1 |
< |
\clearpage |
1 |
> |
%\clearpage |
2 |
|
\section{Background Estimation Techniques} |
3 |
|
\label{sec:bkg} |
4 |
|
|
5 |
|
In this section we describe the techniques used to estimate the SM backgrounds in our signal regions defined by requirements of large \MET. |
6 |
< |
The SM backgrounds fall into 3 categories: |
6 |
> |
The SM backgrounds fall into three categories: |
7 |
|
|
8 |
|
\begin{itemize} |
9 |
< |
\item \zjets: this is the dominant background after performing the preselection. The \MET\ in \zjets\ events is estimated with the |
9 |
> |
\item \zjets: this is the dominant background after the preselection. The \MET\ in \zjets\ events is estimated with the |
10 |
|
``\MET\ templates'' technique described in Sec.~\ref{sec:bkg_zjets}; |
11 |
|
\item Flavor-symmetric (FS) backgrounds: this category includes processes which produces 2 leptons of uncorrelated flavor. It is dominated |
12 |
|
by \ttbar\ but also contains Z$\to\tau\tau$, WW, and single top processes. This is the dominant contribution in the signal regions, and it |
13 |
< |
is estimated using a data control sample of e$\mu$ events; |
13 |
> |
is estimated using a data control sample of e$\mu$ events as described in Sec.~\ref{sec:bkg_fs}; |
14 |
|
\item WZ and ZZ backgrounds: this background is estimated from MC, after validating the MC modeling of these processes using data control |
15 |
< |
samples with jets and exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample). |
16 |
< |
\item Rare SM backgrounds: this background contains rare processes such as $t\bar{t}$V and triple vector boson processes VVV (V=W,Z). |
17 |
< |
This background is estimated from MC. {\bf TODO: add rare MC} |
15 |
> |
samples with jets and exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample) as described in Sec.~\ref{sec:bkg_vz}; |
16 |
> |
%\item Rare SM backgrounds: this background contains rare processes such as $t\bar{t}$V and triple vector boson processes VVV (V=W,Z). |
17 |
> |
%This background is estimated from MC as described in Sec.~\ref{sec:bkg_raresm}. {\bf FIXME: add rare MC} |
18 |
|
\end{itemize} |
19 |
|
|
20 |
|
\subsection{Estimating the \zjets\ Background with \MET\ Templates} |
21 |
|
\label{sec:bkg_zjets} |
22 |
|
|
23 |
< |
The premise of this data driven technique is that \MET in \zjets\ events |
23 |
> |
The premise of this data driven technique is that \MET\ in \zjets\ events |
24 |
|
is produced by the hadronic recoil system and {\it not} by the leptons making up the Z. |
25 |
|
Therefore, the basic idea of the \MET\ template method is to measure the \MET\ distribution in |
26 |
|
a control sample which has no true MET and the same general attributes regarding |
39 |
|
|
40 |
|
To account for kinematic differences between the hadronic systems in the control vs. signal |
41 |
|
samples, we measure the \MET\ distributions in the \gjets\ sample in bins of the number of jets |
42 |
< |
and the scalar sum of jet transverse energies (\Ht). These \MET distributions are normalized to unit area to form ``MET templates''. |
43 |
< |
The prediction of the MET in each \Z event is the template which corresponds to the \njets\ and |
44 |
< |
\Ht in the \zjets\ event. The prediction for the \Z sample is simply the sum of all such templates. |
45 |
< |
These templates are displayed in App.~\ref{app:templates}. |
46 |
< |
|
47 |
< |
While there is in principle a small contribution from backgrounds other than \zjets\ in the preselection regions, |
48 |
< |
this contribution is only $\approx$3\% ($\approx$2\%) of the total sample in the inclusive search (targeted search), |
49 |
< |
as shown in Table~\ref{table:zyields_2j} (Table~\ref{table:zyields_2j_targeted}, and is therefore negligible compared to the total |
50 |
< |
background uncertainty. |
42 |
> |
and the scalar sum of jet transverse energies (\Ht). These \MET\ templates are extracted separately from the 5 single photon |
43 |
> |
triggers with thresholds 22, 36, 50, 75, and 90 GeV, so that the templates are effectively binned in photon \pt. |
44 |
> |
All \MET distributions are normalized to unit area to form ``MET templates''. |
45 |
> |
The prediction of the MET in each \Z event is the template which corresponds to the \njets, |
46 |
> |
\Ht, and Z \pt in the \zjets\ event. The prediction for the \Z sample is simply the sum of all such templates. |
47 |
> |
All templates are displayed in App.~\ref{app:templates}. |
48 |
> |
|
49 |
> |
After preselection, there is a small contribution from backgrounds other than \zjets. To correct for this, the \MET\ templates |
50 |
> |
prediction is scaled such that the total background prediction matches the observed data yield in the \MET\ 0--60 GeV region. |
51 |
> |
Because the non-\zjets impurity in the low \MET\ region after preselection is very small, this results in |
52 |
> |
scaling factors of 0.985 (0.995) for the inclusive (targeted) search. |
53 |
|
|
54 |
|
\subsection{Estimating the Flavor-Symmetric Background with e$\mu$ Events} |
55 |
|
\label{sec:bkg_fs} |
71 |
|
\item $N_{e\mu}^{\rm{trig}} = \epsilon_{e\mu}^{\rm{trig}}N_{e\mu}^{\rm{offline}}$. |
72 |
|
\end{itemize} |
73 |
|
|
74 |
< |
Here $N_{\ell\ell}^{\rm{trig}}$ denotes the number of selected events in the $\ell\ell$ channel passing the offline and trigger selection |
75 |
< |
(in other words, the number of recorded events), $\epsilon_{\ell\ell}^{\rm{trig}}$ is the trigger efficiency, and |
76 |
< |
$N_{e\mu}^{\rm{offline}}$ is the number of events that would have passed the offline selection if the trigger had an efficiency of 100\%. |
74 |
> |
