ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/ZMet2012/bkg.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/ZMet2012/bkg.tex (file contents):
Revision 1.18 by benhoob, Fri Jan 25 15:01:01 2013 UTC vs.
Revision 1.19 by benhoob, Fri Jan 25 15:37:50 2013 UTC

# Line 78 | Line 78 | Thus we calculate the quantity:
78  
79   \begin{equation}
80   R_{\mu e} = \sqrt{\frac{N_{\mu\mu}^{\rm{offline}}}{N_{ee}^{\rm{offline}}}} = \sqrt{\frac{N_{\mu\mu}^{\rm{trig}}/\epsilon_{\mu\mu}^{\rm{trig}}}{N_{ee}^{\rm{trig}}/\epsilon_{ee}^{\rm{trig}}}}
81 < = \sqrt{\frac{304953/0.88}{239661/0.95}} = 1.17\pm0.07.
81 > = \sqrt{\frac{234132/0.86}{185555/0.95}} = 1.18\pm0.07.
82   \end{equation}
83  
84   Here we have used the Z$\to\mu\mu$ and Z$\to$ee yields from Table~\ref{table:zyields_2j} and the trigger efficiencies quoted in Sec.~\ref{sec:datasets}.
# Line 87 | Line 87 | The predicted yields in the ee and $\mu\
87  
88   \begin{itemize}
89   \item $N_{ee}^{\rm{predicted}}    = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{ee}^{\rm{trig}}} {2 R_{\mu e}}
90 < = \frac{N_{e\mu}^{\rm{trig}}}{0.92}\frac{0.95}{2\times1.17} = (0.44\pm0.05) \times N_{e\mu}^{\rm{trig}}$ ,
90 > = \frac{N_{e\mu}^{\rm{trig}}}{0.93}\frac{0.95}{2\times1.18} = (0.43\pm0.05) \times N_{e\mu}^{\rm{trig}}$ ,
91   \item $N_{\mu\mu}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{\mu\mu}^{\rm{trig}} R_{\mu e}}  {2}
92 < = \frac {N_{e\mu}^{\rm{trig}}} {0.95} \frac {0.88 \times 1.17}{2} = (0.54\pm0.07) \times N_{e\mu}^{\rm{trig}}$,
92 > = \frac {N_{e\mu}^{\rm{trig}}} {0.95} \frac {0.86 \times 1.18}{2} = (0.53\pm0.07) \times N_{e\mu}^{\rm{trig}}$,
93   \end{itemize}
94  
95   and the predicted yield in the combined ee and $\mu\mu$ channel is simply the sum of these two predictions:
96  
97   \begin{itemize}
98 < \item $N_{ee+\mu\mu}^{\rm{predicted}} = (0.98\pm0.06)\times N_{e\mu}^{\rm{trig}}$.
98 > \item $N_{ee+\mu\mu}^{\rm{predicted}} = (0.97\pm0.06)\times N_{e\mu}^{\rm{trig}}$.
99   \end{itemize}
100  
101   Note that the relative uncertainty in the combined ee and $\mu\mu$ prediction is smaller than those for the individual ee and $\mu\mu$ predictions
# Line 104 | Line 104 | because the uncertainty in $R_{\mu e}$ c
104   To improve the statistical precision of the FS background estimate, we remove the requirement that the e$\mu$ lepton pair falls in the Z mass window.
105   Instead we scale the e$\mu$ yield by $K$, the efficiency for e$\mu$ events to satisfy the Z mass requirement, extracted from simulation. In Fig.~\ref{fig:K_incl}
106   we display the value of $K$ in data and simulation, for a variety of \MET\ requirements, for the inclusive analysis.
107 < Based on this we chose $K=0.14\pm0.02$ for the lower \MET\ regions, $K=0.14\pm0.04$ for the \MET\ $>$ 200 GeV region,and $K=0.14\pm0.09$ for \MET\ $>$ 300 GeV,
107 > Based on this we chose $K=0.14\pm0.02$ for the lower \MET\ regions, $K=0.14\pm0.04$ for the \MET\ $>$ 200 GeV region, and $K=0.14\pm0.08$ for \MET\ $>$ 300 GeV,
108   where the larger uncertainties reflect the reduced statistical precision at large \MET.
109   The corresponding plot for the targeted analysis, including the b-veto, is displayed in Fig.~\ref{fig:K_targeted}.
110 < Based on this we chose $K=0.13\pm0.02$
111 < for all \MET\ regions up to  \MET\ $>$ 150 GeV. For the \MET\ $>$ 200 GeV region we choose $K=0.13\pm0.05$, due to the reduced  statistical precision.
110 > Based on this we chose $K=0.13\pm0.02$ for all \MET\ regions up to  \MET\ $>$ 100 GeV.
111 > For the \MET\ $>$ 150 GeV region we choose $K=0.13\pm0.03$
112 > and for the \MET\ $>$ 200 GeV region we choose $K=0.13\pm0.05$,
113 > due to the reduced  statistical precision.
114  
115   \begin{figure}[!ht]
116   \begin{center}
# Line 119 | Line 121 | for all \MET\ regions up to  \MET\ $>$ 1
121   \caption{\label{fig:K_incl}
122   The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
123   exclusive \MET\ intervals (right) for the inclusive analysis.
124 + Based on this we chose $K=0.14\pm0.02$ for the lower \MET\ regions, $K=0.14\pm0.04$ for the \MET\ $>$ 200 GeV region, and $K=0.14\pm0.08$ for \MET\ $>$ 300 GeV.
125   }
126  
127   \begin{comment}
# Line 332 | Line 335 | K     : 0.06 +/- 0.023
335   The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and
336   exclusive \MET\ intervals (right) for the targeted analysis, including the b-veto.
337   Based on this we chose $K=0.13\pm0.02$ for the \MET\ regions up to \MET\ $>$ 100 GeV.
338 < For higher \MET\ regions we chose $K=0.13\pm0.07$.
338 > For \MET\ $>$ 150 we choose $K=0.13\pm0.03$, for \MET\ $>$ 200 GeV we choose $K=0.13\pm0.05$.
339   %{\bf FIXME plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics}
340   \label{fig:K_targeted}
341   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines