ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/ZMet2012/bkg.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/ZMet2012/bkg.tex (file contents):
Revision 1.1 by benhoob, Wed Jun 27 15:56:31 2012 UTC vs.
Revision 1.10 by benhoob, Tue Oct 2 09:27:42 2012 UTC

# Line 1 | Line 1
1 < \clearpage
1 > %\clearpage
2   \section{Background Estimation Techniques}
3   \label{sec:bkg}
4  
5   In this section we describe the techniques used to estimate the SM backgrounds in our signal regions defined by requirements of large \MET.
6 < The SM backgrounds fall into 3 categories:
6 > The SM backgrounds fall into three categories:
7  
8   \begin{itemize}
9 < \item \zjets: this is the dominant background after performing the preselection. The \MET\ in \zjets\ events is estimated with the
9 > \item \zjets: this is the dominant background after the preselection. The \MET\ in \zjets\ events is estimated with the
10   ``\MET\ templates'' technique described in Sec.~\ref{sec:bkg_zjets};
11   \item Flavor-symmetric (FS) backgrounds: this category includes processes which produces 2 leptons of uncorrelated flavor. It is dominated
12   by \ttbar\ but also contains Z$\to\tau\tau$, WW, and single top processes. This is the dominant contribution in the signal regions, and it
13 < is estimated using a data control sample of e$\mu$ events;
13 > is estimated using a data control sample of e$\mu$ events as described in Sec.~\ref{sec:bkg_fs};
14   \item WZ and ZZ backgrounds: this background is estimated from MC, after validating the MC modeling of these processes using data control
15 < samples with jets and exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample).
16 < \item Rare SM backgrounds: this background contains rare processes such as $t\bar{t}$V and triple vector boson processes VVV (V=W,Z).
17 < This background is estimated from MC. {\bf TODO: add rare MC}
15 > samples with jets and exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample) as described in Sec.~\ref{sec:bkg_vz};
16 > %\item Rare SM backgrounds: this background contains rare processes such as $t\bar{t}$V and triple vector boson processes VVV (V=W,Z).
17 > %This background is estimated from MC as described in Sec.~\ref{sec:bkg_raresm}. {\bf FIXME: add rare MC}
18   \end{itemize}
19  
20   \subsection{Estimating the \zjets\ Background with \MET\ Templates}
21   \label{sec:bkg_zjets}
22  
23 < The premise of this data driven technique is that \MET in \zjets\ events
23 > The premise of this data driven technique is that \MET\ in \zjets\ events
24   is produced by the hadronic recoil system and {\it not} by the leptons making up the Z.
25   Therefore, the basic idea of the \MET\ template method is to measure the \MET\ distribution in
26   a control sample which has no true MET and the same general attributes regarding
# Line 39 | Line 39 | to match the distribution of reconstruct
39  
40   To account for kinematic differences between the hadronic systems in the control vs. signal
41   samples, we measure the \MET\ distributions in the \gjets\ sample in bins of the number of jets
42 < and the scalar sum of jet transverse energies (\Ht). These \MET distributions are normalized to unit area to form ``MET templates''.
43 < The prediction of the MET in each \Z event is the template which corresponds to the \njets\ and
44 < \Ht in the \zjets\ event. The prediction for the \Z sample is simply the sum of all such templates.
45 < These templates are displayed in App.~\ref{app:templates}.
46 <
47 < While there is in principle a small contribution from backgrounds other than \zjets\ in the preselection regions,
48 < this contribution is only $\approx$3\% ($\approx$2\%) of the total sample in the inclusive search (targeted search),
49 < as shown in Table~\ref{table:zyields_2j} (Table~\ref{table:zyields_2j_targeted}, and is therefore negligible compared to the total
50 < background uncertainty.
42 > and the scalar sum of jet transverse energies (\Ht). These \MET\ templates are extracted separately from the 5 single photon
43 > triggers with thresholds 22, 36, 50, 75, and 90 GeV, so that the templates are effectively binned in photon \pt.
44 > All \MET distributions are normalized to unit area to form ``MET templates''.
45 > The prediction of the MET in each \Z event is the template which corresponds to the \njets,
46 > \Ht, and Z \pt in the \zjets\ event. The prediction for the \Z sample is simply the sum of all such templates.
47 > All templates are displayed in App.~\ref{app:templates}.
48 >
49 > After preselection, there is  a small contribution from backgrounds other than \zjets. To correct for this, the \MET\ templates
50 > prediction is scaled such that the total background prediction matches the observed data yield in the \MET\ 0--60 GeV region.
51 > Because the non-\zjets impurity in the low \MET\ region after preselection is very small, this results in
52 > scaling factors of 0.985 (0.995) for the inclusive (targeted) search.
53  
54   \subsection{Estimating the Flavor-Symmetric Background with e$\mu$ Events}
55   \label{sec:bkg_fs}
# Line 69 | Line 71 | Hence we define:
71   \item $N_{e\mu}^{\rm{trig}} = \epsilon_{e\mu}^{\rm{trig}}N_{e\mu}^{\rm{offline}}$.
72   \end{itemize}
73  
74 < Here $N_{\ell\ell}^{\rm{trig}}$ denotes the number of selected events in the $\ell\ell$ channel passing the offline and trigger selection
75 < (in other words, the number of recorded events), $\epsilon_{\ell\ell}^{\rm{trig}}$ is the trigger efficiency, and
76 < $N_{e\mu}^{\rm{offline}}$ is the number of events that would have passed the offline selection if the trigger had an efficiency of 100\%.
74 > Here $N_{\ell\ell}^{\rm{trig}}$ denotes the number of selected Z events in the $\ell\ell$ channel passing the offline and trigger selection
75 > (in other words, the number of recorded and selected events), $\epsilon_{\ell\ell}^{\rm{trig}}$ is the trigger efficiency, and
76 > $N_{\ell\ell}^{\rm{offline}}$ is the number of events that would have passed the offline selection if the trigger had an efficiency of 100\%.
77   Thus we calculate the quantity:
78  
79   \begin{equation}
80   R_{\mu e} = \sqrt{\frac{N_{\mu\mu}^{\rm{offline}}}{N_{ee}^{\rm{offline}}}} = \sqrt{\frac{N_{\mu\mu}^{\rm{trig}}/\epsilon_{\mu\mu}^{\rm{trig}}}{N_{ee}^{\rm{trig}}/\epsilon_{ee}^{\rm{trig}}}}
81 < = \sqrt{\frac{80367/0.88}{54426/0.95}} = 1.26\pm0.07.
