ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/cbrown/AnalysisFramework/Plotting/Modules/LimitCalculation.C
Revision: 1.5
Committed: Wed Jul 20 14:34:31 2011 UTC (13 years, 9 months ago) by buchmann
Content type: text/plain
Branch: MAIN
Changes since 1.4: +148 -35 lines
Log Message:
Moved functions that were for temporary studies out of the main workflow

File Contents

# User Rev Content
1 buchmann 1.1 #include <iostream>
2     #include <vector>
3     #include <sys/stat.h>
4    
5     #include <TCut.h>
6     #include <TROOT.h>
7     #include <TCanvas.h>
8     #include <TMath.h>
9     #include <TColor.h>
10     #include <TPaveText.h>
11     #include <TRandom.h>
12     #include <TH1.h>
13     #include <TH2.h>
14     #include <TF1.h>
15     #include <TSQLResult.h>
16     #include <TProfile.h>
17    
18     //#include "TTbar_stuff.C"
19     using namespace std;
20    
21     using namespace PlottingSetup;
22    
23    
24     void rediscover_the_top(string mcjzb, string datajzb) {
25 buchmann 1.3 dout << "Hi! today we are going to (try to) rediscover the top!" << endl;
26 buchmann 1.1 TCanvas *c3 = new TCanvas("c3","c3");
27     c3->SetLogy(1);
28     vector<float> binning;
29     //binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
30     /*
31     binning.push_back(50);
32     binning.push_back(100);
33     binning.push_back(150);
34     binning.push_back(200);
35     binning.push_back(500);
36    
37    
38     TH1F *dataprediction = allsamples.Draw("dataprediction", "-"+datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
39     TH1F *puresignal = allsamples.Draw("puresignal", datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
40     // TH1F *puresignal = allsamples.Draw("puresignal", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("TTJets"));
41     TH1F *observed = allsamples.Draw("observed", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
42     /*
43     ofstream myfile;
44     TH1F *ratio = (TH1F*)observed->Clone();
45     ratio->Divide(dataprediction);
46     ratio->GetYaxis()->SetTitle("Ratio obs/pred");
47     ratio->Draw();
48     c3->SaveAs("testratio.png");
49     myfile.open ("ShapeFit_log.txt");
50     establish_upper_limits(observed,dataprediction,puresignal,"LM4",myfile);
51     myfile.close();
52     */
53    
54    
55     int nbins=100;
56     float low=0;
57     float hi=500;
58     TCanvas *c4 = new TCanvas("c4","c4",900,900);
59     c4->Divide(2,2);
60     c4->cd(1);
61     c4->cd(1)->SetLogy(1);
62     TH1F *datapredictiont = allsamples.Draw("datapredictiont", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
63     TH1F *datapredictiono = allsamples.Draw("datapredictiono", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
64     datapredictiont->Add(datapredictiono,-1);
65 buchmann 1.3 dout << "Second way of doing this !!!! Analytical shape to the left :-D" << endl;
66 buchmann 1.1 vector<TF1*> functions = do_cb_fit_to_plot(datapredictiont,10);
67     datapredictiont->SetMarkerColor(kRed);
68     datapredictiont->SetLineColor(kRed);
69     datapredictiont->Draw();
70     functions[1]->Draw("same");
71     TText *title1 = write_title("Top Background Prediction (JZB<0, with osof subtr)");
72     title1->Draw();
73    
74     c4->cd(2);
75     c4->cd(2)->SetLogy(1);
76     TH1F *observedt = allsamples.Draw("observedt", datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
77     observedt->Draw();
78     datapredictiont->Draw("histo,same");
79     functions[1]->Draw("same");
80     TText *title2 = write_title("Observed and predicted background");
81     title2->Draw();
82    
83     c4->cd(3);
84     c4->cd(3)->SetLogy(1);
85     // TH1F *ratio = (TH1F*)observedt->Clone();
86    
87     TH1F *analytical_background_prediction= new TH1F("analytical_background_prediction","",nbins,low,hi);
88     for(int i=0;i<=nbins;i++) {
89     analytical_background_prediction->SetBinContent(i+1,functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5)));
90     analytical_background_prediction->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5))));
91     }
92     analytical_background_prediction->GetYaxis()->SetTitle("JZB [GeV]");
93     analytical_background_prediction->GetYaxis()->CenterTitle();
94     TH1F *analyticaldrawonly = (TH1F*)analytical_background_prediction->Clone();
95     analytical_background_prediction->SetFillColor(TColor::GetColor("#3399FF"));
96     analytical_background_prediction->SetMarkerSize(0);
97     analytical_background_prediction->Draw("e5");
98     analyticaldrawonly->Draw("histo,same");
99     functions[1]->Draw("same");
100     TText *title3 = write_title("Analytical bg pred histo");
101     title3->Draw();
102    
103     c4->cd(4);
104     // c4->cd(4)->SetLogy(1);
105     vector<float> ratio_binning;
106     ratio_binning.push_back(0);
107     ratio_binning.push_back(5);
108     ratio_binning.push_back(10);
109     ratio_binning.push_back(20);
110     ratio_binning.push_back(50);
111     // ratio_binning.push_back(60);
112     /*
113     ratio_binning.push_back(51);
114     ratio_binning.push_back(52);
115     ratio_binning.push_back(53);
116     ratio_binning.push_back(54);
117     ratio_binning.push_back(55);
118     ratio_binning.push_back(56);
119     ratio_binning.push_back(57);
120     ratio_binning.push_back(58);
121     ratio_binning.push_back(59);
122     ratio_binning.push_back(60);
123     // ratio_binning.push_back(70);*/
124     // ratio_binning.push_back(80);
125     // ratio_binning.push_back(90);
126     ratio_binning.push_back(80);
127     // ratio_binning.push_back(110);
128     ratio_binning.push_back(500);
129    
130     TH1F *observedtb = allsamples.Draw("observedtb", datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
131     TH1F *datapredictiontb = allsamples.Draw("datapredictiontb", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
132     TH1F *datapredictiontbo = allsamples.Draw("datapredictiontbo", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
133     datapredictiontb->Add(datapredictiontbo,-1);
134     TH1F *analytical_background_predictionb = allsamples.Draw("analytical_background_predictionb",datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets&&"mll<2",data, luminosity);
135     for(int i=0;i<=ratio_binning.size();i++) {
136     analytical_background_predictionb->SetBinContent(i+1,functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i)));
137     analytical_background_predictionb->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i))));
138     }
139    
140     TH1F *ratio = (TH1F*) observedtb->Clone();
141     ratio->Divide(datapredictiontb);
142    
143     for (int i=0;i<=ratio_binning.size();i++) {
144 buchmann 1.3 dout << observedtb->GetBinLowEdge(i+1) << ";"<<observedtb->GetBinContent(i+1) << ";" << datapredictiontb->GetBinContent(i+1) << " --> " << ratio->GetBinContent(i+1) << "+/-" << ratio->GetBinError(i+1) << endl;
145 buchmann 1.1 }
146    
147     // ratio->Divide(datapredictiontb);
148     // ratio->Divide(analytical_background_predictionb);
149     // TGraphAsymmErrors *JZBratio= histRatio(observedtb,analytical_background_predictionb,data,ratio_binning);
150     // ratio->Divide(analytical_background_prediction);
151     // ratio->Divide(datapredictiont);
152     // ratio->GetYaxis()->SetTitle("obs/pred");
153     // JZBratio->Draw("AP");
154     ratio->GetYaxis()->SetRangeUser(0,10);
155     ratio->Draw();
156     //analytical_background_predictionb->Draw();
157     // JZBratio->SetTitle("");
158     TText *title4 = write_title("Ratio of observed to predicted");
159     title4->Draw();
160    
161     // CompleteSave(c4,"test/ttbar_discovery_dataprediction___analytical_function");
162     CompleteSave(c4,"test/ttbar_discovery_dataprediction__analytical__new_binning_one_huge_bin_from_80");
163    
164    
165    
166    
167    
168     }
169    
170 buchmann 1.2 vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, bool doobserved=false) {
171     float sigma95=0.0,sigma95A=0.0;
172 buchmann 1.4 int nuisancemodel=1;
173     dout << "Now calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl;
174     sigma95 = CL95(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], Nobs[ibin], false, nuisancemodel);
175 buchmann 1.2 if(doobserved) {
