV & 3.8 $\pm$ 0.2 & 4.5 $\pm$ 0.2 & 1.0 $\pm$ 0.1 & 9.3 $\pm$ 0.3 \\
946 \ttbar & 0.8 $\pm$ 0.5 & 1.6 $\pm$ 0.7 & 0.9 $\pm$ 0.5 & 3.3 $\pm$ 1.0 \\
947 ZZ & 0.5 $\pm$ 0.0 & 0.7 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 1.2 $\pm$ 0.0 \\
948 \zjets & 0.9 $\pm$ 0.9 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.9 $\pm$ 0.9 \\
949 vvv & 0.9 $\pm$ 0.0 & 1.2 $\pm$ 0.1 & 0.1 $\pm$ 0.0 & 2.2 $\pm$ 0.1 \\
950 single top & 0.0 $\pm$ 0.0 & 0.2 $\pm$ 0.2 & 0.0 $\pm$ 0.0 & 0.2 $\pm$ 0.2 \\
951 WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
952 \hline
953 tot SM MC & 25.9 $\pm$ 1.1 & 32.9 $\pm$ 0.8 & 3.3 $\pm$ 0.5 & 62.1 $\pm$ 1.5 \\
954 \hline
955 data & 47 & 51 & 8 & 106 \\
956 \hline
957 \hline
958
959 \end{tabular}
960 \end{center}
961 \end{table}
962
963 \begin{figure}[tbh]
964 \begin{center}
965 \includegraphics[width=1\linewidth]{plots/WZ_92fb.pdf}
966 \caption{\label{fig:wz}\protect
967 Data vs. MC comparisons for the WZ selection discussed in the text for \lumi.
968 The number of jets, missing transverse energy, and Z boson transverse momentum are displayed.
969 %Loading babies at : ../output/V00-01-04
970 %Using selection : ((((((isdata==0 || (run<197556 || run>198913))&&(((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0))))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101)
971 %Using weight : weight * 9.2 * trgeff * vtxweight
972 }
973 \end{center}
974 \end{figure}
975
976 \clearpage
977
978 \subsubsection{ZZ Validation Studies}
979 \label{sec:bkg_zz}
980
981 A pure ZZ sample can be selected in data with the requirements:
982
983 \begin{itemize}
984 \item Exactly 4 $p_T>20$~GeV leptons passing analysis identication and isolation requirements,
985 \item 2 of the 4 leptons must fall in the $Z$ window 81-101 GeV.
986 \end{itemize}
987
988 The data and MC yields passing the above selection are in Table~\ref{tab:zz}.
989 In this ZZ-dominated sample we observe good agreement between the data yield and the MC prediction.
990 After requiring 2 jets (corresponding to the requirement in the analysis selection), we observe 4 events
991 in data and the MC predicts $6.6\pm0.1$ events. Due to the limited statistical precision we assign an uncertainty
992 fo 50\% on the ZZ yield.
993
994 \begin{table}[htb]
995 \begin{center}
996 \caption{\label{tab:zz} Data and Monte Carlo yields for the ZZ preselection. }
997 \begin{tabular}{lccccc}
998 \hline
999 \hline
1000 Sample & ee & $\mu\mu$ & e$\mu$ & total \\
1001 \hline
1002
1003 %Loading babies at : ../output/V00-01-04
1004 %Using selection : (((((isdata==0 || (run<197556 || run>198913))&&(((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0))))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==4 && lep3.pt()>20.0 && lep4.pt()>20.0))&&(dilmass>81 && dilmass<101)
1005 %Using weight : weight * 9.2 * trgeff * vtxweight
1006 %SCALING ZJETS BY 111/946
1007 %SCALING ZZ BY 1.92
1008
1009 ZZ & 25.1 $\pm$ 0.1 & 34.9 $\pm$ 0.1 & 1.6 $\pm$ 0.0 & 61.7 $\pm$ 0.1 \\
1010 ttV & 0.6 $\pm$ 0.1 & 0.6 $\pm$ 0.1 & 0.2 $\pm$ 0.0 & 1.4 $\pm$ 0.1 \\
1011 VVV & 0.3 $\pm$ 0.0 & 0.4 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.7 $\pm$ 0.0 \\
1012 WZ & 0.1 $\pm$ 0.0 & 0.1 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.1 $\pm$ 0.0 \\
1013 \zjets & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
1014 \ttbar & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
1015 single top & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
1016 WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\
1017 \hline
1018 tot SM MC & 26.1 $\pm$ 0.1 & 36.1 $\pm$ 0.1 & 1.8 $\pm$ 0.0 & 63.9 $\pm$ 0.2 \\
1019 \hline
1020 data & 24 & 36 & 0 & 60 \\
1021 \hline
1022 \hline
1023 \end{tabular}
1024 \end{center}
1025 \end{table}
1026
1027 \begin{figure}[tbh]
1028 \begin{center}
1029 \includegraphics[width=1\linewidth]{plots/ZZ_92fb.pdf}
1030 \caption{\label{fig:zz}\protect
1031 Data vs. MC comparisons for the ZZ selection discussed in the text for \lumi.
1032 The number of jets, missing transverse energy, and Z boson transverse momentum are displayed.
1033 }
1034 \end{center}
1035 \end{figure}
1036
1037
1038
1039
1040 %\subsection{Estimating the Rare SM Backgrounds with MC}
1041 %\label{sec:bkg_raresm}
1042
1043 %{\bf TODO: list samples, yields in preselection region, and show \MET\ distribution}