81 > = \sqrt{\frac{144122/0.88}{110325/0.95}} = 1.19\pm0.07.
82   \end{equation}
83  
84   Here we have used the Z$\to\mu\mu$ and Z$\to$ee yields from Table~\ref{table:zyields_2j} and the trigger efficiencies quoted in Sec.~\ref{sec:datasets}.
85 < The indicated uncertainty is due to the 3\% uncertainties in the trigger efficiencies. {\bf TODO: check for variation w.r.t. lepton \pt}.
85 > The indicated uncertainty is due to the 3\% uncertainties in the trigger efficiencies. %{\bf FIXME: check for variation w.r.t. lepton \pt}.
86   The predicted yields in the ee and $\mu\mu$ final states are calculated from the observed e$\mu$ yield as
87  
88   \begin{itemize}
89   \item $N_{ee}^{\rm{predicted}}    = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{ee}^{\rm{trig}}} {2 R_{\mu e}}
90 < = \frac{N_{e\mu}^{\rm{trig}}}{0.92}\frac{0.95}{2\times1.26} = (0.41\pm0.04) \times N_{e\mu}^{\rm{trig}}$ ,
90 > = \frac{N_{e\mu}^{\rm{trig}}}{0.92}\frac{0.95}{2\times1.26} = (0.43\pm0.05) \times N_{e\mu}^{\rm{trig}}$ ,
91   \item $N_{\mu\mu}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{\mu\mu}^{\rm{trig}} R_{\mu e}}  {2}
92 < = \frac {N_{e\mu}^{\rm{trig}}} {0.95} \frac {0.88 \times 1.26}{2} = (0.58\pm0.06) \times N_{e\mu}^{\rm{trig}}$,
92 > = \frac {N_{e\mu}^{\rm{trig}}} {0.95} \frac {0.88 \times 1.26}{2} = (0.55\pm0.07) \times N_{e\mu}^{\rm{trig}}$,
93   \end{itemize}
94  
95   and the predicted yield in the combined ee and $\mu\mu$ channel is simply the sum of these two predictions:
# Line 96 | Line 98 | and the predicted yield in the combined
98   \item $N_{ee+\mu\mu}^{\rm{predicted}} = (0.99\pm0.06)\times N_{e\mu}^{\rm{trig}}$.
99   \end{itemize}
100  
101 < Note that the relative uncertainty in the combined ee and $\mu\mu$ prediction is smaller than the those for the individual ee and $\mu\mu$ predictions
102 < because the uncertainty in $R_{\mu e}$ cancels when summing the ee and $\mu\mu$ predictions. {\bf N.B. these uncertainties are preliminary}.
101 > Note that the relative uncertainty in the combined ee and $\mu\mu$ prediction is smaller than those for the individual ee and $\mu\mu$ predictions
102 > because the uncertainty in $R_{\mu e}$ cancels when summing the ee and $\mu\mu$ predictions. %{\bf N.B. these uncertainties are preliminary}.
103  
104   To improve the statistical precision of the FS background estimate, we remove the requirement that the e$\mu$ lepton pair falls in the Z mass window.
105   Instead we scale the e$\mu$ yield by $K$, the efficiency for e$\mu$ events to satisfy the Z mass requirement, extracted from simulation. In Fig.~\ref{fig:K_incl}
106 < we display the value of $K$ in data and simulation, for a variety of \MET\ requirements, for the inclusive analysis. Based on this we chose $K=0.14\pm0.02$
107 < for all \MET\ regions except for \MET\ $>$ 300 GeV. For this region the statistical precision is reduced, so that we inflate the uncertainty and chose $K=0.14\pm0.08$.
106 > we display the value of $K$ in data and simulation, for a variety of \MET\ requirements, for the inclusive analysis.
107 > Based on this we chose $K=0.14\pm0.02$ for the lower \MET\ regions, $K=0.14\pm0.04$ for the \MET\ $>$ 200 GeV region,and $K=0.14\pm0.09$ for \MET\ $>$ 300 GeV,
108 > where the larger uncertainties reflect the reduced statistical precision at large \MET.
109   The corresponding plot for the targeted analysis, including the b-veto, is displayed in Fig.~\ref{fig:K_targeted}.
110   Based on this we chose $K=0.13\pm0.02$
111 < for all \MET\ regions up to  \MET\ $>$ 100 GeV. For higher \MET\ regions (\MET\ $>$ 150 GeV and above) the statistical precision is reduced,
109 < so that we inflate the uncertainty and chose $K=0.13\pm0.07$.
111 > for all \MET\ regions up to  \MET\ $>$ 150 GeV. For the \MET\ $>$ 200 GeV region we choose $K=0.13\pm0.05$, due to the reduced  statistical precision.
112  
113   \begin{figure}[!ht]
114   \begin{center}
115   \begin{tabular}{cc}
116 < \includegraphics[width=0.4\textwidth]{plots/K_incl.pdf} &
117 < \includegraphics[width=0.4\textwidth]{plots/K_excl.pdf} \\
116 > \includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_92fb.pdf} &
117 > \includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_92fb.pdf} \\
118   \end{tabular}
119 < \caption{
119 > \caption{\label{fig:K_incl}
120   The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
121 < exclusive \MET\ intervals (right) for the inclusive analysis. Based on this we chose $K=0.14\pm0.02$ for all \MET\ regions except \MET\ $>$ 300 GeV,
120 < where we chose $K=0.14\pm0.08$.
121 < {\bf plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
122 < \label{fig:K_incl}
121 > exclusive \MET\ intervals (right) for the inclusive analysis.
