ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/cbrown/AnalysisFramework/Plotting/Modules/LimitCalculation.C
Revision: 1.18
Committed: Fri Sep 2 06:23:51 2011 UTC (13 years, 8 months ago) by buchmann
Content type: text/plain
Branch: MAIN
Changes since 1.17: +17 -12 lines
Log Message:
Temporarily reverting to cmscl95 while investigating crash in roostats

File Contents

# User Rev Content
1 buchmann 1.1 #include <iostream>
2     #include <vector>
3     #include <sys/stat.h>
4 buchmann 1.6 #include <fstream>
5 buchmann 1.1
6     #include <TCut.h>
7     #include <TROOT.h>
8     #include <TCanvas.h>
9     #include <TMath.h>
10     #include <TColor.h>
11     #include <TPaveText.h>
12     #include <TRandom.h>
13     #include <TH1.h>
14     #include <TH2.h>
15     #include <TF1.h>
16     #include <TSQLResult.h>
17     #include <TProfile.h>
18    
19     //#include "TTbar_stuff.C"
20     using namespace std;
21    
22     using namespace PlottingSetup;
23    
24    
25     void rediscover_the_top(string mcjzb, string datajzb) {
26 buchmann 1.3 dout << "Hi! today we are going to (try to) rediscover the top!" << endl;
27 buchmann 1.1 TCanvas *c3 = new TCanvas("c3","c3");
28     c3->SetLogy(1);
29     vector<float> binning;
30     //binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
31     /*
32     binning.push_back(50);
33     binning.push_back(100);
34     binning.push_back(150);
35     binning.push_back(200);
36     binning.push_back(500);
37    
38    
39     TH1F *dataprediction = allsamples.Draw("dataprediction", "-"+datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
40     TH1F *puresignal = allsamples.Draw("puresignal", datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
41     // TH1F *puresignal = allsamples.Draw("puresignal", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("TTJets"));
42     TH1F *observed = allsamples.Draw("observed", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
43     /*
44     ofstream myfile;
45     TH1F *ratio = (TH1F*)observed->Clone();
46     ratio->Divide(dataprediction);
47     ratio->GetYaxis()->SetTitle("Ratio obs/pred");
48     ratio->Draw();
49     c3->SaveAs("testratio.png");
50     myfile.open ("ShapeFit_log.txt");
51     establish_upper_limits(observed,dataprediction,puresignal,"LM4",myfile);
52     myfile.close();
53     */
54    
55    
56     int nbins=100;
57     float low=0;
58     float hi=500;
59     TCanvas *c4 = new TCanvas("c4","c4",900,900);
60     c4->Divide(2,2);
61     c4->cd(1);
62     c4->cd(1)->SetLogy(1);
63     TH1F *datapredictiont = allsamples.Draw("datapredictiont", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
64     TH1F *datapredictiono = allsamples.Draw("datapredictiono", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
65     datapredictiont->Add(datapredictiono,-1);
66 buchmann 1.3 dout << "Second way of doing this !!!! Analytical shape to the left :-D" << endl;
67 buchmann 1.1 vector<TF1*> functions = do_cb_fit_to_plot(datapredictiont,10);
68     datapredictiont->SetMarkerColor(kRed);
69     datapredictiont->SetLineColor(kRed);
70     datapredictiont->Draw();
71     functions[1]->Draw("same");
72     TText *title1 = write_title("Top Background Prediction (JZB<0, with osof subtr)");
73     title1->Draw();
74    
75     c4->cd(2);
76     c4->cd(2)->SetLogy(1);
77     TH1F *observedt = allsamples.Draw("observedt", datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
78     observedt->Draw();
79     datapredictiont->Draw("histo,same");
80     functions[1]->Draw("same");
81     TText *title2 = write_title("Observed and predicted background");
82     title2->Draw();
83    
84     c4->cd(3);
85     c4->cd(3)->SetLogy(1);
86     // TH1F *ratio = (TH1F*)observedt->Clone();
87    
88     TH1F *analytical_background_prediction= new TH1F("analytical_background_prediction","",nbins,low,hi);
89     for(int i=0;i<=nbins;i++) {
90     analytical_background_prediction->SetBinContent(i+1,functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5)));
91     analytical_background_prediction->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5))));
92     }
93     analytical_background_prediction->GetYaxis()->SetTitle("JZB [GeV]");
94     analytical_background_prediction->GetYaxis()->CenterTitle();
95     TH1F *analyticaldrawonly = (TH1F*)analytical_background_prediction->Clone();
96     analytical_background_prediction->SetFillColor(TColor::GetColor("#3399FF"));
97     analytical_background_prediction->SetMarkerSize(0);
98     analytical_background_prediction->Draw("e5");
99     analyticaldrawonly->Draw("histo,same");
100     functions[1]->Draw("same");
101     TText *title3 = write_title("Analytical bg pred histo");
102     title3->Draw();
103    
104     c4->cd(4);
105     // c4->cd(4)->SetLogy(1);
106     vector<float> ratio_binning;
107     ratio_binning.push_back(0);
108     ratio_binning.push_back(5);
109     ratio_binning.push_back(10);
110     ratio_binning.push_back(20);
111     ratio_binning.push_back(50);
112     // ratio_binning.push_back(60);
113     /*
114     ratio_binning.push_back(51);
115     ratio_binning.push_back(52);
116     ratio_binning.push_back(53);
117     ratio_binning.push_back(54);
118     ratio_binning.push_back(55);
119     ratio_binning.push_back(56);
120     ratio_binning.push_back(57);
121     ratio_binning.push_back(58);
122     ratio_binning.push_back(59);
123     ratio_binning.push_back(60);
124     // ratio_binning.push_back(70);*/
125     // ratio_binning.push_back(80);
126     // ratio_binning.push_back(90);
127     ratio_binning.push_back(80);
128     // ratio_binning.push_back(110);
129     ratio_binning.push_back(500);
130    
131     TH1F *observedtb = allsamples.Draw("observedtb", datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
132     TH1F *datapredictiontb = allsamples.Draw("datapredictiontb", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
133     TH1F *datapredictiontbo = allsamples.Draw("datapredictiontbo", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
134     datapredictiontb->Add(datapredictiontbo,-1);
135     TH1F *analytical_background_predictionb = allsamples.Draw("analytical_background_predictionb",datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets&&"mll<2",data, luminosity);
136     for(int i=0;i<=ratio_binning.size();i++) {
137     analytical_background_predictionb->SetBinContent(i+1,functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i)));
138     analytical_background_predictionb->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i))));
139     }
140    
141     TH1F *ratio = (TH1F*) observedtb->Clone();
142     ratio->Divide(datapredictiontb);
143    
144     for (int i=0;i<=ratio_binning.size();i++) {
145 buchmann 1.3 dout << observedtb->GetBinLowEdge(i+1) << ";"<<observedtb->GetBinContent(i+1) << ";" << datapredictiontb->GetBinContent(i+1) << " --> " << ratio->GetBinContent(i+1) << "+/-" << ratio->GetBinError(i+1) << endl;
146 buchmann 1.1 }
147    
148     // ratio->Divide(datapredictiontb);
149     // ratio->Divide(analytical_background_predictionb);
150     // TGraphAsymmErrors *JZBratio= histRatio(observedtb,analytical_background_predictionb,data,ratio_binning);
151     // ratio->Divide(analytical_background_prediction);
152     // ratio->Divide(datapredictiont);
153     // ratio->GetYaxis()->SetTitle("obs/pred");
154     // JZBratio->Draw("AP");
155     ratio->GetYaxis()->SetRangeUser(0,10);
156     ratio->Draw();
157     //analytical_background_predictionb->Draw();
158     // JZBratio->SetTitle("");
159     TText *title4 = write_title("Ratio of observed to predicted");
160     title4->Draw();
161    
162     // CompleteSave(c4,"test/ttbar_discovery_dataprediction___analytical_function");
163     CompleteSave(c4,"test/ttbar_discovery_dataprediction__analytical__new_binning_one_huge_bin_from_80");
164    
165    
166    
167    
168    
169     }
170    
171 buchmann 1.15 vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, string plotfilename, bool doobserved) {
172 buchmann 1.11 float sigma95=-9.9,sigma95A=-9.9;
173 buchmann 1.15 int nuisancemodel=0;
174     /*
175     USAGE OF ROOSTATS_CL95
176     " Double_t limit = roostats_cl95(ilum, slum, eff, seff, bck, sbck, n, gauss = false, nuisanceModel, method, plotFileName, seed); \n"
177     " LimitResult expected_limit = roostats_clm(ilum, slum, eff, seff, bck, sbck, ntoys, nuisanceModel, method, seed); \n"
178     " Double_t average_limit = roostats_cla(ilum, slum, eff, seff, bck, sbck, nuisanceModel, method, seed); \n"
179     " \n"
180     "
181     " Double_t obs_limit = limit.GetObservedLimit(); \n"
182     " Double_t exp_limit = limit.GetExpectedLimit(); \n"
183     " Double_t exp_up = limit.GetOneSigmaHighRange(); \n"
184     " Double_t exp_down = limit.GetOneSigmaLowRange(); \n"
185     " Double_t exp_2up = limit.GetTwoSigmaHighRange(); \n"
186     " Double_t exp_2down = limit.GetTwoSigmaLowRange(); \n"
187     */
188 buchmann 1.12 if(mceff<=0) {
189 buchmann 1.11 write_warning(__FUNCTION__,"Cannot compute upper limit in this configuration as the efficiency is negative:");
190     dout << "mc efficiency=" << mceff << " +/- " << mcefferr;
191     vector<float> sigmas;
192     sigmas.push_back(-1);
193     sigmas.push_back(-1);
194     return sigmas;
195     } else {
196 buchmann 1.15 int nlimittoysused=1;
197 buchmann 1.18 //if(doobserved) nlimittoysused=nlimittoys;
198     nlimittoysused=nlimittoys;
199     dout << "Now calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl;
200 buchmann 1.4 sigma95 = CL95(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], Nobs[ibin], false, nuisancemodel);
201 buchmann 1.15
202 buchmann 1.18 /* dout << "Now calling : roostats_cl95(" << luminosity << "," << lumiuncert*luminosity << ","<<mceff <<","<<mcefferr<<","<<Npred[ibin]<<","<<Nprederr[ibin] << ",n=" << nlimittoysused << ",gauss=" << false << ",nuisanceModel="<<nuisancemodel<<",method="<<limitmethod<<",plotfilename="<<plotfilename<<",seed=0) " << endl;