176 buchmann 1.4 dout << "Now calling : CLA(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << nuisancemodel<< ") " << endl;
177     sigma95A = CLA(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], nuisancemodel);
178 buchmann 1.2 }
179     vector<float> sigmas;
180     sigmas.push_back(sigma95);
181     sigmas.push_back(sigma95A);
182     return sigmas;
183     }
184    
185     void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doobserved) {
186 buchmann 1.3 dout << "Doing counting experiment ... " << endl;
187 buchmann 1.2 vector<vector<string> > limits;
188     vector<vector<float> > vlimits;
189    
190 buchmann 1.1
191     for(int isample=0;isample<signalsamples.collection.size();isample++) {
192 buchmann 1.2 vector<string> rows;
193     vector<float> vrows;
194 buchmann 1.3 dout << "Considering sample " << signalsamples.collection[isample].samplename << endl;
195 buchmann 1.2 rows.push_back(signalsamples.collection[isample].samplename);
196 buchmann 1.1 for(int ibin=0;ibin<jzbcuts.size();ibin++) {
197 buchmann 1.3 dout << "_________________________________________________________________________________" << endl;
198 buchmann 1.2 float JZBcutat=uncertainties[isample*jzbcuts.size()+ibin][0];
199     float mceff=uncertainties[isample*jzbcuts.size()+ibin][1];
200     float staterr=uncertainties[isample*jzbcuts.size()+ibin][2];
201     float systerr=uncertainties[isample*jzbcuts.size()+ibin][3];
202     float toterr =uncertainties[isample*jzbcuts.size()+ibin][4];
203     float observed,null,result;
204     fill_result_histos(observed, null,null,null,null,null,null,null,mcjzb,JZBcutat,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples);
205     observed-=result;//this is the actual excess we see!
206     float expected=observed/luminosity;
207    
208 buchmann 1.3 dout << "Sample: " << signalsamples.collection[isample].samplename << ", JZB>"<<JZBcutat<< " : " << mceff << " +/- " << staterr << " (stat) +/- " << systerr << " (syst) --> toterr = " << toterr << endl;
209 buchmann 1.2 vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,doobserved);
210    
211     if(doobserved) {
212     rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")");
213     vrows.push_back(sigmas[0]);
214     vrows.push_back(sigmas[1]);
215     vrows.push_back(expected);
216     }
217     else {
218     rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")");
219     vrows.push_back(sigmas[0]);
220     vrows.push_back(expected);
221     }
222 buchmann 1.1 }//end of bin loop
223 buchmann 1.2 limits.push_back(rows);
224     vlimits.push_back(vrows);
225 buchmann 1.1 }//end of sample loop
226 buchmann 1.3 dout << endl << endl << "PAS table 3: " << endl << endl;
227     dout << "\t";
228 buchmann 1.2 for (int irow=0;irow<jzbcuts.size();irow++) {
229 buchmann 1.3 dout << jzbcuts[irow] << "\t";
230 buchmann 1.2 }
231 buchmann 1.3 dout << endl;
232 buchmann 1.2 for(int irow=0;irow<limits.size();irow++) {
233     for(int ientry=0;ientry<limits[irow].size();ientry++) {
234 buchmann 1.3 dout << limits[irow][ientry] << "\t";
235 buchmann 1.2 }
236 buchmann 1.3 dout << endl;
237 buchmann 1.2 }
238    
239     if(!doobserved) {
240 buchmann 1.3 dout << endl << endl << "LIMITS: " << endl;
241     dout << "\t";
242 buchmann 1.2 for (int irow=0;irow<jzbcuts.size();irow++) {
243 buchmann 1.3 dout << jzbcuts[irow] << "\t";
244 buchmann 1.2 }
245 buchmann 1.3 dout << endl;
246 buchmann 1.2 for(int irow=0;irow<limits.size();irow++) {
247 buchmann 1.3 dout << limits[irow][0] << "\t";
248 buchmann 1.2 for(int ientry=0;ientry<jzbcuts.size();ientry++) {
249 buchmann 1.3 dout << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "\t";
250 buchmann 1.2 }
251 buchmann 1.3 dout << endl;
252 buchmann 1.2 }
253     }//do observed
254 buchmann 1.3
255     dout << endl << endl << "Final selection efficiencies with total statistical and systematic errors, and corresponding observed and expected upper limits (UL) on ($\\sigma\\times$ BR $\\times$ acceptance) for the LM4 and LM8 scenarios, in the different regions. The last column contains the predicted ($\\sigma \\times $BR$\\times$ acceptance) at NLO obtained from Monte Carlo simulation." << endl;
256     dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t Prediction [pb]" << endl;
257     for(int icut=0;icut<jzbcuts.size();icut++) {
258     dout << "Region with JZB>" << jzbcuts[icut] << endl;
259     for(int isample=0;isample<signalsamples.collection.size();isample++) {
260     dout << limits[icut][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],1) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],1) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],1) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl;
261     }
262     dout << endl;
263     }
264 buchmann 1.4
265     write_warning("compute_upper_limits_from_counting_experiment","Still need to update the script");
266 buchmann 1.1 }
267    
268     void susy_scan_axis_labeling(TH2F *histo) {
269     histo->GetXaxis()->SetTitle("#Chi_{2}^{0}-LSP");
270     histo->GetXaxis()->CenterTitle();
271     histo->GetYaxis()->SetTitle("m_{#tilde{q}}");
272     histo->GetYaxis()->CenterTitle();
273     }
274    
275     void scan_susy_space(string mcjzb, string datajzb) {
276     TCanvas *c3 = new TCanvas("c3","c3");
277     vector<float> binning;
278     binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
279     float arrbinning[binning.size()];
280     for(int i=0;i<binning.size();i++) arrbinning[i]=binning[i];
281     TH1F *puredata = allsamples.Draw("puredata", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
282     puredata->SetMarkerSize(DataMarkerSize);
283     TH1F *allbgs = allsamples.Draw("allbgs", "-"+datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
284     TH1F *allbgsb = allsamples.Draw("allbgsb", "-"+datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data,luminosity);
285     TH1F *allbgsc = allsamples.Draw("allbgsc", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data,luminosity);
286     allbgs->Add(allbgsb,-1);
287     allbgs->Add(allbgsc);
288     int ndata=puredata->Integral();
289     ofstream myfile;
290     myfile.open ("susyscan_log.txt");
291     TFile *susyscanfile = new TFile("/scratch/fronga/SMS/T5z_SqSqToQZQZ_38xFall10.root");
292     TTree *suevents = (TTree*)susyscanfile->Get("events");
293     TH2F *exclusionmap = new TH2F("exclusionmap","",20,0,500,20,0,1000);
294     TH2F *exclusionmap1s = new TH2F("exclusionmap1s","",20,0,500,20,0,1000);
295     TH2F *exclusionmap2s = new TH2F("exclusionmap2s","",20,0,500,20,0,1000);
296     TH2F *exclusionmap3s = new TH2F("exclusionmap3s","",20,0,500,20,0,1000);
297    
298     susy_scan_axis_labeling(exclusionmap);
299     susy_scan_axis_labeling(exclusionmap1s);
300     susy_scan_axis_labeling(exclusionmap2s);
301     susy_scan_axis_labeling(exclusionmap3s);
302    
303     Int_t MyPalette[100];
304     Double_t r[] = {0., 0.0, 1.0, 1.0, 1.0};
305     Double_t g[] = {0., 0.0, 0.0, 1.0, 1.0};
306     Double_t b[] = {0., 1.0, 0.0, 0.0, 1.0};
307     Double_t stop[] = {0., .25, .50, .75, 1.0};
308     Int_t FI = TColor::CreateGradientColorTable(5, stop, r, g, b, 100);
309     for (int i=0;i<100;i++) MyPalette[i] = FI+i;
310    
311     gStyle->SetPalette(100, MyPalette);
312    
313     for(int m23=50;m23<500;m23+=25) {
314     for (int m0=(2*(m23-50)+150);m0<=1000;m0+=50)
315     {
316     c3->cd();
317     stringstream drawcondition;
318     drawcondition << "pfJetGoodNum>=3&&(TMath::Abs(masses[0]-"<<m0<<")<10&&TMath::Abs(masses[2]-masses[3]-"<<m23<<")<10)&&mll>5&&id1==id2";
319     TH1F *puresignal = new TH1F("puresignal","puresignal",binning.size()-1,arrbinning);
320     TH1F *puresignall= new TH1F("puresignall","puresignal",binning.size()-1,arrbinning);
321     stringstream drawvar,drawvar2;
322     drawvar<<mcjzb<<">>puresignal";
323     drawvar2<<"-"<<mcjzb<<">>puresignall";
324     suevents->Draw(drawvar.str().c_str(),drawcondition.str().c_str());
325     suevents->Draw(drawvar2.str().c_str(),drawcondition.str().c_str());
326     if(puresignal->Integral()<60) {
327     delete puresignal;
328     continue;
329     }
330     puresignal->Add(puresignall,-1);//we need to correct for the signal contamination - we effectively only see (JZB>0)-(JZB<0) !!
331     puresignal->Scale(ndata/(20*puresignal->Integral()));//normalizing it to 5% of the data
332     stringstream saveas;
333     saveas<<"Model_Scan/m0_"<<m0<<"__m23_"<<m23;
334 buchmann 1.3 dout << "PLEASE KEEP IN MIND THAT SIGNAL CONTAMINATION IS NOT REALLY TAKEN CARE OF YET DUE TO LOW STATISTICS! SHOULD BE SOMETHING LIKE THIS : "<< endl;
335 buchmann 1.1 // TH1F *signalpredlo = allsamples.Draw("signalpredlo", "-"+mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4"));
336     // TH1F *signalpredro = allsamples.Draw("signalpredro", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4"));
337     // TH1F *puredata = allsamples.Draw("puredata", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
338     // signalpred->Add(signalpredlo,-1);
339     // signalpred->Add(signalpredro);
340     // puresignal->Add(signalpred,-1);//subtracting signal contamination
341     //---------------------
342 buchmann 1.3 // dout << "(m0,m23)=("<<m0<<","<<m23<<") contains " << puresignal->Integral() << endl;
343 buchmann 1.1 // TH1F *puresignal = allsamples.Draw("puresignal",mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4"));
344     vector<float> results=establish_upper_limits(puredata,allbgs,puresignal,saveas.str(),myfile);
345     if(results.size()==0) {
346     delete puresignal;
347     continue;
348     }
349     exclusionmap->Fill(m23,m0,results[0]);
350     exclusionmap1s->Fill(m23,m0,results[1]);
351     exclusionmap2s->Fill(m23,m0,results[2]);
352     exclusionmap3s->Fill(m23,m0,results[3]);
353     delete puresignal;
354 buchmann 1.3 dout << "(m0,m23)=("<<m0<<","<<m23<<") : 3 sigma at " << results[3] << endl;
355 buchmann 1.1 }
356     }//end of model scan for loop
357    
358 buchmann 1.3 dout << "Exclusion Map contains" << exclusionmap->Integral() << " (integral) and entries: " << exclusionmap->GetEntries() << endl;
359 buchmann 1.1 c3->cd();
360     exclusionmap->Draw("CONTZ");
361     CompleteSave(c3,"Model_Scan/CONT/Model_Scan_Mean_values");
362     exclusionmap->Draw("COLZ");
363     CompleteSave(c3,"Model_Scan/COL/Model_Scan_Mean_values");
364    
365     exclusionmap1s->Draw("CONTZ");
366     CompleteSave(c3,"Model_Scan/CONT/Model_Scan_1sigma_values");
367     exclusionmap1s->Draw("COLZ");
368     CompleteSave(c3,"Model_Scan/COL/Model_Scan_1sigma_values");
369    
370     exclusionmap2s->Draw("CONTZ");
371     CompleteSave(c3,"Model_Scan/CONT/Model_Scan_2sigma_values");
372     exclusionmap2s->Draw("COLZ");
373     CompleteSave(c3,"Model_Scan/COL/Model_Scan_2sigma_values");
374    
375     exclusionmap3s->Draw("CONTZ");
376     CompleteSave(c3,"Model_Scan/CONT/Model_Scan_3sigma_values");
377     exclusionmap3s->Draw("COLZ");
378     CompleteSave(c3,"Model_Scan/COL/Model_Scan_3sigma_values");
379    
380     TFile *exclusion_limits = new TFile("exclusion_limits.root","RECREATE");
381     exclusionmap->Write();
382     exclusionmap1s->Write();
383     exclusionmap2s->Write();
384     exclusionmap3s->Write();
385     exclusion_limits->Close();
386     susyscanfile->Close();
387    
388     myfile.close();
389     }
390    
391    
392    
393    
394 buchmann 1.5 //********************************************************************** new : Limits using SHAPES ***********************************
395    
396     void limit_shapes_for_systematic_effect(TFile *limfile, string identifier, string mcjzb, string datajzb, int JES,vector<float> binning, TCanvas *limcan) {
397     dout << "Creatig shape templates ... ";
398     if(identifier!="") dout << "for systematic called "<<identifier;
399     dout << endl;
400     int dataormc=mcwithsignal;//this is only for tests - for real life you want dataormc=data !!!