122   }
123 +
124 + \begin{comment}
125 +
126 + ----------------------------------------
127 +  EXCLUSIVE RESULTS
128 + ----------------------------------------
129 +
130 + root [3] extractK(true,false,false)
131 + Using selection : ((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20)
132 + Using weight    : vtxweight * weight
133 + OF entries (total)  21691
134 + OF entries (Z mass) 2934
135 + K                   0.135263
136 + Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
137 + Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
138 +
139 + --------------------------------------------------------------
140 + pfmet>0   && pfmet<30
141 +
142 + data  :
143 + total : 3650
144 + Z     : 461
145 + K     : 0.13 +/- 0.006
146 +
147 + MC    :
148 + total : 399.019
149 + Z     : 51.0493
150 + K     : 0.13 +/- 0.007
151 + --------------------------------------------------------------
152 +
153 +
154 + --------------------------------------------------------------
155 + pfmet>30  && pfmet<60
156 +
157 + data  :
158 + total : 6951
159 + Z     : 904
160 + K     : 0.13 +/- 0.004
161 +
162 + MC    :
163 + total : 755.309
164 + Z     : 111.206
165 + K     : 0.15 +/- 0.003
166 + --------------------------------------------------------------
167 +
168 +
169 + --------------------------------------------------------------
170 + pfmet>60  && pfmet<100
171 +
172 + data  :
173 + total : 7206
174 + Z     : 1037
175 + K     : 0.14 +/- 0.004
176 +
177 + MC    :
178 + total : 838.418
179 + Z     : 123.554
180 + K     : 0.15 +/- 0.003
181 + --------------------------------------------------------------
182 +
183 +
184 + --------------------------------------------------------------
185 + pfmet>100 && pfmet<200
186 +
187 + data  :
188 + total : 3690
189 + Z     : 512
190 + K     : 0.14 +/- 0.006
191 +
192 + MC    :
193 + total : 451.624
194 + Z     : 67.7098
195 + K     : 0.15 +/- 0.004
196 + --------------------------------------------------------------
197 +
198 +
199 + --------------------------------------------------------------
200 + pfmet>200 && pfmet<300
201 +
202 + data  :
203 + total : 172
204 + Z     : 17
205 + K     : 0.10 +/- 0.024
206 +
207 + MC    :
208 + total : 24.2441
209 + Z     : 2.67077
210 + K     : 0.11 +/- 0.013
211 + --------------------------------------------------------------
212 +
213 +
214 + --------------------------------------------------------------
215 + pfmet>300
216 +
217 + data  :
218 + total : 22
219 + Z     : 3
220 + K     : 0.14 +/- 0.079
221 +
222 + MC    :
223 + total : 4.53108
224 + Z     : 0.230071
225 + K     : 0.05 +/- 0.022
226 + --------------------------------------------------------------
227 +
228 +
229 +
230 + ----------------------------------------
231 +  INCLUSIVE RESULTS
232 + ----------------------------------------
233 +
234 + root [4] extractK(false,false,false)
235 + Using selection : ((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20)
236 + Using weight    : vtxweight * weight
237 + OF entries (total)  21691
238 + OF entries (Z mass) 2934
239 + K                   0.135263
240 + Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
241 + Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
242 +
243 + --------------------------------------------------------------
244 + pfmet>0
245 +
246 + data  :
247 + total : 21691
248 + Z     : 2934
249 + K     : 0.14 +/- 0.002
250 +
251 + MC    :
252 + total : 2472.89
253 + Z     : 356.434
254 + K     : 0.14 +/- 0.002
255 + --------------------------------------------------------------
256 +
257 +
258 + --------------------------------------------------------------
259 + pfmet>30
260 +
261 + data  :
262 + total : 18041
263 + Z     : 2473
264 + K     : 0.14 +/- 0.003
265 +
266 + MC    :
267 + total : 2074.05
268 + Z     : 305.382
269 + K     : 0.15 +/- 0.002
270 + --------------------------------------------------------------
271 +
272 +
273 + --------------------------------------------------------------
274 + pfmet>60
275 +
276 + data  :
277 + total : 11090
278 + Z     : 1569
279 + K     : 0.14 +/- 0.004
280 +
281 + MC    :
282 + total : 1318.79
283 + Z     : 194.166
284 + K     : 0.15 +/- 0.002
285 + --------------------------------------------------------------
286 +
287 +
288 + --------------------------------------------------------------
289 + pfmet>100
290 +
291 + data  :
292 + total : 3884
293 + Z     : 532
294 + K     : 0.14 +/- 0.006
295 +
296 + MC    :
297 + total : 480.402
298 + Z     : 70.6107
299 + K     : 0.15 +/- 0.004
300 + --------------------------------------------------------------
301 +
302 +
303 + --------------------------------------------------------------
304 + pfmet>200
305 +
306 + data  :
307 + total : 194
308 + Z     : 20
309 + K     : 0.10 +/- 0.023
310 +
311 + MC    :
312 + total : 28.7751
313 + Z     : 2.90084
314 + K     : 0.10 +/- 0.012
315 + --------------------------------------------------------------
316 +
317 +
318 + --------------------------------------------------------------
319 + pfmet>300
320 +
321 + data  :
322 + total : 22
323 + Z     : 3
324 + K     : 0.14 +/- 0.079
325 +
326 + MC    :
327 + total : 4.53108
328 + Z     : 0.230071
329 + K     : 0.05 +/- 0.022
330 + --------------------------------------------------------------
331 +
332 + \end{comment}
333 +
334   \end{center}
335   \end{figure}
336  
337   \begin{figure}[!hb]
338   \begin{center}
339   \begin{tabular}{cc}
340 < \includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_bveto.pdf} &
341 < \includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_bveto.pdf} \\
340 > \includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_bvetoMedium_92fb.pdf} &
341 > \includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_bvetoMedium_92fb.pdf} \\
342   \end{tabular}
343   \caption{
344   The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
345   exclusive \MET\ intervals (right) for the targeted analysis, including the b-veto.
