ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/cbrown/AnalysisFramework/Plotting/Modules/LimitCalculation.C
Revision: 1.4
Committed: Wed Jul 20 12:26:11 2011 UTC (13 years, 9 months ago) by buchmann
Content type: text/plain
Branch: MAIN
Changes since 1.3: +7 -4 lines
Log Message:
Making limit calculation more customizable

File Contents

# User Rev Content
1 buchmann 1.1 #include <iostream>
2     #include <vector>
3     #include <sys/stat.h>
4    
5     #include <TCut.h>
6     #include <TROOT.h>
7     #include <TCanvas.h>
8     #include <TMath.h>
9     #include <TColor.h>
10     #include <TPaveText.h>
11     #include <TRandom.h>
12     #include <TH1.h>
13     #include <TH2.h>
14     #include <TF1.h>
15     #include <TSQLResult.h>
16     #include <TProfile.h>
17    
18     //#include "TTbar_stuff.C"
19     using namespace std;
20    
21     using namespace PlottingSetup;
22    
23    
24     void rediscover_the_top(string mcjzb, string datajzb) {
25 buchmann 1.3 dout << "Hi! today we are going to (try to) rediscover the top!" << endl;
26 buchmann 1.1 TCanvas *c3 = new TCanvas("c3","c3");
27     c3->SetLogy(1);
28     vector<float> binning;
29     //binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
30     /*
31     binning.push_back(50);
32     binning.push_back(100);
33     binning.push_back(150);
34     binning.push_back(200);
35     binning.push_back(500);
36    
37    
38     TH1F *dataprediction = allsamples.Draw("dataprediction", "-"+datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
39     TH1F *puresignal = allsamples.Draw("puresignal", datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
40     // TH1F *puresignal = allsamples.Draw("puresignal", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("TTJets"));
41     TH1F *observed = allsamples.Draw("observed", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
42     /*
43     ofstream myfile;
44     TH1F *ratio = (TH1F*)observed->Clone();
45     ratio->Divide(dataprediction);
46     ratio->GetYaxis()->SetTitle("Ratio obs/pred");
47     ratio->Draw();
48     c3->SaveAs("testratio.png");
49     myfile.open ("ShapeFit_log.txt");
50     establish_upper_limits(observed,dataprediction,puresignal,"LM4",myfile);
51     myfile.close();
52     */
53    
54    
55     int nbins=100;
56     float low=0;
57     float hi=500;
58     TCanvas *c4 = new TCanvas("c4","c4",900,900);
59     c4->Divide(2,2);
60     c4->cd(1);
61     c4->cd(1)->SetLogy(1);
62     TH1F *datapredictiont = allsamples.Draw("datapredictiont", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
63     TH1F *datapredictiono = allsamples.Draw("datapredictiono", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
64     datapredictiont->Add(datapredictiono,-1);
65 buchmann 1.3 dout << "Second way of doing this !!!! Analytical shape to the left :-D" << endl;
66 buchmann 1.1 vector<TF1*> functions = do_cb_fit_to_plot(datapredictiont,10);
67     datapredictiont->SetMarkerColor(kRed);
68     datapredictiont->SetLineColor(kRed);
69     datapredictiont->Draw();
70     functions[1]->Draw("same");
71     TText *title1 = write_title("Top Background Prediction (JZB<0, with osof subtr)");
72     title1->Draw();
73    
74     c4->cd(2);
75     c4->cd(2)->SetLogy(1);
76     TH1F *observedt = allsamples.Draw("observedt", datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
77     observedt->Draw();
78     datapredictiont->Draw("histo,same");
79     functions[1]->Draw("same");
80     TText *title2 = write_title("Observed and predicted background");
81     title2->Draw();
82    
83     c4->cd(3);
84     c4->cd(3)->SetLogy(1);
85     // TH1F *ratio = (TH1F*)observedt->Clone();
86    
87     TH1F *analytical_background_prediction= new TH1F("analytical_background_prediction","",nbins,low,hi);
88     for(int i=0;i<=nbins;i++) {
89     analytical_background_prediction->SetBinContent(i+1,functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5)));
90     analytical_background_prediction->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5))));
91     }