Here $N_{\ell\ell}^{\rm{trig}}$ denotes the number of selected Z events in the $\ell\ell$ channel passing the offline and trigger selection |
75 |
> |
(in other words, the number of recorded and selected events), $\epsilon_{\ell\ell}^{\rm{trig}}$ is the trigger efficiency, and |
76 |
> |
$N_{\ell\ell}^{\rm{offline}}$ is the number of events that would have passed the offline selection if the trigger had an efficiency of 100\%. |
77 |
|
Thus we calculate the quantity: |
78 |
|
|
79 |
|
\begin{equation} |
80 |
|
R_{\mu e} = \sqrt{\frac{N_{\mu\mu}^{\rm{offline}}}{N_{ee}^{\rm{offline}}}} = \sqrt{\frac{N_{\mu\mu}^{\rm{trig}}/\epsilon_{\mu\mu}^{\rm{trig}}}{N_{ee}^{\rm{trig}}/\epsilon_{ee}^{\rm{trig}}}} |
81 |
< |
= \sqrt{\frac{80367/0.88}{54426/0.95}} = 1.26\pm0.07. |
81 |
> |
= \sqrt{\frac{234132/0.86}{185555/0.95}} = 1.18\pm0.07. |
82 |
|
\end{equation} |
83 |
|
|
84 |
|
Here we have used the Z$\to\mu\mu$ and Z$\to$ee yields from Table~\ref{table:zyields_2j} and the trigger efficiencies quoted in Sec.~\ref{sec:datasets}. |
85 |
< |
The indicated uncertainty is due to the 3\% uncertainties in the trigger efficiencies. {\bf TODO: check for variation w.r.t. lepton \pt}. |
85 |
> |
The indicated uncertainty is due to the 3\% uncertainties in the trigger efficiencies. %{\bf FIXME: check for variation w.r.t. lepton \pt}. |
86 |
|
The predicted yields in the ee and $\mu\mu$ final states are calculated from the observed e$\mu$ yield as |
87 |
|
|
88 |
|
\begin{itemize} |
89 |
|
\item $N_{ee}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{ee}^{\rm{trig}}} {2 R_{\mu e}} |
90 |
< |
= \frac{N_{e\mu}^{\rm{trig}}}{0.92}\frac{0.95}{2\times1.26} = (0.41\pm0.04) \times N_{e\mu}^{\rm{trig}}$ , |
90 |
> |
= \frac{N_{e\mu}^{\rm{trig}}}{0.93}\frac{0.95}{2\times1.18} = (0.43\pm0.05) \times N_{e\mu}^{\rm{trig}}$ , |
91 |
|
\item $N_{\mu\mu}^{\rm{predicted}} = \frac {N_{e\mu}^{\rm{trig}}} {\epsilon_{e\mu}^{\rm{trig}}} \frac {\epsilon_{\mu\mu}^{\rm{trig}} R_{\mu e}} {2} |
92 |
< |
= \frac {N_{e\mu}^{\rm{trig}}} {0.95} \frac {0.88 \times 1.26}{2} = (0.58\pm0.06) \times N_{e\mu}^{\rm{trig}}$, |
92 |
> |
= \frac {N_{e\mu}^{\rm{trig}}} {0.95} \frac {0.86 \times 1.18}{2} = (0.53\pm0.07) \times N_{e\mu}^{\rm{trig}}$, |
93 |
|
\end{itemize} |
94 |
|
|
95 |
|
and the predicted yield in the combined ee and $\mu\mu$ channel is simply the sum of these two predictions: |
96 |
|
|
97 |
|
\begin{itemize} |
98 |
< |
\item $N_{ee+\mu\mu}^{\rm{predicted}} = (0.99\pm0.06)\times N_{e\mu}^{\rm{trig}}$. |
98 |
> |
\item $N_{ee+\mu\mu}^{\rm{predicted}} = (0.97\pm0.06)\times N_{e\mu}^{\rm{trig}}$. |
99 |
|
\end{itemize} |
100 |
|
|
101 |
< |
Note that the relative uncertainty in the combined ee and $\mu\mu$ prediction is smaller than the those for the individual ee and $\mu\mu$ predictions |
102 |
< |
because the uncertainty in $R_{\mu e}$ cancels when summing the ee and $\mu\mu$ predictions. {\bf N.B. these uncertainties are preliminary}. |
101 |
> |
Note that the relative uncertainty in the combined ee and $\mu\mu$ prediction is smaller than those for the individual ee and $\mu\mu$ predictions |
102 |
> |
because the uncertainty in $R_{\mu e}$ cancels when summing the ee and $\mu\mu$ predictions. %{\bf N.B. these uncertainties are preliminary}. |
103 |
|
|
104 |
|
To improve the statistical precision of the FS background estimate, we remove the requirement that the e$\mu$ lepton pair falls in the Z mass window. |
105 |
|
Instead we scale the e$\mu$ yield by $K$, the efficiency for e$\mu$ events to satisfy the Z mass requirement, extracted from simulation. In Fig.~\ref{fig:K_incl} |
106 |
< |
we display the value of $K$ in data and simulation, for a variety of \MET\ requirements, for the inclusive analysis. Based on this we chose $K=0.14\pm0.02$ |
107 |
< |
for all \MET\ regions except for \MET\ $>$ 300 GeV. For this region the statistical precision is reduced, so that we inflate the uncertainty and chose $K=0.14\pm0.08$. |
106 |
> |
we display the value of $K$ in data and simulation, for a variety of \MET\ requirements, for the inclusive analysis. |
107 |
> |
Based on this we chose $K=0.14\pm0.02$ for the lower \MET\ regions, $K=0.14\pm0.04$ for the \MET\ $>$ 200 GeV region, and $K=0.14\pm0.08$ for \MET\ $>$ 300 GeV, |
108 |
> |
where the larger uncertainties reflect the reduced statistical precision at large \MET. |
109 |
|
The corresponding plot for the targeted analysis, including the b-veto, is displayed in Fig.~\ref{fig:K_targeted}. |
110 |
< |
Based on this we chose $K=0.13\pm0.02$ |
111 |
< |
for all \MET\ regions up to \MET\ $>$ 100 GeV. For higher \MET\ regions (\MET\ $>$ 150 GeV and above) the statistical precision is reduced, |
112 |
< |
so that we inflate the uncertainty and chose $K=0.13\pm0.07$. |
110 |
> |
Based on this we chose $K=0.13\pm0.02$ for all \MET\ regions up to \MET\ $>$ 100 GeV. |
111 |
> |
For the \MET\ $>$ 150 GeV region we choose $K=0.13\pm0.03$ |
112 |
> |
and for the \MET\ $>$ 200 GeV region we choose $K=0.13\pm0.05$, |
113 |
> |
due to the reduced statistical precision. |
114 |
|
|
115 |
|
\begin{figure}[!ht] |
116 |
|
\begin{center} |
117 |
|
\begin{tabular}{cc} |
118 |
< |
\includegraphics[width=0.4\textwidth]{plots/K_incl.pdf} & |
119 |
< |
\includegraphics[width=0.4\textwidth]{plots/K_excl.pdf} \\ |
118 |
> |
\includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_19p5fb.pdf} & |
119 |
> |
\includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_19p5fb.pdf} \\ |
120 |
|
\end{tabular} |
121 |
< |
\caption{ |
121 |
> |
\caption{\label{fig:K_incl} |
122 |
|
The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and |