346   Based on this we chose $K=0.13\pm0.02$ for the \MET\ regions up to \MET\ $>$ 100 GeV.
347   For higher \MET\ regions we chose $K=0.13\pm0.07$.
348 < {\bf plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
348 > %{\bf FIXME plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
349   \label{fig:K_targeted}
350   }
351 + \begin{comment}
352 +
353 + root [2] extractK(true,false,true)
354 + Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvm==0)
355 + Using weight    : vtxweight * weight
356 + OF entries (total)  5756
357 + OF entries (Z mass) 654
358 + K                   0.113621
359 + Warning in <TStreamerInfo::Compile>: Counter fNClusterRange should not be skipped from class TTree
360 + Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
361 +
362 + --------------------------------------------------------------
363 + pfmet>0   && pfmet<30
364 +
365 + data  :
366 + total : 1303
367 + Z     : 126
368 + K     : 0.10 +/- 0.009
369 +
370 + MC    :
371 + total : 131.974
372 + Z     : 15.1946
373 + K     : 0.12 +/- 0.020
374 + --------------------------------------------------------------
375 +
376 +
377 + --------------------------------------------------------------
378 + pfmet>30  && pfmet<60
379 +
380 + data  :
381 + total : 1818
382 + Z     : 190
383 + K     : 0.10 +/- 0.008
384 +
385 + MC    :
386 + total : 172.956
387 + Z     : 21.9369
388 + K     : 0.13 +/- 0.007
389 + --------------------------------------------------------------
390 +
391 +
392 + --------------------------------------------------------------
393 + pfmet>60  && pfmet<80
394 +
395 + data  :
396 + total : 994
397 + Z     : 122
398 + K     : 0.12 +/- 0.011
399 +
400 + MC    :
401 + total : 109.789
402 + Z     : 13.9792
403 + K     : 0.13 +/- 0.008
404 + --------------------------------------------------------------
405 +
406 +
407 + --------------------------------------------------------------
408 + pfmet>80  && pfmet<100
409 +
410 + data  :
411 + total : 699
412 + Z     : 99
413 + K     : 0.14 +/- 0.014
414 +
415 + MC    :
416 + total : 73.3643
417 + Z     : 11.5154
418 + K     : 0.16 +/- 0.010
419 + --------------------------------------------------------------
420 +
421 +
422 + --------------------------------------------------------------
423 + pfmet>100 && pfmet<150
424 +
425 + data  :
426 + total : 722
427 + Z     : 93
428 + K     : 0.13 +/- 0.013
429 +
430 + MC    :
431 + total : 86.7947
432 + Z     : 11.742
433 + K     : 0.14 +/- 0.009
434 + --------------------------------------------------------------
435 +
436 +
437 + --------------------------------------------------------------
438 + pfmet>150 && pfmet<200
439 +
440 + data  :
441 + total : 163
442 + Z     : 18
443 + K     : 0.11 +/- 0.026
444 +
445 + MC    :
446 + total : 19.4473
447 + Z     : 2.97965
448 + K     : 0.15 +/- 0.017
449 + --------------------------------------------------------------
450 +
451 +
452 + --------------------------------------------------------------
453 + pfmet>200
454 +
455 + data  :
456 + total : 57
457 + Z     : 6
458 + K     : 0.11 +/- 0.043
459 +
460 + MC    :
461 + total : 8.99801
462 + Z     : 0.794136
463 + K     : 0.09 +/- 0.021
464 + --------------------------------------------------------------
465 +
466 + root [3] Info in <TCanvas::Print>: pdf file /Users/benhoob/tas/ZMet2012/plots/extractK_exclusive_bvetoMedium_92fb.pdf has been created
467 +
468 + root [3]
469 + root [3] extractK(false,false,true)
470 + Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvm==0)
471 + Using weight    : vtxweight * weight
472 + OF entries (total)  5756
473 + OF entries (Z mass) 654
474 + K                   0.113621
475 + Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
476 + Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
477 +
478 + --------------------------------------------------------------
479 + pfmet>0
480 +
481 + data  :
482 + total : 5756
483 + Z     : 654
484 + K     : 0.11 +/- 0.004
485 +
486 + MC    :
487 + total : 603.333
488 + Z     : 78.1422
489 + K     : 0.13 +/- 0.005
490 + --------------------------------------------------------------
491 +
492 +
493 + --------------------------------------------------------------
494 + pfmet>30
495 +
496 + data  :
497 + total : 4453
498 + Z     : 528
499 + K     : 0.12 +/- 0.005
500 +
501 + MC    :
502 + total : 471.396
503 + Z     : 62.9476
504 + K     : 0.13 +/- 0.004
505 + --------------------------------------------------------------
506 +
507 +
508 + --------------------------------------------------------------
509 + pfmet>60
510 +
511 + data  :
512 + total : 2635
513 + Z     : 338
514 + K     : 0.13 +/- 0.007
515 +
516 + MC    :
517 + total : 298.41
518 + Z     : 41.0107
519 + K     : 0.14 +/- 0.005
520 + --------------------------------------------------------------
521 +
522 +
523 + --------------------------------------------------------------
524 + pfmet>80
525 +
526 + data  :
527 + total : 1641
528 + Z     : 216
529 + K     : 0.13 +/- 0.009
530 +
531 + MC    :
532 + total : 188.602
533 + Z     : 27.0313
534 + K     : 0.14 +/- 0.006
535 + --------------------------------------------------------------
536 +
537 +
538 + --------------------------------------------------------------
539 + pfmet>100
540 +
541 + data  :
542 + total : 942
543 + Z     : 117
544 + K     : 0.12 +/- 0.011
545 +
546 + MC    :
547 + total : 115.24
548 + Z     : 15.5158
549 + K     : 0.13 +/- 0.008
550 + --------------------------------------------------------------
551 +
552 +
553 + --------------------------------------------------------------
554 + pfmet>150
555 +
556 + data  :
557 + total : 220
558 + Z     : 24
559 + K     : 0.11 +/- 0.022
560 +
561 + MC    :
562 + total : 28.4454
563 + Z     : 3.77378
564 + K     : 0.13 +/- 0.014
565 + --------------------------------------------------------------
566 +
567 +
568 + --------------------------------------------------------------
569 + pfmet>200
570 +
571 + data  :
572 + total : 57
573 + Z     : 6
574 + K     : 0.11 +/- 0.043
575 +
576 + MC    :
577 + total : 8.99801
578 + Z     : 0.794136
579 + K     : 0.09 +/- 0.021
580 + --------------------------------------------------------------
581 +
582 + \end{comment}
583 +
584 + \end{center}
585 + \end{figure}
586 +
587 +
588 + \begin{comment}
589 +
590 + \begin{figure}[!hb]
591 + \begin{center}
592 + \begin{tabular}{cc}
593 + \includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_bvetoLoose_92fb.pdf} &
594 + \includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_bvetoLoose_92fb.pdf} \\
595 + \end{tabular}
596 + \caption{
597 + The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
598 + exclusive \MET\ intervals (right) for the targeted analysis, including the b-veto.