203     /* dout << "Now calling : roostats_limit(" << luminosity << "," << lumiuncert*luminosity << ","<<mceff <<","<<mcefferr<<","<<Npred[ibin]<<","<<Nprederr[ibin] << ",n=" << nlimittoysused << ",gauss=" << false << ", nuisanceModel="<<nuisancemodel<<",method="<<limitmethod<<",plotfilename="<<plotfilename<<",seed=1) " << endl;
204     LimitResult limit = roostats_limit(luminosity,lumiuncert*luminosity,mceff,mcefferr,Npred[ibin],Nprederr[ibin],nlimittoysused,false,nuisancemodel,limitmethod,plotfilename,0);
205     dout << "Now interpreting and saving results ... " << endl;
206 buchmann 1.2 vector<float> sigmas;
207 buchmann 1.15 sigmas.push_back(limit.GetExpectedLimit());//expected
208     sigmas.push_back(limit.GetObservedLimit());//observed
209     //up to here for backward compatibility
210     sigmas.push_back(limit.GetOneSigmaHighRange());//expected, up
211     sigmas.push_back(limit.GetTwoSigmaHighRange());//expected, 2 up
212     sigmas.push_back(limit.GetOneSigmaLowRange());//expected, down
213     sigmas.push_back(limit.GetTwoSigmaLowRange());//expected, 2 down
214 buchmann 1.18 */
215     // float limit = roostats_cl95(luminosity,lumiuncert*luminosity,mceff,mcefferr,Npred[ibin],Nprederr[ibin],nlimittoysused,false,nuisancemodel,limitmethod,plotfilename,0);
216     if(doobserved) {
217     dout << "Now calling : CLA(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << nuisancemodel<< ") " << endl;
218     sigma95A = CLA(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], nuisancemodel);
219     }
220     // vector<float> sigmas;
221     // sigmas.push_back(limit);
222     vector<float> sigmas;
223 buchmann 1.2 sigmas.push_back(sigma95);
224 buchmann 1.18 sigmas.push_back(sigma95A);
225 buchmann 1.2 return sigmas;
226 buchmann 1.15
227    
228 buchmann 1.11 }
229 buchmann 1.15 write_warning(__FUNCTION__,"STILL MISSING SIGMAS, LIMITS, EVERYTHING ...");
230 buchmann 1.2 }
231    
232     void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doobserved) {
233 buchmann 1.3 dout << "Doing counting experiment ... " << endl;
234 buchmann 1.2 vector<vector<string> > limits;
235     vector<vector<float> > vlimits;
236    
237 buchmann 1.1
238     for(int isample=0;isample<signalsamples.collection.size();isample++) {
239 buchmann 1.2 vector<string> rows;
240     vector<float> vrows;
241 buchmann 1.3 dout << "Considering sample " << signalsamples.collection[isample].samplename << endl;
242 buchmann 1.2 rows.push_back(signalsamples.collection[isample].samplename);
243 buchmann 1.1 for(int ibin=0;ibin<jzbcuts.size();ibin++) {
244 buchmann 1.3 dout << "_________________________________________________________________________________" << endl;
245 buchmann 1.2 float JZBcutat=uncertainties[isample*jzbcuts.size()+ibin][0];
246     float mceff=uncertainties[isample*jzbcuts.size()+ibin][1];
247     float staterr=uncertainties[isample*jzbcuts.size()+ibin][2];
248     float systerr=uncertainties[isample*jzbcuts.size()+ibin][3];
249     float toterr =uncertainties[isample*jzbcuts.size()+ibin][4];
250 fronga 1.9 float observed,observederr,null,result;
251 buchmann 1.11
252     // fill_result_histos(observed,observederr, null,null,null,null,null,null,null,mcjzb,JZBcutat,14000,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples);
253     // observed-=result;//this is the actual excess we see!
254     // float expected=observed/luminosity;
255 buchmann 1.17 string plotfilename=(string)(TString(signalsamples.collection[isample].samplename)+TString("___JZB_geq_")+TString(any2string(JZBcutat))+TString(".png"));
256 buchmann 1.3 dout << "Sample: " << signalsamples.collection[isample].samplename << ", JZB>"<<JZBcutat<< " : " << mceff << " +/- " << staterr << " (stat) +/- " << systerr << " (syst) --> toterr = " << toterr << endl;
257 buchmann 1.15 vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,plotfilename,doobserved);
258 buchmann 1.2
259     if(doobserved) {
260 buchmann 1.11 // rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")");
261     rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(signalsamples.collection[isample].xs)+")");
262 buchmann 1.2 vrows.push_back(sigmas[0]);
263     vrows.push_back(sigmas[1]);
264 buchmann 1.11 // vrows.push_back(expected);
265     vrows.push_back(signalsamples.collection[isample].xs);
266 buchmann 1.2 }
267     else {
268 buchmann 1.11 // rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")");
269     rows.push_back(any2string(sigmas[0]));
270 buchmann 1.2 vrows.push_back(sigmas[0]);
271 buchmann 1.11 vrows.push_back(signalsamples.collection[isample].xs);
272     // vrows.push_back(expected);
273 buchmann 1.2 }
274 buchmann 1.1 }//end of bin loop
275 buchmann 1.2 limits.push_back(rows);
276     vlimits.push_back(vrows);
277 buchmann 1.1 }//end of sample loop
278 buchmann 1.12 dout << endl << endl << endl << "_________________________________________________________________________________________________" << endl << endl;
279 buchmann 1.11 dout << endl << endl << "PAS table 3: (notation: limit [95%CL])" << endl << endl;
280 buchmann 1.3 dout << "\t";
281 buchmann 1.2 for (int irow=0;irow<jzbcuts.size();irow++) {
282 buchmann 1.3 dout << jzbcuts[irow] << "\t";
283 buchmann 1.2 }
284 buchmann 1.3 dout << endl;
285 buchmann 1.2 for(int irow=0;irow<limits.size();irow++) {
286     for(int ientry=0;ientry<limits[irow].size();ientry++) {
287 buchmann 1.12 if (limits[irow][ientry]>0) dout << limits[irow][ientry] << "\t";
288     else dout << " (N/A) \t";
289 buchmann 1.2 }
290 buchmann 1.3 dout << endl;
291 buchmann 1.2 }
292    
293     if(!doobserved) {
294 buchmann 1.12 dout << endl << endl << "LIMITS: (Tex)" << endl;
295 buchmann 1.13 tout << "\\begin{table}[hbtp]" << endl;
296     tout << "\\renewcommand{\arraystretch}{1.3}" << endl;
297     tout << "\\begin{center}" << endl;
298 buchmann 1.14 tout << "\\caption{Observed upper limits on the cross section of different LM benchmark points " << (ConsiderSignalContaminationForLimits?" (accounting for signal contamination)":" (not accounting for signal contamination)") << "}\\label{tab:lmresults}" << endl;
299 buchmann 1.13 tout << "" << endl;
300 buchmann 1.12 tout << "\\begin{tabular}{ | l | ";
301     for (int irow=0;irow<jzbcuts.size();irow++) tout << " l |";
302     tout << "} " << endl << " \\hline " << endl << "& \t ";
303 buchmann 1.2 for (int irow=0;irow<jzbcuts.size();irow++) {
304 buchmann 1.12 tout << "JZB $>$ " << jzbcuts[irow] << " GeV & \t ";
305 buchmann 1.2 }
306 buchmann 1.12 tout << " \\\\ \\hline " << endl;
307 buchmann 1.2 for(int irow=0;irow<limits.size();irow++) {
308 buchmann 1.12 tout << limits[irow][0] << " \t";
309 buchmann 1.2 for(int ientry=0;ientry<jzbcuts.size();ientry++) {
310 buchmann 1.12 if(vlimits[irow][2*ientry]>0) tout << " & " << Round(vlimits[irow][2*ientry],2) << " \t (" << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "x \\sigma ) \t";
311     else tout << " & ( N / A ) \t";
312 buchmann 1.11 // dout << Round(vlimits[irow][2*ientry],3) << " / " << Round(vlimits[irow][2*ientry+1],3)<< "\t";
313 buchmann 1.2 }
314 buchmann 1.12 tout << " \\\\ \\hline " << endl;
315 buchmann 1.2 }
316 buchmann 1.12 tout << "\\end{tabular}" << endl;
317 buchmann 1.13 tout << " \\end{tabular}"<< endl;
318     tout << "\\end{center}"<< endl;
319     tout << "\\end{table} "<< endl;
320    
321 buchmann 1.2 }//do observed
322 buchmann 1.3
323     dout << endl << endl << "Final selection efficiencies with total statistical and systematic errors, and corresponding observed and expected upper limits (UL) on ($\\sigma\\times$ BR $\\times$ acceptance) for the LM4 and LM8 scenarios, in the different regions. The last column contains the predicted ($\\sigma \\times $BR$\\times$ acceptance) at NLO obtained from Monte Carlo simulation." << endl;
324 buchmann 1.11 dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t \\sigma [pb]" << endl;
325 buchmann 1.3 for(int icut=0;icut<jzbcuts.size();icut++) {
326 buchmann 1.14 dout << "Region with JZB>" << jzbcuts[icut] << (ConsiderSignalContaminationForLimits?" (accounting for signal contamination)":" (not accounting for signal contamination)") << endl;
327 buchmann 1.3 for(int isample=0;isample<signalsamples.collection.size();isample++) {
328 buchmann 1.11 dout << limits[isample][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],3) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],3) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],3) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl;
329 buchmann 1.3 }
330     dout << endl;
331     }
332 buchmann 1.4
333 buchmann 1.11 write_warning(__FUNCTION__,"Still need to update the script");
334 buchmann 1.1 }
335    
336    
337    
338 buchmann 1.7 /********************************************************************** new : Limits using SHAPES ***********************************
339    
340    
341     SSSSSSSSSSSSSSS hhhhhhh
342     SS:::::::::::::::Sh:::::h
343     S:::::SSSSSS::::::Sh:::::h
344     S:::::S SSSSSSSh:::::h
345     S:::::S h::::h hhhhh aaaaaaaaaaaaa ppppp ppppppppp eeeeeeeeeeee ssssssssss
346     S:::::S h::::hh:::::hhh a::::::::::::a p::::ppp:::::::::p ee::::::::::::ee ss::::::::::s
347     S::::SSSS h::::::::::::::hh aaaaaaaaa:::::ap:::::::::::::::::p e::::::eeeee:::::eess:::::::::::::s
348     SS::::::SSSSS h:::::::hhh::::::h a::::app::::::ppppp::::::pe::::::e e:::::es::::::ssss:::::s
349     SSS::::::::SS h::::::h h::::::h aaaaaaa:::::a p:::::p p:::::pe:::::::eeeee::::::e s:::::s ssssss
350     SSSSSS::::S h:::::h h:::::h aa::::::::::::a p:::::p p:::::pe:::::::::::::::::e s::::::s
351     S:::::S h:::::h h:::::h a::::aaaa::::::a p:::::p p:::::pe::::::eeeeeeeeeee s::::::s
352     S:::::S h:::::h h:::::ha::::a a:::::a p:::::p p::::::pe:::::::e ssssss s:::::s
353     SSSSSSS S:::::S h:::::h h:::::ha::::a a:::::a p:::::ppppp:::::::pe::::::::e s:::::ssss::::::s
354     S::::::SSSSSS:::::S h:::::h h:::::ha:::::aaaa::::::a p::::::::::::::::p e::::::::eeeeeeee s::::::::::::::s
355     S:::::::::::::::SS h:::::h h:::::h a::::::::::aa:::ap::::::::::::::pp ee:::::::::::::e s:::::::::::ss
356     SSSSSSSSSSSSSSS hhhhhhh hhhhhhh aaaaaaaaaa aaaap::::::pppppppp eeeeeeeeeeeeee sssssssssss
357     p:::::p
358     p:::::p
359     p:::::::p
360     p:::::::p
361     p:::::::p
362     ppppppppp
363    
364    
365     *********************************************************************** new : Limits using SHAPES ***********************************/
366    
367 buchmann 1.5
368     void limit_shapes_for_systematic_effect(TFile *limfile, string identifier, string mcjzb, string datajzb, int JES,vector<float> binning, TCanvas *limcan) {
369     dout << "Creatig shape templates ... ";
370     if(identifier!="") dout << "for systematic called "<<identifier;
371     dout << endl;
372     int dataormc=mcwithsignal;//this is only for tests - for real life you want dataormc=data !!!
373 buchmann 1.6 if(dataormc!=data) write_warning(__FUNCTION__,"WATCH OUT! Not using data for limits!!!! this is ok for tests, but not ok for anything official!");
374 buchmann 1.5
375     TCut limitnJetcut;
376     if(JES==noJES) limitnJetcut=cutnJets;
377     else {
378     if(JES==JESdown) limitnJetcut=cutnJetsJESdown;
379     if(JES==JESup) limitnJetcut=cutnJetsJESup;
380     }
381     TH1F *ZOSSFP = allsamples.Draw("ZOSSFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
382     TH1F *ZOSOFP = allsamples.Draw("ZOSOFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
383     TH1F *ZOSSFN = allsamples.Draw("ZOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
384     TH1F *ZOSOFN = allsamples.Draw("ZOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
385    
386     TH1F *SBOSSFP = allsamples.Draw("SBOSSFP",datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
387     TH1F *SBOSOFP = allsamples.Draw("SBOSOFP",datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
388     TH1F *SBOSSFN = allsamples.Draw("SBOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
389     TH1F *SBOSOFN = allsamples.Draw("SBOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
390    
391     TH1F *LZOSSFP = allsamples.Draw("LZOSSFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
392     TH1F *LZOSOFP = allsamples.Draw("LZOSOFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
393     TH1F *LZOSSFN = allsamples.Draw("LZOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
394     TH1F *LZOSOFN = allsamples.Draw("LZOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
395    
396     TH1F *LSBOSSFP = allsamples.Draw("LSBOSSFP",mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
397     TH1F *LSBOSOFP = allsamples.Draw("LSBOSOFP",mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
398     TH1F *LSBOSSFN = allsamples.Draw("LSBOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
399     TH1F *LSBOSOFN = allsamples.Draw("LSBOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
400    
401     string obsname="data_obs";
402     string predname="background";
403     string signalname="signal";
404     if(identifier!="") {
405     obsname=("data_"+identifier);
406     predname=("background_"+identifier);
407     signalname="signal_"+identifier;
408     }
409    
410     TH1F *obs = (TH1F*)ZOSSFP->Clone();
411     obs->SetName(obsname.c_str());
412     obs->Write();
413     TH1F *pred = (TH1F*)ZOSSFN->Clone();
414     pred->Add(ZOSOFP,1.0/3);
415     pred->Add(ZOSOFN,-1.0/3);
416     pred->Add(SBOSSFP,1.0/3);
417     pred->Add(SBOSSFN,-1.0/3);
418     pred->Add(SBOSOFP,1.0/3);
419     pred->Add(SBOSOFN,-1.0/3);
420     pred->SetName(predname.c_str());
421     pred->Write();
422    
423     // TH1F *Lobs = (TH1F*)LZOSSFP->Clone();
424     // TH1F *Lpred = (TH1F*)LZOSSFN->Clone();
425    
426     TH1F *Lobs = new TH1F("Lobs","Lobs",binning.size()-1,&binning[0]);
427     TH1F *Lpred = new TH1F("Lpred","Lpred",binning.size()-1,&binning[0]);
428     Lobs->Add(LZOSSFP);
429     Lpred->Add(LZOSSFN);
430     Lpred->Add(LZOSOFP,1.0/3);
431     Lpred->Add(LZOSOFN,-1.0/3);
432     Lpred->Add(LSBOSSFP,1.0/3);
433     Lpred->Add(LSBOSSFN,-1.0/3);
434     Lpred->Add(LSBOSOFP,1.0/3);
435     Lpred->Add(LSBOSOFN,-1.0/3);
436     TH1F *signal = (TH1F*)Lobs->Clone();
437     signal->Add(Lpred,-1);
438     signal->SetName(signalname.c_str());
439     signal->Write();
440    
441     delete Lobs;
442     delete Lpred;
443    
444     delete ZOSSFP;
445     delete ZOSOFP;
446     delete ZOSSFN;
447     delete ZOSOFN;
448    
449     delete SBOSSFP;
450     delete SBOSOFP;
451     delete SBOSSFN;
452     delete SBOSOFN;
453    
454     delete LZOSSFP;
455     delete LZOSOFP;
456     delete LZOSSFN;
457     delete LZOSOFN;
458    
459     delete LSBOSSFP;
460     delete LSBOSOFP;
461     delete LSBOSSFN;
462     delete LSBOSOFN;
463    
464     }
465    
466     void prepare_datacard(TFile *f) {
467     TH1F *dataob = (TH1F*)f->Get("data_obs");
468     TH1F *signal = (TH1F*)f->Get("signal");
469     TH1F *background = (TH1F*)f->Get("background");
470    
471     ofstream datacard;
472     ensure_directory_exists(get_directory()+"/limits");
473 buchmann 1.6 datacard.open ((get_directory()+"/limits/susydatacard.txt").c_str());
474 buchmann 1.5 datacard << "Writing this to a file.\n";
475     datacard << "imax 1\n";
476     datacard << "jmax 1\n";
477     datacard << "kmax *\n";
478     datacard << "---------------\n";
479     datacard << "shapes * * limitfile.root $PROCESS $PROCESS_$SYSTEMATIC\n";
480     datacard << "---------------\n";
481     datacard << "bin 1\n";
482     datacard << "observation "<<dataob->Integral()<<"\n";
483     datacard << "------------------------------\n";
484     datacard << "bin 1 1\n";
485     datacard << "process signal background\n";
486     datacard << "process 0 1\n";
487     datacard << "rate "<<signal->Integral()<<" "<<background->Integral()<<"\n";
488     datacard << "--------------------------------\n";
489     datacard << "lumi lnN 1.10 1.0\n";
490     datacard << "bgnorm lnN 1.00 1.4 uncertainty on our prediction (40%)\n";
491     datacard << "JES shape 1 1 uncertainty on background shape and normalization\n";
492     datacard << "peak shape 1 1 uncertainty on signal resolution. Assume the histogram is a 2 sigma shift, \n";
493     datacard << "# so divide the unit gaussian by 2 before doing the interpolation\n";
494     datacard.close();
495     }
496    
497    
498     void prepare_limits(string mcjzb, string datajzb, float jzbpeakerrordata, float jzbpeakerrormc, vector<float> jzbbins) {
499     ensure_directory_exists(get_directory()+"/limits");
500     TFile *limfile = new TFile((get_directory()+"/limits/limitfile.root").c_str(),"RECREATE");
501     TCanvas *limcan = new TCanvas("limcan","Canvas for calculating limits");
502     limit_shapes_for_systematic_effect(limfile,"",mcjzb,datajzb,noJES,jzbbins,limcan);
503     limit_shapes_for_systematic_effect(limfile,"peakUp",newjzbexpression(mcjzb,jzbpeakerrormc),newjzbexpression(datajzb,jzbpeakerrordata),noJES,jzbbins,limcan);
504     limit_shapes_for_systematic_effect(limfile,"peakDown",newjzbexpression(mcjzb,-jzbpeakerrormc),newjzbexpression(datajzb,-jzbpeakerrordata),noJES,jzbbins,limcan);
505     limit_shapes_for_systematic_effect(limfile,"JESUp",mcjzb,datajzb,JESup,jzbbins,limcan);
506     limit_shapes_for_systematic_effect(limfile,"JESDown",mcjzb,datajzb,JESdown,jzbbins,limcan);
507    
508     prepare_datacard(limfile);
509 buchmann 1.6 limfile->Close();
510 buchmann 1.5 write_info("prepare_limits","limitfile.root and datacard.txt have been generated. You can now use them to calculate limits!");
511    
512 fronga 1.9 }