123 |
< |
exclusive \MET\ intervals (right) for the inclusive analysis. Based on this we chose $K=0.14\pm0.02$ for all \MET\ regions except \MET\ $>$ 300 GeV, |
124 |
< |
where we chose $K=0.14\pm0.08$. |
121 |
< |
{\bf plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics} |
122 |
< |
\label{fig:K_incl} |
123 |
> |
exclusive \MET\ intervals (right) for the inclusive analysis. |
124 |
> |
Based on this we chose $K=0.14\pm0.02$ for the lower \MET\ regions, $K=0.14\pm0.04$ for the \MET\ $>$ 200 GeV region, and $K=0.14\pm0.08$ for \MET\ $>$ 300 GeV. |
125 |
|
} |
126 |
+ |
|
127 |
+ |
\begin{comment} |
128 |
+ |
|
129 |
+ |
Using selection : ((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20) |
130 |
+ |
Using weight : vtxweight * weight |
131 |
+ |
OF entries (total) 43808 |
132 |
+ |
OF entries (Z mass) 6021 |
133 |
+ |
K 0.137441 |
134 |
+ |
Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1 |
135 |
+ |
|
136 |
+ |
-------------------------------------------------------------- |
137 |
+ |
pfmet>0 |
138 |
+ |
|
139 |
+ |
data : |
140 |
+ |
total : 43808 |
141 |
+ |
Z : 6021 |
142 |
+ |
K : 0.14 +/- 0.002 |
143 |
+ |
|
144 |
+ |
MC : |
145 |
+ |
total : 2378.42 |
146 |
+ |
Z : 344.559 |
147 |
+ |
K : 0.14 +/- 0.002 |
148 |
+ |
-------------------------------------------------------------- |
149 |
+ |
|
150 |
+ |
|
151 |
+ |
-------------------------------------------------------------- |
152 |
+ |
pfmet>30 |
153 |
+ |
|
154 |
+ |
data : |
155 |
+ |
total : 36603 |
156 |
+ |
Z : 5084 |
157 |
+ |
K : 0.14 +/- 0.002 |
158 |
+ |
|
159 |
+ |
MC : |
160 |
+ |
total : 2012.6 |
161 |
+ |
Z : 297.342 |
162 |
+ |
K : 0.15 +/- 0.002 |
163 |
+ |
-------------------------------------------------------------- |
164 |
+ |
|
165 |
+ |
|
166 |
+ |
-------------------------------------------------------------- |
167 |
+ |
pfmet>60 |
168 |
+ |
|
169 |
+ |
data : |
170 |
+ |
total : 22692 |
171 |
+ |
Z : 3209 |
172 |
+ |
K : 0.14 +/- 0.002 |
173 |
+ |
|
174 |
+ |
MC : |
175 |
+ |
total : 1285.07 |
176 |
+ |
Z : 189.292 |
177 |
+ |
K : 0.15 +/- 0.002 |
178 |
+ |
-------------------------------------------------------------- |
179 |
+ |
|
180 |
+ |
|
181 |
+ |
-------------------------------------------------------------- |
182 |
+ |
pfmet>100 |
183 |
+ |
|
184 |
+ |
data : |
185 |
+ |
total : 7862 |
186 |
+ |
Z : 1093 |
187 |
+ |
K : 0.14 +/- 0.004 |
188 |
+ |
|
189 |
+ |
MC : |
190 |
+ |
total : 470.932 |
191 |
+ |
Z : 68.9364 |
192 |
+ |
K : 0.15 +/- 0.003 |
193 |
+ |
-------------------------------------------------------------- |
194 |
+ |
|
195 |
+ |
|
196 |
+ |
-------------------------------------------------------------- |
197 |
+ |
pfmet>200 |
198 |
+ |
|
199 |
+ |
data : |
200 |
+ |
total : 424 |
201 |
+ |
Z : 50 |
202 |
+ |
K : 0.12 +/- 0.017 |
203 |
+ |
|
204 |
+ |
MC : |
205 |
+ |
total : 28.2757 |
206 |
+ |
Z : 2.87288 |
207 |
+ |
K : 0.10 +/- 0.011 |
208 |
+ |
-------------------------------------------------------------- |
209 |
+ |
|
210 |
+ |
|
211 |
+ |
-------------------------------------------------------------- |
212 |
+ |
pfmet>300 |
213 |
+ |
|
214 |
+ |
data : |
215 |
+ |
total : 52 |
216 |
+ |
Z : 5 |
217 |
+ |
K : 0.10 +/- 0.043 |
218 |
+ |
|
219 |
+ |
MC : |
220 |
+ |
total : 3.77378 |
221 |
+ |
Z : 0.235632 |
222 |
+ |
K : 0.06 +/- 0.023 |
223 |
+ |
-------------------------------------------------------------- |
224 |
+ |
|
225 |
+ |
Using selection : ((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20) |
226 |
+ |
Using weight : vtxweight * weight |
227 |
+ |
OF entries (total) 43808 |
228 |
+ |
OF entries (Z mass) 6021 |
229 |
+ |
K 0.137441 |
230 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak). |
231 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak). |
232 |
+ |
|
233 |
+ |
-------------------------------------------------------------- |
234 |
+ |
pfmet>0 && pfmet<30 |
235 |
+ |
|
236 |
+ |
data : |
237 |
+ |
total : 7205 |
238 |
+ |
Z : 937 |
239 |
+ |
K : 0.13 +/- 0.004 |
240 |
+ |
|
241 |
+ |
MC : |
242 |
+ |
total : 366.332 |
243 |
+ |
Z : 47.2379 |
244 |
+ |
K : 0.13 +/- 0.004 |
245 |
+ |
-------------------------------------------------------------- |
246 |
+ |
|
247 |
+ |
|
248 |
+ |
-------------------------------------------------------------- |
249 |
+ |
pfmet>30 && pfmet<60 |
250 |
+ |
|
251 |
+ |
data : |
252 |
+ |
total : 13911 |
253 |
+ |
Z : 1875 |
254 |
+ |
K : 0.13 +/- 0.003 |
255 |
+ |
|
256 |
+ |
MC : |
257 |
+ |
total : 727.951 |
258 |
+ |
Z : 108.068 |
259 |
+ |
K : 0.15 +/- 0.003 |
260 |
+ |
-------------------------------------------------------------- |
261 |
+ |
|
262 |
+ |
|
263 |
+ |
-------------------------------------------------------------- |
264 |
+ |
pfmet>60 && pfmet<100 |
265 |
+ |
|
266 |
+ |
data : |
267 |
+ |
total : 14830 |
268 |
+ |
Z : 2116 |
269 |
+ |
K : 0.14 +/- 0.003 |
270 |
+ |
|
271 |
+ |
MC : |
272 |
+ |
total : 814.344 |
273 |
+ |
Z : 120.355 |
274 |
+ |
K : 0.15 +/- 0.003 |
275 |
+ |
-------------------------------------------------------------- |
276 |
+ |
|
277 |
+ |
|
278 |
+ |
-------------------------------------------------------------- |
279 |
+ |
pfmet>100 && pfmet<200 |
280 |
+ |
|
281 |
+ |
data : |
282 |
+ |
total : 7438 |
283 |
+ |
Z : 1043 |
284 |
+ |
K : 0.14 +/- 0.004 |
285 |
+ |
|
286 |
+ |
MC : |
287 |
+ |
total : 442.657 |
288 |
+ |
Z : 66.0631 |
289 |
+ |
K : 0.15 +/- 0.004 |
290 |
+ |
-------------------------------------------------------------- |
291 |
+ |
|
292 |
+ |
|
293 |
+ |
-------------------------------------------------------------- |