92     analytical_background_prediction->GetYaxis()->SetTitle("JZB [GeV]");
93     analytical_background_prediction->GetYaxis()->CenterTitle();
94     TH1F *analyticaldrawonly = (TH1F*)analytical_background_prediction->Clone();
95     analytical_background_prediction->SetFillColor(TColor::GetColor("#3399FF"));
96     analytical_background_prediction->SetMarkerSize(0);
97     analytical_background_prediction->Draw("e5");
98     analyticaldrawonly->Draw("histo,same");
99     functions[1]->Draw("same");
100     TText *title3 = write_title("Analytical bg pred histo");
101     title3->Draw();
102    
103     c4->cd(4);
104     // c4->cd(4)->SetLogy(1);
105     vector<float> ratio_binning;
106     ratio_binning.push_back(0);
107     ratio_binning.push_back(5);
108     ratio_binning.push_back(10);
109     ratio_binning.push_back(20);
110     ratio_binning.push_back(50);
111     // ratio_binning.push_back(60);
112     /*
113     ratio_binning.push_back(51);
114     ratio_binning.push_back(52);
115     ratio_binning.push_back(53);
116     ratio_binning.push_back(54);
117     ratio_binning.push_back(55);
118     ratio_binning.push_back(56);
119     ratio_binning.push_back(57);
120     ratio_binning.push_back(58);
121     ratio_binning.push_back(59);
122     ratio_binning.push_back(60);
123     // ratio_binning.push_back(70);*/
124     // ratio_binning.push_back(80);
125     // ratio_binning.push_back(90);
126     ratio_binning.push_back(80);
127     // ratio_binning.push_back(110);
128     ratio_binning.push_back(500);
129    
130     TH1F *observedtb = allsamples.Draw("observedtb", datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
131     TH1F *datapredictiontb = allsamples.Draw("datapredictiontb", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
132     TH1F *datapredictiontbo = allsamples.Draw("datapredictiontbo", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
133     datapredictiontb->Add(datapredictiontbo,-1);
134     TH1F *analytical_background_predictionb = allsamples.Draw("analytical_background_predictionb",datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets&&"mll<2",data, luminosity);
135     for(int i=0;i<=ratio_binning.size();i++) {
136     analytical_background_predictionb->SetBinContent(i+1,functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i)));
137     analytical_background_predictionb->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i))));
138     }
139    
140     TH1F *ratio = (TH1F*) observedtb->Clone();
141     ratio->Divide(datapredictiontb);
142    
143     for (int i=0;i<=ratio_binning.size();i++) {
144 buchmann 1.3 dout << observedtb->GetBinLowEdge(i+1) << ";"<<observedtb->GetBinContent(i+1) << ";" << datapredictiontb->GetBinContent(i+1) << " --> " << ratio->GetBinContent(i+1) << "+/-" << ratio->GetBinError(i+1) << endl;
145 buchmann 1.1 }
146    
147     // ratio->Divide(datapredictiontb);
148     // ratio->Divide(analytical_background_predictionb);
149     // TGraphAsymmErrors *JZBratio= histRatio(observedtb,analytical_background_predictionb,data,ratio_binning);
150     // ratio->Divide(analytical_background_prediction);
151     // ratio->Divide(datapredictiont);
152     // ratio->GetYaxis()->SetTitle("obs/pred");
153     // JZBratio->Draw("AP");
154     ratio->GetYaxis()->SetRangeUser(0,10);
155     ratio->Draw();
156     //analytical_background_predictionb->Draw();
157     // JZBratio->SetTitle("");
158     TText *title4 = write_title("Ratio of observed to predicted");
159     title4->Draw();
160    
161     // CompleteSave(c4,"test/ttbar_discovery_dataprediction___analytical_function");
162     CompleteSave(c4,"test/ttbar_discovery_dataprediction__analytical__new_binning_one_huge_bin_from_80");
163    
164    
165    
166    
167    
168     }
169    
170     void calculate_upper_limits(string mcjzb, string datajzb) {
171     write_warning("calculate_upper_limits","Upper limit calculation temporarily deactivated");
172     // write_warning("calculate_upper_limits","Calculation of SUSY upper limits has been temporarily suspended in favor of top discovery");
173     // rediscover_the_top(mcjzb,datajzb);
174     /*
175     TCanvas *c3 = new TCanvas("c3","c3");
176     c3->SetLogy(1);
177     vector<float> binning;
178     //binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
179     binning.push_back(50);
180     binning.push_back(100);
181     binning.push_back(150);
182     binning.push_back(200);
183     binning.push_back(500);
184     TH1F *datapredictiona = allsamples.Draw("datapredictiona", "-"+datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity);
185     TH1F *datapredictionb = allsamples.Draw("datapredictionb", "-"+datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity);
186     TH1F *datapredictionc = allsamples.Draw("datapredictionc", datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity);
187     TH1F *dataprediction = (TH1F*)datapredictiona->Clone();
188     dataprediction->Add(datapredictionb,-1);
189     dataprediction->Add(datapredictionc);
190     TH1F *puresignal = allsamples.Draw("puresignal", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4"));
191     TH1F *signalpred = allsamples.Draw("signalpred", "-"+mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4"));
192     TH1F *signalpredlo = allsamples.Draw("signalpredlo", "-"+mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4"));
193     TH1F *signalpredro = allsamples.Draw("signalpredro", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4"));
194     TH1F *puredata = allsamples.Draw("puredata", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
195     signalpred->Add(signalpredlo,-1);
196     signalpred->Add(signalpredro);
197     puresignal->Add(signalpred,-1);//subtracting signal contamination
198     ofstream myfile;
199     myfile.open ("ShapeFit_log.txt");
200     establish_upper_limits(puredata,dataprediction,puresignal,"LM4",myfile);
201     myfile.close();
202     */
203     }
204    
205 buchmann 1.2 vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, bool doobserved=false) {
206     float sigma95=0.0,sigma95A=0.0;
207 buchmann 1.4 int nuisancemodel=1;
208     dout << "Now calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl;
209     sigma95 = CL95(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], Nobs[ibin], false, nuisancemodel);
210 buchmann 1.2 if(doobserved) {
211 buchmann 1.4 dout << "Now calling : CLA(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << nuisancemodel<< ") " << endl;
212     sigma95A = CLA(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], nuisancemodel);
213 buchmann 1.2 }
214     vector<float> sigmas;
215     sigmas.push_back(sigma95);
216     sigmas.push_back(sigma95A);
217     return sigmas;
218     }
219    
220     void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doobserved) {
221 buchmann 1.3 dout << "Doing counting experiment ... " << endl;
222 buchmann 1.2 vector<vector<string> > limits;
223     vector<vector<float> > vlimits;
224    
225 buchmann 1.1
226     for(int isample=0;isample<signalsamples.collection.size();isample++) {
227 buchmann 1.2 vector<string> rows;
228     vector<float> vrows;
229 buchmann 1.3 dout << "Considering sample " << signalsamples.collection[isample].samplename << endl;
230 buchmann 1.2 rows.push_back(signalsamples.collection[isample].samplename);
231 buchmann 1.1 for(int ibin=0;ibin<jzbcuts.size();ibin++) {
232 buchmann 1.3 dout << "_________________________________________________________________________________" << endl;
233 buchmann 1.2 float JZBcutat=uncertainties[isample*jzbcuts.size()+ibin][0];
234     float mceff=uncertainties[isample*jzbcuts.size()+ibin][1];
235     float staterr=uncertainties[isample*jzbcuts.size()+ibin][2];
236     float systerr=uncertainties[isample*jzbcuts.size()+ibin][3];
237     float toterr =uncertainties[isample*jzbcuts.size()+ibin][4];
238     float observed,null,result;
239     fill_result_histos(observed, null,null,null,null,null,null,null,mcjzb,JZBcutat,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples);
240     observed-=result;//this is the actual excess we see!