401     if(dataormc!=data) write_warning("limit_shapes_for_systematic_effect","WATCH OUT! Not using data for limits!!!! this is ok for tests, but not ok for anything official!");
402    
403     TCut limitnJetcut;
404     if(JES==noJES) limitnJetcut=cutnJets;
405     else {
406     if(JES==JESdown) limitnJetcut=cutnJetsJESdown;
407     if(JES==JESup) limitnJetcut=cutnJetsJESup;
408     }
409     TH1F *ZOSSFP = allsamples.Draw("ZOSSFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
410     TH1F *ZOSOFP = allsamples.Draw("ZOSOFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
411     TH1F *ZOSSFN = allsamples.Draw("ZOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
412     TH1F *ZOSOFN = allsamples.Draw("ZOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
413    
414     TH1F *SBOSSFP = allsamples.Draw("SBOSSFP",datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
415     TH1F *SBOSOFP = allsamples.Draw("SBOSOFP",datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
416     TH1F *SBOSSFN = allsamples.Draw("SBOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
417     TH1F *SBOSOFN = allsamples.Draw("SBOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
418    
419     TH1F *LZOSSFP = allsamples.Draw("LZOSSFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
420     TH1F *LZOSOFP = allsamples.Draw("LZOSOFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
421     TH1F *LZOSSFN = allsamples.Draw("LZOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
422     TH1F *LZOSOFN = allsamples.Draw("LZOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
423    
424     TH1F *LSBOSSFP = allsamples.Draw("LSBOSSFP",mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
425     TH1F *LSBOSOFP = allsamples.Draw("LSBOSOFP",mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
426     TH1F *LSBOSSFN = allsamples.Draw("LSBOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
427     TH1F *LSBOSOFN = allsamples.Draw("LSBOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
428    
429     string obsname="data_obs";
430     string predname="background";
431     string signalname="signal";
432     if(identifier!="") {
433     obsname=("data_"+identifier);
434     predname=("background_"+identifier);
435     signalname="signal_"+identifier;
436     }
437    
438     TH1F *obs = (TH1F*)ZOSSFP->Clone();
439     obs->SetName(obsname.c_str());
440     obs->Write();
441     TH1F *pred = (TH1F*)ZOSSFN->Clone();
442     pred->Add(ZOSOFP,1.0/3);
443     pred->Add(ZOSOFN,-1.0/3);
444     pred->Add(SBOSSFP,1.0/3);
445     pred->Add(SBOSSFN,-1.0/3);
446     pred->Add(SBOSOFP,1.0/3);
447     pred->Add(SBOSOFN,-1.0/3);
448     pred->SetName(predname.c_str());
449     pred->Write();
450    
451     // TH1F *Lobs = (TH1F*)LZOSSFP->Clone();
452     // TH1F *Lpred = (TH1F*)LZOSSFN->Clone();
453    
454     TH1F *Lobs = new TH1F("Lobs","Lobs",binning.size()-1,&binning[0]);
455     TH1F *Lpred = new TH1F("Lpred","Lpred",binning.size()-1,&binning[0]);
456     Lobs->Add(LZOSSFP);
457     Lpred->Add(LZOSSFN);
458     Lpred->Add(LZOSOFP,1.0/3);
459     Lpred->Add(LZOSOFN,-1.0/3);
460     Lpred->Add(LSBOSSFP,1.0/3);
461     Lpred->Add(LSBOSSFN,-1.0/3);
462     Lpred->Add(LSBOSOFP,1.0/3);
463     Lpred->Add(LSBOSOFN,-1.0/3);
464     TH1F *signal = (TH1F*)Lobs->Clone();
465     signal->Add(Lpred,-1);