294 |
+ |
pfmet>200 && pfmet<300 |
295 |
+ |
|
296 |
+ |
data : |
297 |
+ |
total : 372 |
298 |
+ |
Z : 45 |
299 |
+ |
K : 0.12 +/- 0.018 |
300 |
+ |
|
301 |
+ |
MC : |
302 |
+ |
total : 24.502 |
303 |
+ |
Z : 2.63725 |
304 |
+ |
K : 0.11 +/- 0.012 |
305 |
+ |
-------------------------------------------------------------- |
306 |
+ |
|
307 |
+ |
|
308 |
+ |
-------------------------------------------------------------- |
309 |
+ |
pfmet>300 |
310 |
+ |
|
311 |
+ |
data : |
312 |
+ |
total : 52 |
313 |
+ |
Z : 5 |
314 |
+ |
K : 0.10 +/- 0.043 |
315 |
+ |
|
316 |
+ |
MC : |
317 |
+ |
total : 3.77378 |
318 |
+ |
Z : 0.235632 |
319 |
+ |
K : 0.06 +/- 0.023 |
320 |
+ |
-------------------------------------------------------------- |
321 |
+ |
|
322 |
+ |
|
323 |
+ |
\end{comment} |
324 |
+ |
|
325 |
|
\end{center} |
326 |
|
\end{figure} |
327 |
|
|
328 |
|
\begin{figure}[!hb] |
329 |
|
\begin{center} |
330 |
|
\begin{tabular}{cc} |
331 |
< |
\includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_bveto.pdf} & |
332 |
< |
\includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_bveto.pdf} \\ |
331 |
> |
\includegraphics[width=0.4\textwidth]{plots/extractK_inclusive_bveto_19p5fb.pdf} & |
332 |
> |
\includegraphics[width=0.4\textwidth]{plots/extractK_exclusive_bveto_19p5fb.pdf} \\ |
333 |
|
\end{tabular} |
334 |
|
\caption{ |
335 |
|
The efficiency for e$\mu$ events to satisfy the dilepton mass requirement, $K$, in data and simulation for inclusive \MET\ intervals (left) and |
336 |
|
exclusive \MET\ intervals (right) for the targeted analysis, including the b-veto. |
337 |
|
Based on this we chose $K=0.13\pm0.02$ for the \MET\ regions up to \MET\ $>$ 100 GeV. |
338 |
< |
For higher \MET\ regions we chose $K=0.13\pm0.07$. |
339 |
< |
{\bf plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics} |
338 |
> |
For \MET\ $>$ 150 we choose $K=0.13\pm0.03$, for \MET\ $>$ 200 GeV we choose $K=0.13\pm0.05$. |
339 |
> |
%{\bf FIXME plots made with 10\% of \zjets\ MC statistics, to be remade with full statistics} |
340 |
|
\label{fig:K_targeted} |
341 |
|
} |
342 |
+ |
\begin{comment} |
343 |
+ |
|
344 |
+ |
Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvm==0) |
345 |
+ |
Using weight : vtxweight * weight |
346 |
+ |
OF entries (total) 11172 |
347 |
+ |
OF entries (Z mass) 1331 |
348 |
+ |
K 0.119137 |
349 |
+ |
Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1 |
350 |
+ |
|
351 |
+ |
-------------------------------------------------------------- |
352 |
+ |
pfmet>0 |
353 |
+ |
|
354 |
+ |
data : |
355 |
+ |
total : 11172 |
356 |
+ |
Z : 1331 |
357 |
+ |
K : 0.12 +/- 0.003 |
358 |
+ |
|
359 |
+ |
MC : |
360 |
+ |
total : 556.3 |
361 |
+ |
Z : 72.3357 |
362 |
+ |
K : 0.13 +/- 0.003 |
363 |
+ |
-------------------------------------------------------------- |
364 |
+ |
|
365 |
+ |
|
366 |
+ |
-------------------------------------------------------------- |
367 |
+ |
pfmet>30 |
368 |
+ |
|
369 |
+ |
data : |
370 |
+ |
total : 8811 |
371 |
+ |
Z : 1085 |
372 |
+ |
K : 0.12 +/- 0.004 |
373 |
+ |
|
374 |
+ |
MC : |
375 |
+ |
total : 447.641 |
376 |
+ |
Z : 60.0542 |
377 |
+ |
K : 0.13 +/- 0.003 |
378 |
+ |
-------------------------------------------------------------- |
379 |
+ |
|
380 |
+ |
|
381 |
+ |
-------------------------------------------------------------- |
382 |
+ |
pfmet>60 |
383 |
+ |
|
384 |
+ |
data : |
385 |
+ |
total : 5263 |
386 |
+ |
Z : 677 |
387 |
+ |
K : 0.13 +/- 0.005 |
388 |
+ |
|
389 |
+ |
MC : |
390 |
+ |
total : 285.463 |
391 |
+ |
Z : 39.2608 |
392 |
+ |
K : 0.14 +/- 0.004 |
393 |
+ |
-------------------------------------------------------------- |
394 |
+ |
|
395 |
+ |
|
396 |
+ |
-------------------------------------------------------------- |
397 |
+ |
pfmet>80 |
398 |
+ |
|
399 |
+ |
data : |
400 |
+ |
total : 3325 |
401 |
+ |
Z : 422 |
402 |
+ |
K : 0.13 +/- 0.006 |
403 |
+ |
|
404 |
+ |
MC : |
405 |
+ |
total : 183.689 |
406 |
+ |
Z : 25.7671 |
407 |
+ |
K : 0.14 +/- 0.005 |
408 |
+ |
-------------------------------------------------------------- |
409 |
+ |
|
410 |
+ |
|
411 |
+ |
-------------------------------------------------------------- |
412 |
+ |
pfmet>100 |
413 |
+ |
|
414 |
+ |
data : |
415 |
+ |
total : 1883 |
416 |
+ |
Z : 234 |
417 |
+ |
K : 0.12 +/- 0.008 |
418 |
+ |
|
419 |
+ |
MC : |
420 |
+ |
total : 111.774 |
421 |
+ |
Z : 14.7812 |
422 |
+ |
K : 0.13 +/- 0.006 |
423 |
+ |
-------------------------------------------------------------- |
424 |
+ |
|
425 |
+ |
|
426 |
+ |
-------------------------------------------------------------- |
427 |
+ |
pfmet>150 |
428 |
+ |
|
429 |
+ |
data : |
430 |
+ |
total : 451 |
431 |
+ |
Z : 46 |
432 |
+ |
K : 0.10 +/- 0.015 |
433 |
+ |
|
434 |
+ |
MC : |
435 |
+ |
total : 29.4551 |
436 |
+ |
Z : 3.57377 |
437 |
+ |
K : 0.12 +/- 0.012 |
438 |
+ |
-------------------------------------------------------------- |
439 |
+ |
|
440 |
+ |
|
441 |
+ |
-------------------------------------------------------------- |
442 |
+ |
pfmet>200 |
443 |
+ |
|
444 |
+ |
data : |
445 |
+ |
total : 138 |
446 |
+ |
Z : 15 |
447 |
+ |
K : 0.11 +/- 0.028 |
448 |
+ |
|
449 |
+ |
MC : |
450 |
+ |
total : 8.60692 |
451 |
+ |
Z : 0.775129 |
452 |
+ |
K : 0.09 +/- 0.017 |
453 |
+ |
-------------------------------------------------------------- |
454 |
+ |
|
455 |
+ |
Using selection : (((((leptype==2)&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(isdata==0 || (run<197556 || run>198913)))&&(njets>=2))&&(lep1.pt()>20 && lep2.pt()>20))&&(nbcsvm==0) |
456 |
+ |
Using weight : vtxweight * weight |
457 |
+ |
OF entries (total) 11172 |
458 |
+ |
OF entries (Z mass) 1331 |
459 |
+ |
K 0.119137 |
460 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: htot (Potential memory leak). |
461 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: hZ (Potential memory leak). |
462 |
+ |
|
463 |
+ |
-------------------------------------------------------------- |
464 |
+ |
pfmet>0 && pfmet<30 |
465 |
+ |
|
466 |
+ |
data : |
467 |
+ |
total : 2361 |
468 |
+ |
Z : 246 |
469 |
+ |
K : 0.10 +/- 0.007 |
470 |
+ |
|
471 |
+ |
MC : |
472 |
+ |
total : 108.378 |
473 |
+ |
Z : 12.2795 |
474 |
+ |
K : 0.11 +/- 0.008 |
475 |
+ |
-------------------------------------------------------------- |
476 |
+ |
|
477 |
+ |
|
478 |
+ |
-------------------------------------------------------------- |
479 |
+ |
pfmet>30 && pfmet<60 |
480 |
+ |
|
481 |
+ |
data : |
482 |
+ |
total : 3548 |
483 |
+ |
Z : 408 |
484 |
+ |
K : 0.11 +/- 0.006 |
485 |
+ |
|
486 |
+ |
MC : |
487 |
+ |
total : 162.246 |
488 |
+ |
Z : 20.7935 |
489 |
+ |
K : 0.13 +/- 0.006 |
490 |
+ |
-------------------------------------------------------------- |
491 |
+ |
|
492 |
+ |
|
493 |
+ |
-------------------------------------------------------------- |
494 |
+ |
pfmet>60 && pfmet<80 |
495 |
+ |
|
496 |
+ |
data : |
497 |
+ |
total : 1938 |
498 |
+ |
Z : 255 |
499 |
+ |
K : 0.13 +/- 0.008 |
500 |
+ |
|
501 |
+ |
MC : |
502 |
+ |
total : 101.801 |
503 |
+ |
Z : 13.4941 |
504 |
+ |
K : 0.13 +/- 0.007 |
505 |
+ |
-------------------------------------------------------------- |
506 |
+ |
|
507 |
+ |
|
508 |
+ |
-------------------------------------------------------------- |
509 |
+ |
pfmet>80 && pfmet<100 |
510 |
+ |
|
511 |
+ |
data : |
512 |
+ |
total : 1442 |
513 |
+ |
Z : 188 |
514 |
+ |
K : 0.13 +/- 0.010 |
515 |
+ |
|
516 |
+ |
MC : |
517 |
+ |
total : 71.9073 |
518 |
+ |
Z : 10.986 |
519 |
+ |
K : 0.15 +/- 0.009 |
520 |
+ |
-------------------------------------------------------------- |
521 |
+ |
|
522 |
+ |
|
523 |
+ |
-------------------------------------------------------------- |
524 |
+ |
pfmet>100 && pfmet<150 |
525 |
+ |
|
526 |
+ |
data : |
527 |
+ |
total : 1432 |
528 |
+ |
Z : 188 |
529 |
+ |
K : 0.13 +/- 0.010 |
530 |
+ |
|
531 |
+ |
MC : |
532 |
+ |
total : 82.3186 |
533 |
+ |
Z : 11.2075 |
534 |
+ |
K : 0.14 +/- 0.008 |
535 |
+ |
-------------------------------------------------------------- |
536 |
+ |
|
537 |
+ |
|
538 |
+ |
-------------------------------------------------------------- |
539 |
+ |
pfmet>150 && pfmet<200 |
540 |
+ |
|
541 |
+ |
data : |
542 |
+ |
total : 313 |
543 |
+ |
Z : 31 |
544 |
+ |
K : 0.10 +/- 0.018 |
545 |
+ |
|
546 |
+ |
MC : |
547 |
+ |
total : 20.8482 |
548 |
+ |
Z : 2.79864 |
549 |
+ |
K : 0.13 +/- 0.015 |
550 |
+ |
-------------------------------------------------------------- |
551 |
+ |
|
552 |
+ |
|
553 |
+ |
-------------------------------------------------------------- |
554 |
+ |
pfmet>200 |
555 |
+ |
|
556 |
+ |
data : |
557 |
+ |
total : 138 |
558 |
+ |
Z : 15 |
559 |
+ |
K : 0.11 +/- 0.028 |
560 |
+ |
|
561 |
+ |
MC : |
562 |
+ |
total : 8.60692 |
563 |
+ |
Z : 0.775129 |
564 |
+ |
K : 0.09 +/- 0.017 |
565 |
+ |
-------------------------------------------------------------- |
566 |
+ |
|
567 |
+ |
|
568 |
+ |
|
569 |
+ |
|
570 |
+ |
\end{comment} |
571 |
+ |
|
572 |
|
\end{center} |
573 |
|
\end{figure} |
574 |
|
|
575 |
+ |
|
576 |
|
\clearpage |
577 |
|
|
578 |
|
\subsection{Estimating the WZ and ZZ Background with MC} |
581 |
|
Backgrounds from W($\ell\nu$)Z($\ell\ell$) where the W lepton is not identified or is outside acceptance, and Z($\nu\nu$)Z($\ell\ell$), |
582 |
|
are estimated from simulation. The MC modeling of these processes is validated by comparing the MC predictions with data in control samples |
583 |
|
with exactly 3 leptons (WZ control sample) and exactly 4 leptons (ZZ control sample). |
584 |
< |
The relevant WZ and ZZ MC samples are: |
585 |
< |
|
586 |
< |
\begin{itemize} |
155 |
< |
\footnotesize{ |
156 |
< |
\item \verb=/WZJetsTo3LNu_TuneZ2_8TeV-madgraph-tauola/Summer12-PU_S7_START52_V9-v2/AODSIM= ($\sigma=1.058$ pb), |
157 |
< |
\item \verb=/ZZJetsTo4L_TuneZ2star_8TeV-madgraph-tauola/Summer12-PU_S7_START52_V9-v3/AODSIM= ($\sigma=0.093$ pb), |
158 |
< |
} |
159 |
< |
\end{itemize} |
160 |
< |
The WZJetsTo2L2Q, ZZJetsTo2L2Q, and ZZJetsTo2L2Nu samples are also used in this analysis but their contribution to the 3-lepton and 4-lepton |
161 |
< |
control samples is negligible. |
584 |
> |
The critical samples are the WZJetsTo3LNu and ZZJetsTo4L, listed in Table~\ref{tab:mcsamples} |
585 |
> |
(the WZJetsTo2L2Q, ZZJetsTo2L2Q, and ZZJetsTo2L2Nu samples are also used in this analysis but their contribution to the 3-lepton and 4-lepton |
586 |
> |
control samples is negligible). |
587 |
|
|
588 |
|
\subsubsection{WZ Validation Studies} |
589 |
|
\label{sec:bkg_wz} |
593 |
|
\begin{itemize} |
594 |
|
\item Exactly 3 $p_T>20$~GeV leptons passing analysis identication and isolation requirements, |
595 |
|
\item 2 of the 3 leptons must fall in the Z window 81-101 GeV, |
596 |
< |
\item \MET $>$ 50 GeV (to suppress DY). |
596 |
> |
\item \MET $>$ 50 GeV (to suppress DY), |
597 |
> |
\item veto events with b-tagged jets. |
598 |
|
\end{itemize} |
599 |
|
|
600 |
|
The data and MC yields passing the above selection are in Table~\ref{tab:wz}. |
601 |
< |
The inclusive yields (without any jet requirements) agree within 17\%, which is approximately equal |
602 |
< |
to the uncertainty in the measured WZ cross section. A data vs. MC comparison of kinematic |
601 |
> |
The inclusive yields (without any jet requirements) in the same-flavor final states (660 observed vs. 596 $\pm$ 5.2 MC expected) |
602 |
> |
agree within 11\%, which is consistent within |
603 |
> |
the $\approx$15\% uncertainty in the theory prediction for the WZ cross section. A data vs. MC comparison of kinematic |
604 |
|
distributions (jet multiplicity, \MET, Z \pt) is given in Fig.~\ref{fig:wz}. High \MET\ |
605 |
|
values in WZ and ZZ events arise from highly boosted W or Z bosons that decay leptonically, |
606 |
|
and we therefore check that the MC does a reasonable job of reproducing the \pt distributions of the |
607 |
|
leptonically decaying \Z. While the inclusive WZ yields are in reasonable agreement, we observe |
608 |
|
an excess in data in events with at least 2 jets, corresponding to the jet multiplicity requirement |
609 |
< |
in our preselection. We observe 60 events in data while the MC predicts $34\pm5.2$~(stat)), representing an excess of 78\%, |
610 |
< |
as indicated in Table~\ref{tab:wz2j}. |
611 |
< |
We note some possible causes for this discrepancy: |
612 |
< |
|
613 |
< |
\begin{itemize} |
609 |
> |
in our preselection. We observe 124 same-flavor events in data while the MC predicts $88\pm1.5$~(stat), representing an excess of 41\%, |
610 |
> |
as indicated in Table~\ref{tab:wz2j}, and we therefore assess an uncertainty of 50\% on the WZ background. |
611 |
> |
%We note that the contributions from fake leptons and from \zjets\ with mismeasured \MET\ |
612 |
> |
%is underestimated in the MC. |
613 |
> |
%This excess will be studied further. For the time being, based on these studies we currently assess an uncertainty of 50\% on the WZ yield. |
614 |
> |
%A data vs. MC comparison of several kinematic quantities in the sample with 3 leptons and at least 2 jets can be found in App.~\ref{app:WZ}. |
615 |
|
|
188 |
– |
\item The \zjets\ contribution is under-estimated here, for 2 reasons: first, because the \zjets\ |
189 |
– |
yield passing a \MET $>$ 50 GeV requirement is under-estimated in MC and second, because the fake |
190 |
– |
rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends |
191 |
– |
on the \zjets\ yield, if the \zjets\ yield is doubled then the excess is reduced from 78\% to 55\%. |
192 |
– |
{\bf currently using 10\% of \zjets\ MC, and there is 1 event with a weight of about 5, plots and tables to be remade with full \zjets\ stats}. |
193 |
– |
|
194 |
– |
\item The \ttbar\ contribution is under-estimated here because the fake |
195 |
– |
rate is typically under-estimated in the MC. To get a rough idea for how much the excess depends |
196 |
– |
on the \ttbar\ yield, if the \ttbar\ yield is doubled then the excess is reduced from 78\% to 57\%. |
197 |
– |
|
198 |
– |
\item Currently no attempt is made to reject jets from pile-up interactions, which may be responsible |
199 |
– |
for some of this excess. To check this, we increase the jet \pt requirement to 40 GeV which |
200 |
– |
helps to suppress PU jets and observe 39 events in data vs. an MC prediction of $25\pm5.2$~(stat), |
201 |
– |
decreasing the excess from 78\% to 58\%. In the future this may be improved by explicitly |
202 |
– |
requiring the jets to be consistent with originating from the signal primary vertex. |
203 |
– |
|
204 |
– |
\end{itemize} |
616 |
|
|
206 |
– |
Based on these studies we currently assess an uncertainty of 80\% on the WZ yield. |
617 |
|
|
618 |
|
\begin{table}[htb] |
619 |
|
\begin{center} |
620 |
|
\caption{\label{tab:wz} Data and Monte Carlo yields passing the WZ preselection. } |
621 |
|
\begin{tabular}{lccccc} |
622 |
+ |
|
623 |
+ |
%Loading babies at : ../output/V00-02-13 |
624 |
+ |
%Using selection : ((((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101))&&(nbcsvm==0) |
625 |
+ |
%Using weight : weight * 19.5 * trgeff * vtxweight |
626 |
+ |
|
627 |
+ |
\hline |
628 |
+ |
\hline |
629 |
+ |
Sample & ee & $\mu\mu$ & e$\mu$ & total \\ |
630 |
|
\hline |
631 |
< |
Sample & ee & $\mu\mu$ & e$\mu$ & total \\ |
631 |
> |
WZ &244.0 $\pm$ 1.6 &301.8 $\pm$ 1.6 & 17.0 $\pm$ 0.4 &562.8 $\pm$ 2.3 \\ |
632 |
> |
ZZ & 10.2 $\pm$ 0.1 & 12.8 $\pm$ 0.1 & 0.8 $\pm$ 0.0 & 23.8 $\pm$ 0.1 \\ |
633 |
> |
\zjets & 3.3 $\pm$ 2.4 & 5.8 $\pm$ 3.4 & 0.0 $\pm$ 0.0 & 9.0 $\pm$ 4.2 \\ |
634 |
> |
\ttbar & 0.6 $\pm$ 0.6 & 4.5 $\pm$ 1.6 & 2.1 $\pm$ 1.1 & 7.3 $\pm$ 2.0 \\ |
635 |
> |
single top & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 \\ |
636 |
> |
WW & 0.0 $\pm$ 0.0 & 0.1 $\pm$ 0.1 & 0.2 $\pm$ 0.1 & 0.3 $\pm$ 0.1 \\ |
637 |
> |
ttV & 2.3 $\pm$ 0.2 & 2.6 $\pm$ 0.2 & 0.6 $\pm$ 0.1 & 5.5 $\pm$ 0.3 \\ |
638 |
> |
VVV & 3.0 $\pm$ 0.1 & 3.7 $\pm$ 0.1 & 0.6 $\pm$ 0.1 & 7.4 $\pm$ 0.2 \\ |
639 |
|
\hline |
640 |
< |
WZ & 58.9 $\pm$ 0.7 & 82.2 $\pm$ 0.8 & 4.0 $\pm$ 0.2 &145.1 $\pm$ 1.0 \\ |
216 |
< |
\ttbar & 0.6 $\pm$ 0.5 & 4.3 $\pm$ 1.5 & 3.0 $\pm$ 1.2 & 8.0 $\pm$ 2.0 \\ |
217 |
< |
\zjets & 0.4 $\pm$ 0.4 & 4.9 $\pm$ 4.9 & 0.0 $\pm$ 0.0 & 5.3 $\pm$ 4.9 \\ |
218 |
< |
ZZ & 1.4 $\pm$ 0.0 & 2.0 $\pm$ 0.0 & 0.1 $\pm$ 0.0 & 3.5 $\pm$ 0.0 \\ |
219 |
< |
WW & 0.0 $\pm$ 0.0 & 0.2 $\pm$ 0.1 & 0.2 $\pm$ 0.1 & 0.3 $\pm$ 0.1 \\ |
220 |
< |
single top & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.1 $\pm$ 0.1 \\ |
640 |
> |
total SM MC &263.4 $\pm$ 3.0 &331.8 $\pm$ 4.2 & 21.4 $\pm$ 1.2 &616.6 $\pm$ 5.2 \\ |
641 |
|
\hline |
642 |
< |
total SM MC & 61.3 $\pm$ 0.9 & 93.7 $\pm$ 5.2 & 7.3 $\pm$ 1.3 &162.3 $\pm$ 5.4 \\ |
223 |
< |
data & 68 & 108 & 14 & 190 \\ |
642 |
> |
data & 288 & 372 & 36 & 696 \\ |
643 |
|
\hline |
644 |
|
\hline |
645 |
|
|
649 |
|
|
650 |
|
\begin{table}[htb] |
651 |
|
\begin{center} |
652 |
< |
\caption{\label{tab:wz2j} Data and Monte Carlo yields passing the WZ preselection and \njets\ $>$ 2. } |
652 |
> |
\caption{\label{tab:wz2j} Data and Monte Carlo yields passing the WZ preselection and \njets\ $\geq$ 2. } |
653 |
|
\begin{tabular}{lccccc} |
654 |
+ |
|
655 |
+ |
%Loading babies at : ../output/V00-02-13 |
656 |
+ |
%Using selection : (((((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101))&&(nbcsvm==0))&&(njets>=2) |
657 |
+ |
%Using weight : weight * 19.5 * trgeff * vtxweight |
658 |
+ |
|
659 |
|
\hline |
236 |
– |
Sample & ee & $\mu\mu$ & e$\mu$ & total \\ |
660 |
|
\hline |
661 |
+ |
Sample & ee & $\mu\mu$ & e$\mu$ & total \\ |
662 |
|
\hline |
663 |
< |
WZ & 9.8 $\pm$ 0.3 & 13.3 $\pm$ 0.3 & 0.6 $\pm$ 0.1 & 23.6 $\pm$ 0.4 \\ |
664 |
< |
\ttbar & 0.2 $\pm$ 0.2 & 2.0 $\pm$ 0.9 & 2.2 $\pm$ 1.2 & 4.4 $\pm$ 1.5 \\ |
665 |
< |
\zjets & 0.0 $\pm$ 0.0 & 4.9 $\pm$ 4.9 & 0.0 $\pm$ 0.0 & 4.9 $\pm$ 4.9 \\ |
666 |
< |
ZZ & 0.3 $\pm$ 0.0 & 0.4 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.7 $\pm$ 0.0 \\ |
667 |
< |
WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.1 $\pm$ 0.0 \\ |
668 |
< |
single top & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\ |
663 |
> |
WZ & 33.0 $\pm$ 0.6 & 41.1 $\pm$ 0.6 & 2.3 $\pm$ 0.2 & 76.3 $\pm$ 0.9 \\ |
664 |
> |
ZZ & 1.7 $\pm$ 0.0 & 2.1 $\pm$ 0.0 & 0.1 $\pm$ 0.0 & 3.9 $\pm$ 0.1 \\ |
665 |
> |
\zjets & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\ |
666 |
> |
\ttbar & 0.6 $\pm$ 0.6 & 1.3 $\pm$ 0.9 & 1.2 $\pm$ 0.9 & 3.1 $\pm$ 1.4 \\ |
667 |
> |
single top & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 & 0.0 $\pm$ 0.0 & 0.5 $\pm$ 0.5 \\ |
668 |
> |
WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\ |
669 |
> |
\ttV & 1.8 $\pm$ 0.2 & 2.1 $\pm$ 0.2 & 0.4 $\pm$ 0.1 & 4.3 $\pm$ 0.3 \\ |
670 |
> |
VVV & 1.5 $\pm$ 0.1 & 2.0 $\pm$ 0.1 & 0.1 $\pm$ 0.0 & 3.7 $\pm$ 0.1 \\ |
671 |
|
\hline |
672 |
< |
tot SM MC & 10.3 $\pm$ 0.3 & 20.8 $\pm$ 5.0 & 2.8 $\pm$ 1.2 & 33.8 $\pm$ 5.2 \\ |
672 |
> |
total SM MC & 38.7 $\pm$ 0.9 & 49.1 $\pm$ 1.2 & 4.1 $\pm$ 0.9 & 91.8 $\pm$ 1.7 \\ |
673 |
|
\hline |
674 |
< |
data & 23 & 32 & 5 & 60 \\ |
674 |
> |
data & 61 & 63 & 11 & 135 \\ |
675 |
|
\hline |
676 |
|
\hline |
677 |
|
|
681 |
|
|
682 |
|
\begin{figure}[tbh] |
683 |
|
\begin{center} |
684 |
< |
\includegraphics[width=1\linewidth]{plots/WZ.pdf} |
684 |
> |
\includegraphics[width=1\linewidth]{plots/WZ_19p5fb.pdf} |
685 |
|
\caption{\label{fig:wz}\protect |
686 |
|
Data vs. MC comparisons for the WZ selection discussed in the text for \lumi. |
687 |
|
The number of jets, missing transverse energy, and Z boson transverse momentum are displayed. |
688 |
|
} |
689 |
+ |
\begin{comment} |
690 |
+ |
|
691 |
+ |
Loading babies at : ../output/V00-02-13 |
692 |
+ |
Using selection : ((((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==3 && lep3.pt()>20.0))&&(pfmet>50))&&(dilmass>81 && dilmass<101))&&(nbcsvm==0) |
693 |
+ |
Using weight : weight * 19.5 * trgeff * vtxweight |
694 |
+ |
Plotting var njets flavor sf |
695 |
+ |
compareDataMC : apply trigeff 1 |
696 |
+ |
MC yield VVV 6.78 |
697 |
+ |
MC yield ttV 4.94 |
698 |
+ |
MC yield WW 0.09 |
699 |
+ |
MC yield single top 0.47 |
700 |
+ |
MC yield ttbar 5.14 |
701 |
+ |
MC yield ZZ 23.01 |
702 |
+ |
MC yield WZ 545.78 |
703 |
+ |
MC yield zjets 9.02 |
704 |
+ |
MC total yield 595.23 |
705 |
+ |
data yield 660 |
706 |
+ |
Plotting var pfmet flavor sf |
707 |
+ |
compareDataMC : apply trigeff 1 |
708 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: htemp (Potential memory leak). |
709 |
+ |
MC yield VVV 6.78 |
710 |
+ |
MC yield ttV 4.94 |
711 |
+ |
MC yield WW 0.09 |
712 |
+ |
MC yield single top 0.47 |
713 |
+ |
MC yield ttbar 5.14 |
714 |
+ |
MC yield ZZ 23.01 |
715 |
+ |
MC yield WZ 545.79 |
716 |
+ |
MC yield zjets 9.02 |
717 |
+ |
MC total yield 595.24 |
718 |
+ |
data yield 660 |
719 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: datahist (Potential memory leak). |
720 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: mc_0 (Potential memory leak). |
721 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: mc_1 (Potential memory leak). |
722 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: mc_2 (Potential memory leak). |
723 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: mc_3 (Potential memory leak). |
724 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: mc_4 (Potential memory leak). |
725 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: mc_5 (Potential memory leak). |
726 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: mc_6 (Potential memory leak). |
727 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: mc_7 (Potential memory leak). |
728 |
+ |
Plotting var dileppt flavor sf |
729 |
+ |
compareDataMC : apply trigeff 1 |
730 |
+ |
Warning in <TROOT::Append>: Replacing existing TH1: htemp (Potential memory leak). |
731 |
+ |
MC yield VVV 6.78 |
732 |
+ |
MC yield ttV 4.94 |
733 |
+ |
MC yield WW 0.09 |
734 |
+ |
MC yield single top 0.47 |
735 |
+ |
MC yield ttbar 5.14 |
736 |
+ |
MC yield ZZ 23.01 |
737 |
+ |
MC yield WZ 545.78 |
738 |
+ |
MC yield zjets 9.02 |
739 |
+ |
MC total yield 595.23 |
740 |
+ |
data yield 660 |
741 |
+ |
|
742 |
+ |
\end{comment} |
743 |
+ |
|
744 |
|
\end{center} |
745 |
|
\end{figure} |
746 |
|
|
756 |
|
\item 2 of the 4 leptons must fall in the $Z$ window 81-101 GeV. |
757 |
|
\end{itemize} |
758 |
|
|
759 |
< |
The data and MC yields passing the above selection are in Table~\ref{tab:zz}. Again we observe an |
760 |
< |
excess in data with respect to the MC prediction (29 observed vs. $17.3\pm0.1$~(stat) MC predicted). |