241     float expected=observed/luminosity;
242    
243 buchmann 1.3 dout << "Sample: " << signalsamples.collection[isample].samplename << ", JZB>"<<JZBcutat<< " : " << mceff << " +/- " << staterr << " (stat) +/- " << systerr << " (syst) --> toterr = " << toterr << endl;
244 buchmann 1.2 vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,doobserved);
245    
246     if(doobserved) {
247     rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")");
248     vrows.push_back(sigmas[0]);
249     vrows.push_back(sigmas[1]);
250     vrows.push_back(expected);
251     }
252     else {
253     rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")");
254     vrows.push_back(sigmas[0]);
255     vrows.push_back(expected);
256     }
257 buchmann 1.1 }//end of bin loop
258 buchmann 1.2 limits.push_back(rows);
259     vlimits.push_back(vrows);
260 buchmann 1.1 }//end of sample loop
261 buchmann 1.3 dout << endl << endl << "PAS table 3: " << endl << endl;
262     dout << "\t";
263 buchmann 1.2 for (int irow=0;irow<jzbcuts.size();irow++) {
264 buchmann 1.3 dout << jzbcuts[irow] << "\t";
265 buchmann 1.2 }
266 buchmann 1.3 dout << endl;
267 buchmann 1.2 for(int irow=0;irow<limits.size();irow++) {
268     for(int ientry=0;ientry<limits[irow].size();ientry++) {
269 buchmann 1.3 dout << limits[irow][ientry] << "\t";
270 buchmann 1.2 }
271 buchmann 1.3 dout << endl;
272 buchmann 1.2 }
273    
274     if(!doobserved) {
275 buchmann 1.3 dout << endl << endl << "LIMITS: " << endl;
276     dout << "\t";
277 buchmann 1.2 for (int irow=0;irow<jzbcuts.size();irow++) {
278 buchmann 1.3 dout << jzbcuts[irow] << "\t";
279 buchmann 1.2 }
280 buchmann 1.3 dout << endl;
281 buchmann 1.2 for(int irow=0;irow<limits.size();irow++) {
282 buchmann 1.3 dout << limits[irow][0] << "\t";
283 buchmann 1.2 for(int ientry=0;ientry<jzbcuts.size();ientry++) {
284 buchmann 1.3 dout << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "\t";
285 buchmann 1.2 }
286 buchmann 1.3 dout << endl;
287 buchmann 1.2 }
288     }//do observed
289 buchmann 1.3
290     dout << endl << endl << "Final selection efficiencies with total statistical and systematic errors, and corresponding observed and expected upper limits (UL) on ($\\sigma\\times$ BR $\\times$ acceptance) for the LM4 and LM8 scenarios, in the different regions. The last column contains the predicted ($\\sigma \\times $BR$\\times$ acceptance) at NLO obtained from Monte Carlo simulation." << endl;
291     dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t Prediction [pb]" << endl;
292     for(int icut=0;icut<jzbcuts.size();icut++) {
293     dout << "Region with JZB>" << jzbcuts[icut] << endl;
294     for(int isample=0;isample<signalsamples.collection.size();isample++) {
295     dout << limits[icut][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],1) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],1) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],1) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl;
296     }
297     dout << endl;
298     }
299 buchmann 1.4
300     write_warning("compute_upper_limits_from_counting_experiment","Still need to update the script");
301 buchmann 1.1 }
302    
303     void susy_scan_axis_labeling(TH2F *histo) {
304     histo->GetXaxis()->SetTitle("#Chi_{2}^{0}-LSP");
305     histo->GetXaxis()->CenterTitle();
306     histo->GetYaxis()->SetTitle("m_{#tilde{q}}");
307     histo->GetYaxis()->CenterTitle();
308     }
309    
310     void scan_susy_space(string mcjzb, string datajzb) {
311     TCanvas *c3 = new TCanvas("c3","c3");
312     vector<float> binning;
313     binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
314     float arrbinning[binning.size()];
315     for(int i=0;i<binning.size();i++) arrbinning[i]=binning[i];
316     TH1F *puredata = allsamples.Draw("puredata", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
317     puredata->SetMarkerSize(DataMarkerSize);
318     TH1F *allbgs = allsamples.Draw("allbgs", "-"+datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
319     TH1F *allbgsb = allsamples.Draw("allbgsb", "-"+datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data,luminosity);
320     TH1F *allbgsc = allsamples.Draw("allbgsc", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data,luminosity);
321     allbgs->Add(allbgsb,-1);
322     allbgs->Add(allbgsc);
323     int ndata=puredata->Integral();
324     ofstream myfile;
325     myfile.open ("susyscan_log.txt");
326     TFile *susyscanfile = new TFile("/scratch/fronga/SMS/T5z_SqSqToQZQZ_38xFall10.root");
327     TTree *suevents = (TTree*)susyscanfile->Get("events");
328     TH2F *exclusionmap = new TH2F("exclusionmap","",20,0,500,20,0,1000);
329     TH2F *exclusionmap1s = new TH2F("exclusionmap1s","",20,0,500,20,0,1000);
330     TH2F *exclusionmap2s = new TH2F("exclusionmap2s","",20,0,500,20,0,1000);
331     TH2F *exclusionmap3s = new TH2F("exclusionmap3s","",20,0,500,20,0,1000);
332    
333     susy_scan_axis_labeling(exclusionmap);
334     susy_scan_axis_labeling(exclusionmap1s);
335     susy_scan_axis_labeling(exclusionmap2s);
336     susy_scan_axis_labeling(exclusionmap3s);
337    
338     Int_t MyPalette[100];
339     Double_t r[] = {0., 0.0, 1.0, 1.0, 1.0};
340     Double_t g[] = {0., 0.0, 0.0, 1.0, 1.0};
341     Double_t b[] = {0., 1.0, 0.0, 0.0, 1.0};
342     Double_t stop[] = {0., .25, .50, .75, 1.0};
343     Int_t FI = TColor::CreateGradientColorTable(5, stop, r, g, b, 100);
344     for (int i=0;i<100;i++) MyPalette[i] = FI+i;
345    
346     gStyle->SetPalette(100, MyPalette);
347    
348     for(int m23=50;m23<500;m23+=25) {
349     for (int m0=(2*(m23-50)+150);m0<=1000;m0+=50)
350     {
351     c3->cd();
352     stringstream drawcondition;
353     drawcondition << "pfJetGoodNum>=3&&(TMath::Abs(masses[0]-"<<m0<<")<10&&TMath::Abs(masses[2]-masses[3]-"<<m23<<")<10)&&mll>5&&id1==id2";
354     TH1F *puresignal = new TH1F("puresignal","puresignal",binning.size()-1,arrbinning);
355     TH1F *puresignall= new TH1F("puresignall","puresignal",binning.size()-1,arrbinning);
356     stringstream drawvar,drawvar2;
357     drawvar<<mcjzb<<">>puresignal";
358     drawvar2<<"-"<<mcjzb<<">>puresignall";
359     suevents->Draw(drawvar.str().c_str(),drawcondition.str().c_str());
360     suevents->Draw(drawvar2.str().c_str(),drawcondition.str().c_str());
361     if(puresignal->Integral()<60) {
362     delete puresignal;
363     continue;
364     }
365     puresignal->Add(puresignall,-1);//we need to correct for the signal contamination - we effectively only see (JZB>0)-(JZB<0) !!