599 + %{\bf FIXME plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
600 + \label{fig:K_targeted}}
601 +
602 +
603 + root [2] extractK(true,false,true)
604 + Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvl==0)
605 + Using weight    : vtxweight * weight
606 + OF entries (total)  2715
607 + OF entries (Z mass) 279
608 + K                   0.102762
609 + Warning in <TStreamerInfo::Compile>: Counter fNClusterRange should not be skipped from class TTree
610 + Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
611 +
612 + --------------------------------------------------------------
613 + pfmet>0   && pfmet<30
614 +
615 + data  :
616 + total : 713
617 + Z     : 59
618 + K     : 0.08 +/- 0.011
619 +
620 + MC    :
621 + total : 74.2549
622 + Z     : 7.09789
623 + K     : 0.10 +/- 0.025
624 + --------------------------------------------------------------
625 +
626 +
627 + --------------------------------------------------------------
628 + pfmet>30  && pfmet<60
629 +
630 + data  :
631 + total : 850
632 + Z     : 79
633 + K     : 0.09 +/- 0.010
634 +
635 + MC    :
636 + total : 84.6973
637 + Z     : 9.55105
638 + K     : 0.11 +/- 0.009
639 + --------------------------------------------------------------
640 +
641 +
642 + --------------------------------------------------------------
643 + pfmet>60  && pfmet<80
644 +
645 + data  :
646 + total : 469
647 + Z     : 61
648 + K     : 0.13 +/- 0.017
649 +
650 + MC    :
651 + total : 50.1496
652 + Z     : 5.92081
653 + K     : 0.12 +/- 0.012
654 + --------------------------------------------------------------
655 +
656 +
657 + --------------------------------------------------------------
658 + pfmet>80  && pfmet<100
659 +
660 + data  :
661 + total : 269
662 + Z     : 33
663 + K     : 0.12 +/- 0.021
664 +
665 + MC    :
666 + total : 30.0547
667 + Z     : 4.67993
668 + K     : 0.16 +/- 0.014
669 + --------------------------------------------------------------
670 +
671 +
672 + --------------------------------------------------------------
673 + pfmet>100 && pfmet<150
674 +
675 + data  :
676 + total : 311
677 + Z     : 34
678 + K     : 0.11 +/- 0.019
679 +
680 + MC    :
681 + total : 39.4475
682 + Z     : 5.02593
683 + K     : 0.13 +/- 0.014
684 + --------------------------------------------------------------
685 +
686 +
687 + --------------------------------------------------------------
688 + pfmet>150 && pfmet<200
689 +
690 + data  :
691 + total : 79
692 + Z     : 10
693 + K     : 0.13 +/- 0.040
694 +
695 + MC    :
696 + total : 9.96228
697 + Z     : 1.4975
698 + K     : 0.15 +/- 0.023
699 + --------------------------------------------------------------
700 +
701 +
702 + --------------------------------------------------------------
703 + pfmet>200
704 +
705 + data  :
706 + total : 24
707 + Z     : 3
708 + K     : 0.12 +/- 0.072
709 +
710 + MC    :
711 + total : 5.3503
712 + Z     : 0.425719
713 + K     : 0.08 +/- 0.027
714 + --------------------------------------------------------------
715 +
716 + root [3] Info in <TCanvas::Print>: pdf file /Users/benhoob/tas/ZMet2012/plots/extractK_exclusive_bvetoLoose_92fb.pdf has been created
717 +
718 + root [3]
719 + root [3] extractK(false,false,true)
720 + Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvl==0)
721 + Using weight    : vtxweight * weight
722 + OF entries (total)  2715
723 + OF entries (Z mass) 279
724 + K                   0.102762
725 + Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak).
726 + Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak).
727 +
728 + --------------------------------------------------------------
729 + pfmet>0
730 +
731 + data  :
732 + total : 2715
733 + Z     : 279
734 + K     : 0.10 +/- 0.006
735 +
736 + MC    :
737 + total : 293.912
738 + Z     : 34.199
739 + K     : 0.12 +/- 0.008
740 + --------------------------------------------------------------
741 +
742 +
743 + --------------------------------------------------------------
744 + pfmet>30
745 +
746 + data  :
747 + total : 2002
748 + Z     : 220
749 + K     : 0.11 +/- 0.007
750 +
751 + MC    :
752 + total : 219.661
753 + Z     : 27.101
754 + K     : 0.12 +/- 0.006
755 + --------------------------------------------------------------
756 +
757 +
758 + --------------------------------------------------------------
759 + pfmet>60
760 +
761 + data  :
762 + total : 1152
763 + Z     : 141
764 + K     : 0.12 +/- 0.010
765 +
766 + MC    :
767 + total : 134.962
768 + Z     : 17.5498
769 + K     : 0.13 +/- 0.007
770 + --------------------------------------------------------------
771 +
772 +
773 + --------------------------------------------------------------
774 + pfmet>80
775 +
776 + data  :
777 + total : 683
778 + Z     : 80
779 + K     : 0.12 +/- 0.013
780 +
781 + MC    :
782 + total : 84.8149
783 + Z     : 11.629
784 + K     : 0.14 +/- 0.009
785 + --------------------------------------------------------------
786 +
787 +
788 + --------------------------------------------------------------
789 + pfmet>100
790 +
791 + data  :
792 + total : 414
793 + Z     : 47
794 + K     : 0.11 +/- 0.017
795 +
796 + MC    :
797 + total : 54.7604
798 + Z     : 6.94915
799 + K     : 0.13 +/- 0.011
800 + --------------------------------------------------------------
801 +
802 +
803 + --------------------------------------------------------------
804 + pfmet>150
805 +
806 + data  :
807 + total : 103
808 + Z     : 13
809 + K     : 0.13 +/- 0.035
810 +
811 + MC    :
812 + total : 15.3125
813 + Z     : 1.92322
814 + K     : 0.13 +/- 0.019
815 + --------------------------------------------------------------
816 +
817 +
818 + --------------------------------------------------------------
819 + pfmet>200
820 +
821 + data  :
822 + total : 24
823 + Z     : 3
824 + K     : 0.12 +/- 0.072
825 +
826 + MC    :
827 + total : 5.3503
828 + Z     : 0.425719
829 + K     : 0.08 +/- 0.027
830 + --------------------------------------------------------------
831 +
832 +
833   \end{center}
834   \end{figure}
835  
836 +
837 + \end{comment}
838 +
839 +
840   \clearpage
841  
842   \subsection{Estimating the WZ and ZZ Background with MC}
# Line 149 | Line 845 | For higher \MET\ regions we chose $K=0.1
845   Backgrounds from W($\ell\nu$)Z($\ell\ell$) where the W lepton is not identified or is outside acceptance, and Z($\nu\nu$)Z($\ell\ell$),
846   are estimated from simulation. The MC modeling of these processes is validated by comparing the MC predictions with data in control samples
847   with exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample).