761 |
< |
After requiring at least 2 jets, we observe 2 events and the MC predicts $1.5\pm0.1$~(stat). |
762 |
< |
Based on this we apply an uncertainty of 80\% to the ZZ background. |
759 |
> |
The data and MC yields passing the above selection are in Table~\ref{tab:zz}. |
760 |
> |
In this ZZ-dominated sample we observe good agreement between the data yield and the MC prediction. |
761 |
> |
After requiring 2 jets (corresponding to the requirement in the analysis selection), we observe 11 events |
762 |
> |
in data and the MC predicts $11\pm0.2$ events. Due to the limited statistical precision we assign an uncertainty |
763 |
> |
of 50\% on the ZZ yield. |
764 |
|
|
765 |
|
\begin{table}[htb] |
766 |
|
\begin{center} |
767 |
|
\caption{\label{tab:zz} Data and Monte Carlo yields for the ZZ preselection. } |
768 |
|
\begin{tabular}{lccccc} |
769 |
+ |
|
770 |
+ |
%Loading babies at : ../output/V00-02-13 |
771 |
+ |
%Using selection : ((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==4 && lep3.pt()>20.0 && lep4.pt()>20.0))&&(dilmass>81 && dilmass<101) |
772 |
+ |
%Using weight : weight * 19.5 * trgeff * vtxweight |
773 |
+ |
|
774 |
|
\hline |
288 |
– |
Sample & ee & $\mu\mu$ & e$\mu$ & total \\ |
775 |
|
\hline |
776 |
< |
|
776 |
> |
Sample & ee & $\mu\mu$ & e$\mu$ & total \\ |
777 |
|
\hline |
778 |
< |
ZZ & 6.6 $\pm$ 0.0 & 9.9 $\pm$ 0.0 & 0.4 $\pm$ 0.0 & 17.0 $\pm$ 0.1 \\ |
779 |
< |
WZ & 0.1 $\pm$ 0.0 & 0.2 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.3 $\pm$ 0.0 \\ |
778 |
> |
ZZ & 53.0 $\pm$ 0.2 & 70.7 $\pm$ 0.2 & 3.5 $\pm$ 0.0 &127.2 $\pm$ 0.3 \\ |
779 |
> |
\ttV & 1.3 $\pm$ 0.2 & 1.4 $\pm$ 0.2 & 0.3 $\pm$ 0.1 & 3.0 $\pm$ 0.2 \\ |
780 |
> |
VVV & 0.7 $\pm$ 0.1 & 0.9 $\pm$ 0.1 & 0.0 $\pm$ 0.0 & 1.7 $\pm$ 0.1 \\ |
781 |
|
\zjets & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\ |
782 |
+ |
WZ & 0.1 $\pm$ 0.0 & 0.1 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.3 $\pm$ 0.1 \\ |
783 |
|
\ttbar & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\ |
296 |
– |
WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\ |
784 |
|
single top & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\ |
785 |
+ |
WW & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 & 0.0 $\pm$ 0.0 \\ |
786 |
|
\hline |
787 |
< |
total SM MC & 6.7 $\pm$ 0.0 & 10.1 $\pm$ 0.1 & 0.5 $\pm$ 0.0 & 17.3 $\pm$ 0.1 \\ |
787 |
> |
total SM MC & 55.1 $\pm$ 0.3 & 73.1 $\pm$ 0.3 & 3.9 $\pm$ 0.1 &132.1 $\pm$ 0.4 \\ |
788 |
|
\hline |
789 |
< |
data & 13 & 16 & 0 & 29 \\ |
789 |
> |
data & 57 & 82 & 5 & 144 \\ |
790 |
|
\hline |
303 |
– |
|
791 |
|
\hline |
792 |
+ |
|
793 |
|
\end{tabular} |
794 |
|
\end{center} |
795 |
|
\end{table} |
796 |
|
|
797 |
|
\begin{figure}[tbh] |
798 |
|
\begin{center} |
799 |
< |
\includegraphics[width=1\linewidth]{plots/ZZ.pdf} |
799 |
> |
\includegraphics[width=1\linewidth]{plots/ZZ_19p5fb.pdf} |
800 |
|
\caption{\label{fig:zz}\protect |
801 |
< |
Data vs. MC comparisons for the $ZZ$ selection discussed in the text for \lumi. |
802 |
< |
The number of jets, missing transverse energy, and $Z$ boson transverse momentum are displayed. |
801 |
> |
Data vs. MC comparisons for the ZZ selection discussed in the text for \lumi. |
802 |
> |
The number of jets, missing transverse energy, and Z boson transverse momentum are displayed. |
803 |
|
} |
804 |
|
\end{center} |
805 |
|
\end{figure} |
806 |
|
|
807 |
+ |
\begin{comment} |
808 |
+ |
|
809 |
+ |
Loading babies at : ../output/V00-02-13 |
810 |
+ |
Using selection : ((((((leptype==0 && (ee==1 || isdata==0))||(leptype==1 && (mm==1 || isdata==0)))||(leptype==2 && (em==1||me==1||isdata==0)))&&(csc==0 && hbhe==1 && hcallaser==1 && ecaltp==1 && trkfail==1 && eebadsc==1 && hbhenew==1))&&(lep1.pt()>20.0 && lep2.pt()>20.0))&&(nlep==4 && lep3.pt()>20.0 && lep4.pt()>20.0))&&(dilmass>81 && dilmass<101) |
811 |
+ |
Using weight : weight * 19.5 * trgeff * vtxweight |
812 |
+ |
Plotting var njets flavor sf |
813 |
+ |
compareDataMC : apply trigeff 1 |
814 |
+ |
MC yield VVV 1.63 |
815 |
+ |
MC yield ttV 2.66 |
816 |
+ |
MC yield WW 0.00 |
817 |
+ |
MC yield single top 0.00 |
818 |
+ |
MC yield ttbar 0.00 |
819 |
+ |
MC yield ZZ 123.68 |
820 |
+ |
MC yield WZ 0.25 |
821 |
+ |
MC yield zjets 0.00 |
822 |
+ |
MC total yield 128.21 |
823 |
+ |
data yield 139 |
824 |
+ |
Plotting var pfmet flavor sf |
825 |
+ |
compareDataMC : apply trigeff 1 |
826 |
+ |
MC yield VVV 1.63 |
827 |
+ |
MC yield ttV 2.66 |
828 |
+ |
MC yield WW 0.00 |
829 |
+ |
MC yield single top 0.00 |
830 |
+ |
MC yield ttbar 0.00 |
831 |
+ |
MC yield ZZ 123.66 |
832 |
+ |
MC yield WZ 0.25 |
833 |
+ |
MC yield zjets 0.00 |
834 |
+ |
MC total yield 128.19 |
835 |
+ |
data yield 139 |
836 |
+ |
Plotting var dileppt flavor sf |
837 |
+ |
compareDataMC : apply trigeff 1 |
838 |
+ |
MC yield VVV 1.63 |
839 |
+ |
MC yield ttV 2.66 |
840 |
+ |
MC yield WW 0.00 |
841 |
+ |
MC yield single top 0.00 |
842 |
+ |
MC yield ttbar 0.00 |
843 |
+ |
MC yield ZZ 123.67 |
844 |
+ |
MC yield WZ 0.25 |
845 |
+ |
MC yield zjets 0.00 |
846 |
+ |
MC total yield 128.20 |
847 |
+ |
data yield 139 |
848 |
+ |
|
849 |
+ |
|
850 |
+ |
\end{comment} |
851 |
|
|
852 |
|
|
853 |
|
|
854 |
< |
\subsection{Estimating the Rare SM Backgrounds with MC} |
855 |
< |
\label{sec:bkg_raresm} |
854 |
> |
%\subsection{Estimating the Rare SM Backgrounds with MC} |
855 |
> |
%\label{sec:bkg_raresm} |
856 |
|
|
857 |
< |
{\bf TODO: list samples, yields in preselection region, and \MET distribution} |
857 |
> |
%{\bf TODO: list samples, yields in preselection region, and show \MET\ distribution} |