466     signal->SetName(signalname.c_str());
467     signal->Write();
468    
469     delete Lobs;
470     delete Lpred;
471    
472     delete ZOSSFP;
473     delete ZOSOFP;
474     delete ZOSSFN;
475     delete ZOSOFN;
476    
477     delete SBOSSFP;
478     delete SBOSOFP;
479     delete SBOSSFN;
480     delete SBOSOFN;
481    
482     delete LZOSSFP;
483     delete LZOSOFP;
484     delete LZOSSFN;
485     delete LZOSOFN;
486    
487     delete LSBOSSFP;
488     delete LSBOSOFP;
489     delete LSBOSSFN;
490     delete LSBOSOFN;
491    
492     }
493    
494     void prepare_datacard(TFile *f) {
495     TH1F *dataob = (TH1F*)f->Get("data_obs");
496     TH1F *signal = (TH1F*)f->Get("signal");
497     TH1F *background = (TH1F*)f->Get("background");
498    
499     ofstream datacard;
500     ensure_directory_exists(get_directory()+"/limits");
501     datacard.open ((get_directory()+"/limits/susylm4datacard.txt").c_str());
502     datacard << "Writing this to a file.\n";
503     datacard << "imax 1\n";
504     datacard << "jmax 1\n";
505     datacard << "kmax *\n";
506     datacard << "---------------\n";
507     datacard << "shapes * * limitfile.root $PROCESS $PROCESS_$SYSTEMATIC\n";
508     datacard << "---------------\n";
509     datacard << "bin 1\n";
510     datacard << "observation "<<dataob->Integral()<<"\n";
511     datacard << "------------------------------\n";
512     datacard << "bin 1 1\n";
513     datacard << "process signal background\n";
514     datacard << "process 0 1\n";
515     datacard << "rate "<<signal->Integral()<<" "<<background->Integral()<<"\n";
516     datacard << "--------------------------------\n";
517     datacard << "lumi lnN 1.10 1.0\n";
518     datacard << "bgnorm lnN 1.00 1.4 uncertainty on our prediction (40%)\n";
519     datacard << "JES shape 1 1 uncertainty on background shape and normalization\n";
520     datacard << "peak shape 1 1 uncertainty on signal resolution. Assume the histogram is a 2 sigma shift, \n";
521     datacard << "# so divide the unit gaussian by 2 before doing the interpolation\n";
522     datacard.close();
523     }
524    
525    
526     void prepare_limits(string mcjzb, string datajzb, float jzbpeakerrordata, float jzbpeakerrormc, vector<float> jzbbins) {
527     ensure_directory_exists(get_directory()+"/limits");
528     TFile *limfile = new TFile((get_directory()+"/limits/limitfile.root").c_str(),"RECREATE");
529     TCanvas *limcan = new TCanvas("limcan","Canvas for calculating limits");
530     limit_shapes_for_systematic_effect(limfile,"",mcjzb,datajzb,noJES,jzbbins,limcan);
531     limit_shapes_for_systematic_effect(limfile,"peakUp",newjzbexpression(mcjzb,jzbpeakerrormc),newjzbexpression(datajzb,jzbpeakerrordata),noJES,jzbbins,limcan);
532     limit_shapes_for_systematic_effect(limfile,"peakDown",newjzbexpression(mcjzb,-jzbpeakerrormc),newjzbexpression(datajzb,-jzbpeakerrordata),noJES,jzbbins,limcan);
533     limit_shapes_for_systematic_effect(limfile,"JESUp",mcjzb,datajzb,JESup,jzbbins,limcan);
534     limit_shapes_for_systematic_effect(limfile,"JESDown",mcjzb,datajzb,JESdown,jzbbins,limcan);
535    
536     prepare_datacard(limfile);
537    
538     write_info("prepare_limits","limitfile.root and datacard.txt have been generated. You can now use them to calculate limits!");
539     limfile->Close();
540    
541     }