848 < The relevant WZ and ZZ MC samples are:
849 <
850 < \begin{itemize}
155 < \footnotesize{
156 < \item \verb=/WZJetsTo3LNu_TuneZ2_8TeV-madgraph-tauola/Summer12-PU_S7_START52_V9-v2/AODSIM= ($\sigma=1.058$ pb),
157 < \item \verb=/ZZJetsTo4L_TuneZ2star_8TeV-madgraph-tauola/Summer12-PU_S7_START52_V9-v3/AODSIM= ($\sigma=0.093$ pb),
158 < }
159 < \end{itemize}
160 < The WZJetsTo2L2Q, ZZJetsTo2L2Q, and ZZJetsTo2L2Nu samples are also used in this analysis but their contribution to the 3-lepton and 4-lepton
161 < control samples is negligible.
848 > The critical samples are the WZJetsTo3LNu and ZZJetsTo4L, listed in Table~\ref{tab:mcsamples}
849 > (the WZJetsTo2L2Q, ZZJetsTo2L2Q, and ZZJetsTo2L2Nu samples are also used in this analysis but their contribution to the 3-lepton and 4-lepton
850 > control samples is negligible).
851  
852   \subsubsection{WZ Validation Studies}
853   \label{sec:bkg_wz}
# Line 172 | Line 861 | A pure WZ sample can be selected in data
861   \end{itemize}
862  
863   The data and MC yields passing the above selection are in Table~\ref{tab:wz}.
864 < The inclusive yields (without any jet requirements) agree within 17\%, which is approximately equal
865 < to the uncertainty in the measured WZ cross section. A data vs. MC comparison of kinematic
864 > The inclusive yields (without any jet requirements) agree within 13\%, which is consistent within
865 > the uncertainty in the CMS measured WZ cross section (17\%). A data vs. MC comparison of kinematic
866   distributions (jet multiplicity, \MET, Z \pt) is given in Fig.~\ref{fig:wz}. High \MET\
867   values in WZ and ZZ events arise from highly boosted W or Z bosons that decay leptonically,
868   and we therefore check that the MC does a reasonable job of reproducing the \pt distributions of the
869   leptonically decaying \Z. While the inclusive WZ yields are in reasonable agreement, we observe
870   an excess in data in events with at least 2 jets, corresponding to the jet multiplicity requirement
871 < in our preselection. We observe 60 events in data while the MC predicts $34\pm5.2$~(stat)), representing an excess of 78\%,
872 < as indicated in Table~\ref{tab:wz2j}.
873 < We note some possible causes for this discrepancy:
871 > in our preselection. We observe 106 events in data while the MC predicts $62\pm1.5$~(stat), representing an excess of 71\%,
872 > as indicated in Table~\ref{tab:wz2j}.
873 > This excess will be studied further. For the time being, based on these studies we currently assess an uncertainty of 70\% on the WZ yield.
874 > A data vs. MC comparison of several kinematic quantities in the sample with 3 leptons and at least 2 jets can be found in App.~\ref{app:WZ}.
875 >
876 > \begin{comment}
877 > We note some possible contributions to this discrepancy:
878  
879   \begin{itemize}
880  
881 + \item {\bf The following checks refer to the 5.2 fb$^{-1}$ results and will be updated.}
882 +
883   \item The \zjets\ contribution is under-estimated here, for 2 reasons: first, because the \zjets\
884   yield passing a \MET $>$ 50 GeV requirement is under-estimated in MC and second, because the fake
885   rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends
886   on the \zjets\ yield, if the \zjets\ yield is doubled then the excess is reduced from 78\% to 55\%.
887 < {\bf currently using 10\% of \zjets\ MC, and there is 1 event with a weight of about 5, plots and tables to be remade with full \zjets\ stats}.
887 > Also note that we are currently using 10\% of the \zjets\ MC sample and there is 1 event with a weight
888 > of about 5, so the plots and tables will be remade with full \zjets\ sample.
889  
890   \item The \ttbar\ contribution is under-estimated here because the fake
891   rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends
892   on the \ttbar\ yield, if the \ttbar\ yield is doubled then the excess is reduced from 78\% to 57\%.
893  
894   \item Currently no attempt is made to reject jets from pile-up interactions, which may be responsible
895 < for some of this excess. To check this, we increase the jet \pt requirement to 40 GeV which
896 < helps to suppress PU jets and observe 39 events in data vs. an MC prediction of $25\pm5.2$~(stat),
895 > for some of the excess at large \njets. To check this, we increase the jet \pt threhsold to 40 GeV, which
896 > helps to suppress PU jets, and observe 39 events in data vs. an MC prediction of $25\pm5.2$~(stat),
897   decreasing the excess from 78\% to 58\%. In the future this may be improved by explicitly
898   requiring the jets to be consistent with originating from the signal primary vertex.