366     puresignal->Scale(ndata/(20*puresignal->Integral()));//normalizing it to 5% of the data
367     stringstream saveas;
368     saveas<<"Model_Scan/m0_"<<m0<<"__m23_"<<m23;
369 buchmann 1.3 dout << "PLEASE KEEP IN MIND THAT SIGNAL CONTAMINATION IS NOT REALLY TAKEN CARE OF YET DUE TO LOW STATISTICS! SHOULD BE SOMETHING LIKE THIS : "<< endl;
370 buchmann 1.1 // TH1F *signalpredlo = allsamples.Draw("signalpredlo", "-"+mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4"));
371     // TH1F *signalpredro = allsamples.Draw("signalpredro", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4"));
372     // TH1F *puredata = allsamples.Draw("puredata", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
373     // signalpred->Add(signalpredlo,-1);
374     // signalpred->Add(signalpredro);
375     // puresignal->Add(signalpred,-1);//subtracting signal contamination
376     //---------------------
377 buchmann 1.3 // dout << "(m0,m23)=("<<m0<<","<<m23<<") contains " << puresignal->Integral() << endl;
378 buchmann 1.1 // TH1F *puresignal = allsamples.Draw("puresignal",mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4"));
379     vector<float> results=establish_upper_limits(puredata,allbgs,puresignal,saveas.str(),myfile);
380     if(results.size()==0) {
381     delete puresignal;
382     continue;
383     }
384     exclusionmap->Fill(m23,m0,results[0]);
385     exclusionmap1s->Fill(m23,m0,results[1]);
386     exclusionmap2s->Fill(m23,m0,results[2]);
387     exclusionmap3s->Fill(m23,m0,results[3]);
388     delete puresignal;
389 buchmann 1.3 dout << "(m0,m23)=("<<m0<<","<<m23<<") : 3 sigma at " << results[3] << endl;
390 buchmann 1.1 }
391     }//end of model scan for loop
392    
393 buchmann 1.3 dout << "Exclusion Map contains" << exclusionmap->Integral() << " (integral) and entries: " << exclusionmap->GetEntries() << endl;
394 buchmann 1.1 c3->cd();
395     exclusionmap->Draw("CONTZ");
396     CompleteSave(c3,"Model_Scan/CONT/Model_Scan_Mean_values");
397     exclusionmap->Draw("COLZ");
398     CompleteSave(c3,"Model_Scan/COL/Model_Scan_Mean_values");
399    
400     exclusionmap1s->Draw("CONTZ");
401     CompleteSave(c3,"Model_Scan/CONT/Model_Scan_1sigma_values");
402     exclusionmap1s->Draw("COLZ");
403     CompleteSave(c3,"Model_Scan/COL/Model_Scan_1sigma_values");
404    
405     exclusionmap2s->Draw("CONTZ");
406     CompleteSave(c3,"Model_Scan/CONT/Model_Scan_2sigma_values");
407     exclusionmap2s->Draw("COLZ");
408     CompleteSave(c3,"Model_Scan/COL/Model_Scan_2sigma_values");
409    
410     exclusionmap3s->Draw("CONTZ");
411     CompleteSave(c3,"Model_Scan/CONT/Model_Scan_3sigma_values");
412     exclusionmap3s->Draw("COLZ");
413     CompleteSave(c3,"Model_Scan/COL/Model_Scan_3sigma_values");
414    
415     TFile *exclusion_limits = new TFile("exclusion_limits.root","RECREATE");
416     exclusionmap->Write();
417     exclusionmap1s->Write();
418     exclusionmap2s->Write();
419     exclusionmap3s->Write();
420     exclusion_limits->Close();
421     susyscanfile->Close();
422    
423     myfile.close();
424     }
425    
426    
427    
428