899  
900   \end{itemize}
901 + \end{comment}
902 +
903  
206 Based on these studies we currently assess an uncertainty of 80\% on the WZ yield.
904  
905   \begin{table}[htb]
906   \begin{center}
907   \caption{\label{tab:wz} Data and Monte Carlo yields passing the WZ preselection. }
908   \begin{tabular}{lccccc}
909   \hline
910 + \hline
911           Sample   &            ee    &        $\mu\mu$   &        e$\mu$   &          total  \\
912   \hline
913 <             WZ   & 58.9 $\pm$ 0.7   & 82.2 $\pm$ 0.8   &  4.0 $\pm$ 0.2   &145.1 $\pm$ 1.0  \\
914 <         \ttbar   &  0.6 $\pm$ 0.5   &  4.3 $\pm$ 1.5   &  3.0 $\pm$ 1.2   &  8.0 $\pm$ 2.0  \\
915 <         \zjets   &  0.4 $\pm$ 0.4   &  4.9 $\pm$ 4.9   &  0.0 $\pm$ 0.0   &  5.3 $\pm$ 4.9  \\
916 <             ZZ   &  1.4 $\pm$ 0.0   &  2.0 $\pm$ 0.0   &  0.1 $\pm$ 0.0   &  3.5 $\pm$ 0.0  \\
917 <             WW   &  0.0 $\pm$ 0.0   &  0.2 $\pm$ 0.1   &  0.2 $\pm$ 0.1   &  0.3 $\pm$ 0.1  \\
918 <     single top   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.1 $\pm$ 0.1  \\
913 >
914 > %Loading babies at       : ../output/V00-01-04
915 > %Using selection         : ((((((isdata==0 || (run<197556 || run>198913))&&(((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0))))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101)
916 > %Using weight            : weight * 9.2 * trgeff * vtxweight
917 >
918 >             WZ   &116.7 $\pm$ 0.8   &151.5 $\pm$ 0.8   &  8.1 $\pm$ 0.2   &276.3 $\pm$ 1.2  \\
919 >            ttV   &  4.1 $\pm$ 0.2   &  4.9 $\pm$ 0.2   &  1.2 $\pm$ 0.1   & 10.2 $\pm$ 0.3  \\
920 >         \ttbar   &  1.2 $\pm$ 0.6   &  3.2 $\pm$ 0.9   &  3.6 $\pm$ 1.0   &  7.9 $\pm$ 1.5  \\
921 >             ZZ   &  2.5 $\pm$ 0.0   &  3.4 $\pm$ 0.0   &  0.2 $\pm$ 0.0   &  6.1 $\pm$ 0.0  \\
922 >         \zjets   &  1.2 $\pm$ 0.9   &  3.0 $\pm$ 1.8   &  0.0 $\pm$ 0.0   &  4.2 $\pm$ 2.1  \\
923 >            vvv   &  1.6 $\pm$ 0.1   &  2.1 $\pm$ 0.1   &  0.3 $\pm$ 0.0   &  4.0 $\pm$ 0.1  \\
924 >     single top   &  0.0 $\pm$ 0.0   &  0.2 $\pm$ 0.2   &  0.0 $\pm$ 0.0   &  0.2 $\pm$ 0.2  \\
925 >             WW   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.1 $\pm$ 0.0   &  0.1 $\pm$ 0.1  \\
926   \hline
927 <    total SM MC   & 61.3 $\pm$ 0.9   & 93.7 $\pm$ 5.2   &  7.3 $\pm$ 1.3   &162.3 $\pm$ 5.4  \\
928 <           data   &             68   &            108   &             14   &            190  \\
927 >      tot SM MC   &127.3 $\pm$ 1.4   &168.4 $\pm$ 2.3   & 13.5 $\pm$ 1.0   &309.2 $\pm$ 2.8  \\
928 > \hline
929 >           data   &            156   &            178   &             16   &            350  \\
930   \hline
931   \hline
932  
# Line 230 | Line 936 | Based on these studies we currently asse
936  
937   \begin{table}[htb]
938   \begin{center}
939 < \caption{\label{tab:wz2j} Data and Monte Carlo yields passing the WZ preselection and \njets\ $>$ 2. }
939 > \caption{\label{tab:wz2j} Data and Monte Carlo yields passing the WZ preselection and \njets\ $\geq$ 2. }
940   \begin{tabular}{lccccc}
941   \hline
236         Sample   &            ee    &        $\mu\mu$   &        e$\mu$   &          total  \\
942   \hline
943 +         Sample   &            ee    &        $\mu\mu$   &        e$\mu$   &          total  \\
944   \hline
945 <             WZ   &  9.8 $\pm$ 0.3   & 13.3 $\pm$ 0.3   &  0.6 $\pm$ 0.1   & 23.6 $\pm$ 0.4  \\
946 <         \ttbar   &  0.2 $\pm$ 0.2   &  2.0 $\pm$ 0.9   &  2.2 $\pm$ 1.2   &  4.4 $\pm$ 1.5  \\
947 <         \zjets   &  0.0 $\pm$ 0.0   &  4.9 $\pm$ 4.9   &  0.0 $\pm$ 0.0   &  4.9 $\pm$ 4.9  \\
948 <             ZZ   &  0.3 $\pm$ 0.0   &  0.4 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.7 $\pm$ 0.0  \\
949 <             WW   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.1 $\pm$ 0.0  \\
950 <     single top   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0  \\
945 >
946 > %Loading babies at       : ../output/V00-01-04
947 > %Using selection         : (((((((isdata==0 || (run<197556 || run>198913))&&(((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0))))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101))&&(njets>=2)
948 > %Using weight            : weight * 9.2 * trgeff * vtxweight
949 >
950 >             WZ   & 19.1 $\pm$ 0.3   & 24.6 $\pm$ 0.3   &  1.3 $\pm$ 0.1   & 44.9 $\pm$ 0.5  \\
951 >            ttV   &  3.8 $\pm$ 0.2   &  4.5 $\pm$ 0.2   &  1.0 $\pm$ 0.1   &  9.3 $\pm$ 0.3  \\
952 >         \ttbar   &  0.8 $\pm$ 0.5   &  1.6 $\pm$ 0.7   &  0.9 $\pm$ 0.5   &  3.3 $\pm$ 1.0  \\
953 >             ZZ   &  0.5 $\pm$ 0.0   &  0.7 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  1.2 $\pm$ 0.0  \\
954 >         \zjets   &  0.9 $\pm$ 0.9   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.9 $\pm$ 0.9  \\
955 >            vvv   &  0.9 $\pm$ 0.0   &  1.2 $\pm$ 0.1   &  0.1 $\pm$ 0.0   &  2.2 $\pm$ 0.1  \\
956 >     single top   &  0.0 $\pm$ 0.0   &  0.2 $\pm$ 0.2   &  0.0 $\pm$ 0.0   &  0.2 $\pm$ 0.2  \\
957 >             WW   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0  \\
958   \hline
959 <      tot SM MC   & 10.3 $\pm$ 0.3   & 20.8 $\pm$ 5.0   &  2.8 $\pm$ 1.2   & 33.8 $\pm$ 5.2  \\
959 >      tot SM MC   & 25.9 $\pm$ 1.1   & 32.9 $\pm$ 0.8   &  3.3 $\pm$ 0.5   & 62.1 $\pm$ 1.5  \\
960   \hline
961 <           data   &             23   &             32   &              5   &             60  \\
961 >           data   &             47   &             51   &              8   &            106  \\
962   \hline
963   \hline
964  
# Line 255 | Line 968 | Based on these studies we currently asse
968  
969   \begin{figure}[tbh]
970   \begin{center}
971 < \includegraphics[width=1\linewidth]{plots/WZ.pdf}
971 > \includegraphics[width=1\linewidth]{plots/WZ_eemm_92fb.pdf}
972   \caption{\label{fig:wz}\protect
973   Data vs. MC comparisons for the WZ selection discussed in the text for \lumi.
974   The number of jets, missing transverse energy, and Z boson transverse momentum are displayed.
975 + %Loading babies at       : ../output/V00-01-04
976 + %Using selection         : ((((((isdata==0 || (run<197556 || run>198913))&&(((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0))))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101)
977 + %Using weight            : weight * 9.2 * trgeff * vtxweight
978   }
979   \end{center}
980   \end{figure}
# Line 275 | Line 991 | A pure ZZ sample can be selected in data
991   \item 2 of the 4 leptons must fall in the $Z$ window 81-101 GeV.
992   \end{itemize}
993  
994 < The data and MC yields passing the above selection are in Table~\ref{tab:zz}. Again we observe an
995 < excess in data with respect to the MC prediction (29 observed vs. $17.3\pm0.1$~(stat) MC predicted).
996 < After requiring at least 2 jets, we observe 2 events and the MC predicts $1.5\pm0.1$~(stat).
997 < Based on this we apply an uncertainty of 80\% to the ZZ background.
994 > The data and MC yields passing the above selection are in Table~\ref{tab:zz}.
995 > In this ZZ-dominated sample we observe good agreement between the data yield and the MC prediction.
996 > After requiring 2 jets (corresponding to the requirement in the analysis selection), we observe 4 events
997 > in data and the MC predicts $6.6\pm0.1$ events. Due to the limited statistical precision we assign an uncertainty
998 > fo 50\% on the ZZ yield.
999  
1000   \begin{table}[htb]
1001   \begin{center}
1002   \caption{\label{tab:zz} Data and Monte Carlo yields for the ZZ preselection. }
1003   \begin{tabular}{lccccc}
1004   \hline
1005 + \hline
1006           Sample   &             ee   &       $\mu\mu$   &         e$\mu$   &          total  \\
1007   \hline
1008  
1009 < \hline
1010 <             ZZ   &  6.6 $\pm$ 0.0   &  9.9 $\pm$ 0.0   &  0.4 $\pm$ 0.0   & 17.0 $\pm$ 0.1  \\
1011 <             WZ   &  0.1 $\pm$ 0.0   &  0.2 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.3 $\pm$ 0.0  \\
1009 > %Loading babies at       : ../output/V00-01-04
1010 > %Using selection         : (((((isdata==0 || (run<197556 || run>198913))&&(((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0))))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==4 && lep3.pt()>20.0 && lep4.pt()>20.0))&&(dilmass>81 && dilmass<101)
1011 > %Using weight            : weight * 9.2 * trgeff * vtxweight
1012 > %SCALING ZJETS BY 111/946
1013 > %SCALING ZZ BY 1.92
1014 >
1015 >             ZZ   & 25.1 $\pm$ 0.1   & 34.9 $\pm$ 0.1   &  1.6 $\pm$ 0.0   & 61.7 $\pm$ 0.1  \\
1016 >            ttV   &  0.6 $\pm$ 0.1   &  0.6 $\pm$ 0.1   &  0.2 $\pm$ 0.0   &  1.4 $\pm$ 0.1  \\
1017 >            VVV   &  0.3 $\pm$ 0.0   &  0.4 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.7 $\pm$ 0.0  \\
1018 >             WZ   &  0.1 $\pm$ 0.0   &  0.1 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.1 $\pm$ 0.0  \\
1019           \zjets   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0  \\
1020           \ttbar   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0  \\
296             WW   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0  \\
1021       single top   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0  \\
1022 +             WW   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0   &  0.0 $\pm$ 0.0  \\
1023   \hline
1024 <    total SM MC   &  6.7 $\pm$ 0.0   & 10.1 $\pm$ 0.1   &  0.5 $\pm$ 0.0   & 17.3 $\pm$ 0.1  \\
1024 >      tot SM MC   & 26.1 $\pm$ 0.1   & 36.1 $\pm$ 0.1   &  1.8 $\pm$ 0.0   & 63.9 $\pm$ 0.2  \\
1025   \hline
1026 <           data   &             13   &             16   &              0   &             29  \\
1026 >           data   &             24   &             36   &              0   &             60  \\
1027   \hline
303
1028   \hline
1029   \end{tabular}
1030   \end{center}
# Line 308 | Line 1032 | Based on this we apply an uncertainty of
1032  
1033   \begin{figure}[tbh]
1034   \begin{center}
1035 < \includegraphics[width=1\linewidth]{plots/ZZ.pdf}
1035 > \includegraphics[width=1\linewidth]{plots/ZZ_eemm_92fb.pdf}
1036   \caption{\label{fig:zz}\protect
1037 < Data vs. MC comparisons for the $ZZ$ selection discussed in the text for \lumi.
1038 < The number of jets, missing transverse energy, and $Z$ boson transverse momentum are displayed.
1037 > Data vs. MC comparisons for the ZZ selection discussed in the text for \lumi.
1038 > The number of jets, missing transverse energy, and Z boson transverse momentum are displayed.
1039   }
1040   \end{center}
1041   \end{figure}
# Line 319 | Line 1043 | The number of jets, missing transverse e
1043  
1044  
1045  
1046 < \subsection{Estimating the Rare SM Backgrounds with MC}
1047 < \label{sec:bkg_raresm}
1046 > %\subsection{Estimating the Rare SM Backgrounds with MC}
1047 > %\label{sec:bkg_raresm}
1048  
1049 < {\bf TODO: list samples, yields in preselection region, and \MET distribution}
1049 > %{\bf TODO: list samples, yields in preselection region, and show \MET\ distribution}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines