ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/cbrown/AnalysisFramework/Plotting/Modules/LimitCalculation.C
(Generate patch)

Comparing UserCode/cbrown/AnalysisFramework/Plotting/Modules/LimitCalculation.C (file contents):
Revision 1.1 by buchmann, Tue Jul 19 08:15:45 2011 UTC vs.
Revision 1.15 by buchmann, Thu Sep 1 11:01:42 2011 UTC

# Line 1 | Line 1
1   #include <iostream>
2   #include <vector>
3   #include <sys/stat.h>
4 + #include <fstream>
5  
6   #include <TCut.h>
7   #include <TROOT.h>
# Line 22 | Line 23 | using namespace PlottingSetup;
23  
24  
25   void rediscover_the_top(string mcjzb, string datajzb) {
26 <  cout << "Hi! today we are going to (try to) rediscover the top!" << endl;
26 >  dout << "Hi! today we are going to (try to) rediscover the top!" << endl;
27    TCanvas *c3 = new TCanvas("c3","c3");
28    c3->SetLogy(1);
29    vector<float> binning;
# Line 62 | Line 63 | void rediscover_the_top(string mcjzb, st
63    TH1F *datapredictiont = allsamples.Draw("datapredictiont",    "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,  luminosity);
64    TH1F *datapredictiono = allsamples.Draw("datapredictiono",    "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data,  luminosity);
65    datapredictiont->Add(datapredictiono,-1);
66 <  cout << "Second way of doing this !!!! Analytical shape to the left :-D" << endl;
66 >  dout << "Second way of doing this !!!! Analytical shape to the left :-D" << endl;
67    vector<TF1*> functions = do_cb_fit_to_plot(datapredictiont,10);
68    datapredictiont->SetMarkerColor(kRed);
69    datapredictiont->SetLineColor(kRed);
# Line 141 | Line 142 | ratio_binning.push_back(80);
142    ratio->Divide(datapredictiontb);
143    
144    for (int i=0;i<=ratio_binning.size();i++) {
145 <    cout << observedtb->GetBinLowEdge(i+1) << ";"<<observedtb->GetBinContent(i+1) << ";" << datapredictiontb->GetBinContent(i+1) << " --> " << ratio->GetBinContent(i+1) << "+/-" << ratio->GetBinError(i+1) << endl;
145 >    dout << observedtb->GetBinLowEdge(i+1) << ";"<<observedtb->GetBinContent(i+1) << ";" << datapredictiontb->GetBinContent(i+1) << " --> " << ratio->GetBinContent(i+1) << "+/-" << ratio->GetBinError(i+1) << endl;
146    }
147    
148   //  ratio->Divide(datapredictiontb);
# Line 167 | Line 168 | ratio_binning.push_back(80);
168    
169   }
170  
171 < void calculate_upper_limits(string mcjzb, string datajzb) {
172 <  write_warning("calculate_upper_limits","Upper limit calculation temporarily deactivated");
173 < //  write_warning("calculate_upper_limits","Calculation of SUSY upper limits has been temporarily suspended in favor of top discovery");
174 < //  rediscover_the_top(mcjzb,datajzb);
175 < /*  
176 <  TCanvas *c3 = new TCanvas("c3","c3");
177 <  c3->SetLogy(1);
178 <  vector<float> binning;
179 <  //binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
180 <  binning.push_back(50);
181 <  binning.push_back(100);
182 <  binning.push_back(150);
183 <  binning.push_back(200);
184 <  binning.push_back(500);
185 <  TH1F *datapredictiona = allsamples.Draw("datapredictiona",    "-"+datajzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc,  luminosity);
186 <  TH1F *datapredictionb = allsamples.Draw("datapredictionb",    "-"+datajzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc,  luminosity);
187 <  TH1F *datapredictionc = allsamples.Draw("datapredictionc",    datajzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc,  luminosity);
188 <  TH1F *dataprediction = (TH1F*)datapredictiona->Clone();
189 <  dataprediction->Add(datapredictionb,-1);
190 <  dataprediction->Add(datapredictionc);
191 <  TH1F *puresignal     = allsamples.Draw("puresignal",        mcjzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc,  luminosity,allsamples.FindSample("LM4"));
192 <  TH1F *signalpred     = allsamples.Draw("signalpred",    "-"+mcjzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc,  luminosity,allsamples.FindSample("LM4"));
193 <  TH1F *signalpredlo   = allsamples.Draw("signalpredlo",  "-"+mcjzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc,  luminosity,allsamples.FindSample("LM4"));
194 <  TH1F *signalpredro   = allsamples.Draw("signalpredro",      mcjzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc,  luminosity,allsamples.FindSample("LM4"));
195 <  TH1F *puredata       = allsamples.Draw("puredata",          datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
196 <  signalpred->Add(signalpredlo,-1);
197 <  signalpred->Add(signalpredro);
198 <  puresignal->Add(signalpred,-1);//subtracting signal contamination
199 <  ofstream myfile;
200 <  myfile.open ("ShapeFit_log.txt");
201 <  establish_upper_limits(puredata,dataprediction,puresignal,"LM4",myfile);
202 <  myfile.close();
203 < */
171 > vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, string plotfilename, bool doobserved) {
172 >  float sigma95=-9.9,sigma95A=-9.9;
173 >  int nuisancemodel=0;
174 > /*
175 > USAGE OF ROOSTATS_CL95
176 > " Double_t             limit = roostats_cl95(ilum, slum, eff, seff, bck, sbck, n, gauss = false, nuisanceModel, method, plotFileName, seed); \n"
177 > " LimitResult expected_limit = roostats_clm(ilum, slum, eff, seff, bck, sbck, ntoys, nuisanceModel, method, seed); \n"
178 > " Double_t     average_limit = roostats_cla(ilum, slum, eff, seff, bck, sbck, nuisanceModel, method, seed); \n"
179 > "                                                                     \n"
180 > "
181 > " Double_t obs_limit = limit.GetObservedLimit();                      \n"
182 > " Double_t exp_limit = limit.GetExpectedLimit();                      \n"
183 > " Double_t exp_up    = limit.GetOneSigmaHighRange();                  \n"
184 > " Double_t exp_down  = limit.GetOneSigmaLowRange();                   \n"
185 > " Double_t exp_2up   = limit.GetTwoSigmaHighRange();                  \n"
186 > " Double_t exp_2down = limit.GetTwoSigmaLowRange();                   \n"
187 > */
188 >  if(mceff<=0) {
189 >    write_warning(__FUNCTION__,"Cannot compute upper limit in this configuration as the efficiency is negative:");
190 >    dout << "mc efficiency=" << mceff << " +/- " << mcefferr;
191 >    vector<float> sigmas;
192 >    sigmas.push_back(-1);
193 >    sigmas.push_back(-1);
194 >    return sigmas;
195 >  } else {
196 >    int nlimittoysused=1;
197 >    if(doobserved) nlimittoysused=nlimittoys;
198 > /*  dout << "Now calling : CL95(" << luminosity << "," <<  lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl;
199 >  sigma95 = CL95(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], Nobs[ibin], false, nuisancemodel);
200 >  */
201 >  dout << "Now calling : roostats_limit(" << luminosity << "," << lumiuncert*luminosity << ","<<mceff <<","<<mcefferr<<","<<Npred[ibin]<<","<<Nprederr[ibin] << ",n=" << nlimittoysused << ",gauss=" << false << ", nuisanceModel="<<nuisancemodel<<",method="<<limitmethod<<",plotfilename="<<plotfilename<<",seed=1) " << endl;
202 >  LimitResult limit = roostats_limit(luminosity,lumiuncert*luminosity,mceff,mcefferr,Npred[ibin],Nprederr[ibin],nlimittoysused,false,nuisancemodel,limitmethod,plotfilename,1);
203 >  
204 >  vector<float> sigmas;
205 >  sigmas.push_back(limit.GetExpectedLimit());//expected
206 >  sigmas.push_back(limit.GetObservedLimit());//observed
207 >  //up to here for backward compatibility
208 >  sigmas.push_back(limit.GetOneSigmaHighRange());//expected, up
209 >  sigmas.push_back(limit.GetTwoSigmaHighRange());//expected, 2 up
210 >  sigmas.push_back(limit.GetOneSigmaLowRange());//expected, down
211 >  sigmas.push_back(limit.GetTwoSigmaLowRange());//expected, 2 down
212 > //  if(doobserved) {
213 > //    dout << "Now calling : CLA(" << luminosity << "," <<  lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << nuisancemodel<< ") " << endl;
214 > //    sigma95A = CLA(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], nuisancemodel);
215 > //  }
216 >
217 > /*  vector<float> sigmas;
218 >  sigmas.push_back(sigma95);
219 >  sigmas.push_back(sigma95A);*/
220 >  return sigmas;
221 >  
222 >
223 >  }
224 >  write_warning(__FUNCTION__,"STILL MISSING SIGMAS, LIMITS, EVERYTHING ...");
225   }
226  
227 < void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts) {
228 <  cout << "Doing counting experiment ... " << endl;
227 > void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doobserved) {
228 >  dout << "Doing counting experiment ... " << endl;
229 >  vector<vector<string> > limits;
230 >  vector<vector<float> > vlimits;
231 >  
232    
233    for(int isample=0;isample<signalsamples.collection.size();isample++) {
234 <    cout << "Considering sample " << signalsamples.collection[isample].samplename << endl;
234 >    vector<string> rows;
235 >    vector<float> vrows;
236 >    dout << "Considering sample " << signalsamples.collection[isample].samplename << endl;
237 >    rows.push_back(signalsamples.collection[isample].samplename);
238      for(int ibin=0;ibin<jzbcuts.size();ibin++) {
239 <      cout << "   Considering bin " << jzbcuts[ibin] << endl;
240 <      for(int isyst=0;isyst<uncertainties[isample*jzbcuts.size()+ibin].size();isyst++) {
241 <        if(isyst==0) {
242 <          if(uncertainties[isample*jzbcuts.size()+ibin][isyst]!=jzbcuts[ibin]) cout << "WATCH OUT THERE SEEMS TO BE A PROBLEM - THE TEST BIN DOESN'T CORRESPOND TO YOUR BIN!" << endl;
243 <          continue;
244 <        }
245 <        cout << "     Considering syst " << isyst << " : " << uncertainties[isample*jzbcuts.size()+ibin][isyst] << endl;
246 <      }//end of syst loop
247 <    }//end of bin loop
248 <  }//end of sample loop
249 < }
250 <
251 < void susy_scan_axis_labeling(TH2F *histo) {
252 <  histo->GetXaxis()->SetTitle("#Chi_{2}^{0}-LSP");
253 <  histo->GetXaxis()->CenterTitle();
254 <  histo->GetYaxis()->SetTitle("m_{#tilde{q}}");
255 <  histo->GetYaxis()->CenterTitle();
256 < }
257 <
258 < void scan_susy_space(string mcjzb, string datajzb) {
259 <  TCanvas *c3 = new TCanvas("c3","c3");
260 <  vector<float> binning;
233 <  binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
234 <  /*
235 <  binning.push_back(50);
236 <  binning.push_back(75);
237 <  binning.push_back(100);
238 <  binning.push_back(150);
239 <  binning.push_back(200);
240 <  binning.push_back(500);
241 <  */
242 <  float arrbinning[binning.size()];
243 <  for(int i=0;i<binning.size();i++) arrbinning[i]=binning[i];
244 <  TH1F *puredata   = allsamples.Draw("puredata",  datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
245 <  puredata->SetMarkerSize(DataMarkerSize);
246 <  TH1F *allbgs   = allsamples.Draw("allbgs",  "-"+datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
247 <  TH1F *allbgsb   = allsamples.Draw("allbgsb",  "-"+datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data,luminosity);
248 <  TH1F *allbgsc   = allsamples.Draw("allbgsc",  datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data,luminosity);
249 <  allbgs->Add(allbgsb,-1);
250 <  allbgs->Add(allbgsc);
251 <  int ndata=puredata->Integral();
252 <  ofstream myfile;
253 <  myfile.open ("susyscan_log.txt");
254 <  TFile *susyscanfile = new TFile("/scratch/fronga/SMS/T5z_SqSqToQZQZ_38xFall10.root");
255 <  TTree *suevents = (TTree*)susyscanfile->Get("events");
256 <  TH2F *exclusionmap = new TH2F("exclusionmap","",20,0,500,20,0,1000);
257 <  TH2F *exclusionmap1s = new TH2F("exclusionmap1s","",20,0,500,20,0,1000);
258 <  TH2F *exclusionmap2s = new TH2F("exclusionmap2s","",20,0,500,20,0,1000);
259 <  TH2F *exclusionmap3s = new TH2F("exclusionmap3s","",20,0,500,20,0,1000);
260 <  
261 <  susy_scan_axis_labeling(exclusionmap);
262 <  susy_scan_axis_labeling(exclusionmap1s);
263 <  susy_scan_axis_labeling(exclusionmap2s);
264 <  susy_scan_axis_labeling(exclusionmap3s);
265 <  
266 <  Int_t MyPalette[100];
267 <  Double_t r[]    = {0., 0.0, 1.0, 1.0, 1.0};
268 <  Double_t g[]    = {0., 0.0, 0.0, 1.0, 1.0};
269 <  Double_t b[]    = {0., 1.0, 0.0, 0.0, 1.0};
270 <  Double_t stop[] = {0., .25, .50, .75, 1.0};
271 <  Int_t FI = TColor::CreateGradientColorTable(5, stop, r, g, b, 100);
272 <  for (int i=0;i<100;i++) MyPalette[i] = FI+i;
273 <  
274 <  gStyle->SetPalette(100, MyPalette);
275 <  
276 <  for(int m23=50;m23<500;m23+=25) {
277 <    for (int m0=(2*(m23-50)+150);m0<=1000;m0+=50)
278 <    {
279 <      c3->cd();
280 <      stringstream drawcondition;
281 <      drawcondition << "pfJetGoodNum>=3&&(TMath::Abs(masses[0]-"<<m0<<")<10&&TMath::Abs(masses[2]-masses[3]-"<<m23<<")<10)&&mll>5&&id1==id2";
282 <      TH1F *puresignal = new TH1F("puresignal","puresignal",binning.size()-1,arrbinning);
283 <      TH1F *puresignall= new TH1F("puresignall","puresignal",binning.size()-1,arrbinning);
284 <      stringstream drawvar,drawvar2;
285 <      drawvar<<mcjzb<<">>puresignal";
286 <      drawvar2<<"-"<<mcjzb<<">>puresignall";
287 <      suevents->Draw(drawvar.str().c_str(),drawcondition.str().c_str());
288 <      suevents->Draw(drawvar2.str().c_str(),drawcondition.str().c_str());
289 <      if(puresignal->Integral()<60) {
290 <        delete puresignal;
291 <        continue;
239 >      dout << "_________________________________________________________________________________" << endl;
240 >      float JZBcutat=uncertainties[isample*jzbcuts.size()+ibin][0];
241 >      float mceff=uncertainties[isample*jzbcuts.size()+ibin][1];
242 >      float staterr=uncertainties[isample*jzbcuts.size()+ibin][2];
243 >      float systerr=uncertainties[isample*jzbcuts.size()+ibin][3];
244 >      float toterr =uncertainties[isample*jzbcuts.size()+ibin][4];
245 >      float observed,observederr,null,result;
246 >      
247 > //      fill_result_histos(observed,observederr, null,null,null,null,null,null,null,mcjzb,JZBcutat,14000,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples);
248 > //      observed-=result;//this is the actual excess we see!
249 > //      float expected=observed/luminosity;
250 >      string plotfilename=(string)(TString(signalsamples.collection[isample].samplename)+TString("___JZB_geq_")+TString(any2string(JZBcutat)));
251 >      dout << "Sample: " << signalsamples.collection[isample].samplename << ", JZB>"<<JZBcutat<< " : " << mceff << " +/- " << staterr << " (stat) +/- " << systerr << " (syst) --> toterr = " << toterr << endl;
252 >      vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,plotfilename,doobserved);
253 >      
254 >      if(doobserved) {
255 > //      rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")");
256 >        rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(signalsamples.collection[isample].xs)+")");
257 >        vrows.push_back(sigmas[0]);
258 >        vrows.push_back(sigmas[1]);
259 > //      vrows.push_back(expected);
260 >        vrows.push_back(signalsamples.collection[isample].xs);
261        }
262 <      puresignal->Add(puresignall,-1);//we need to correct for the signal contamination - we effectively only see (JZB>0)-(JZB<0) !!
263 <      puresignal->Scale(ndata/(20*puresignal->Integral()));//normalizing it to 5% of the data
264 <      stringstream saveas;
265 <      saveas<<"Model_Scan/m0_"<<m0<<"__m23_"<<m23;
266 <      cout << "PLEASE KEEP IN MIND THAT SIGNAL CONTAMINATION IS NOT REALLY TAKEN CARE OF YET DUE TO LOW STATISTICS! SHOULD BE SOMETHING LIKE THIS : "<< endl;
267 < //        TH1F *signalpredlo   = allsamples.Draw("signalpredlo",  "-"+mcjzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc,  luminosity,allsamples.FindSample("LM4"));
299 < //        TH1F *signalpredro   = allsamples.Draw("signalpredro",      mcjzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc,  luminosity,allsamples.FindSample("LM4"));
300 < //        TH1F *puredata       = allsamples.Draw("puredata",          datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
301 < //        signalpred->Add(signalpredlo,-1);
302 < //        signalpred->Add(signalpredro);
303 < //        puresignal->Add(signalpred,-1);//subtracting signal contamination
304 < //---------------------
305 < //      cout << "(m0,m23)=("<<m0<<","<<m23<<") contains " << puresignal->Integral() << endl;
306 < //    TH1F *puresignal = allsamples.Draw("puresignal",mcjzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc,  luminosity,allsamples.FindSample("LM4"));
307 <      vector<float> results=establish_upper_limits(puredata,allbgs,puresignal,saveas.str(),myfile);  
308 <      if(results.size()==0) {
309 <        delete puresignal;
310 <        continue;
262 >      else {
263 > //      rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")");
264 >        rows.push_back(any2string(sigmas[0]));
265 >        vrows.push_back(sigmas[0]);
266 >        vrows.push_back(signalsamples.collection[isample].xs);
267 > //      vrows.push_back(expected);
268        }
269 <      exclusionmap->Fill(m23,m0,results[0]);
270 <      exclusionmap1s->Fill(m23,m0,results[1]);
271 <      exclusionmap2s->Fill(m23,m0,results[2]);
272 <      exclusionmap3s->Fill(m23,m0,results[3]);
273 <      delete puresignal;
274 <      cout << "(m0,m23)=("<<m0<<","<<m23<<") : 3 sigma at " << results[3] << endl;
269 >    }//end of bin loop
270 >    limits.push_back(rows);
271 >    vlimits.push_back(vrows);
272 >  }//end of sample loop
273 >  dout << endl << endl << endl << "_________________________________________________________________________________________________" << endl << endl;
274 >  dout << endl << endl << "PAS table 3:   (notation: limit [95%CL])" << endl << endl;
275 >  dout << "\t";
276 >  for (int irow=0;irow<jzbcuts.size();irow++) {
277 >    dout << jzbcuts[irow] << "\t";
278 >  }
279 >  dout << endl;
280 >  for(int irow=0;irow<limits.size();irow++) {
281 >    for(int ientry=0;ientry<limits[irow].size();ientry++) {
282 >      if (limits[irow][ientry]>0) dout << limits[irow][ientry] << "\t";
283 >      else dout << " (N/A) \t";
284      }
285 <  }//end of model scan for loop
285 >    dout << endl;
286 >  }
287    
288 <  cout << "Exclusion Map contains" << exclusionmap->Integral() << " (integral) and entries: " << exclusionmap->GetEntries() << endl;
289 <  c3->cd();
290 <  exclusionmap->Draw("CONTZ");
291 <  CompleteSave(c3,"Model_Scan/CONT/Model_Scan_Mean_values");
292 <  exclusionmap->Draw("COLZ");
293 <  CompleteSave(c3,"Model_Scan/COL/Model_Scan_Mean_values");
294 <  
295 <  exclusionmap1s->Draw("CONTZ");
296 <  CompleteSave(c3,"Model_Scan/CONT/Model_Scan_1sigma_values");
297 <  exclusionmap1s->Draw("COLZ");
298 <  CompleteSave(c3,"Model_Scan/COL/Model_Scan_1sigma_values");
299 <  
300 <  exclusionmap2s->Draw("CONTZ");
301 <  CompleteSave(c3,"Model_Scan/CONT/Model_Scan_2sigma_values");
302 <  exclusionmap2s->Draw("COLZ");
303 <  CompleteSave(c3,"Model_Scan/COL/Model_Scan_2sigma_values");
304 <  
305 <  exclusionmap3s->Draw("CONTZ");
306 <  CompleteSave(c3,"Model_Scan/CONT/Model_Scan_3sigma_values");
307 <  exclusionmap3s->Draw("COLZ");
308 <  CompleteSave(c3,"Model_Scan/COL/Model_Scan_3sigma_values");
309 <  
310 <  TFile *exclusion_limits = new TFile("exclusion_limits.root","RECREATE");
311 <  exclusionmap->Write();
312 <  exclusionmap1s->Write();
313 <  exclusionmap2s->Write();
314 <  exclusionmap3s->Write();
315 <  exclusion_limits->Close();
316 <  susyscanfile->Close();
288 >  if(!doobserved) {
289 >    dout << endl << endl << "LIMITS: (Tex)" << endl;
290 >    tout << "\\begin{table}[hbtp]" << endl;
291 >    tout << "\\renewcommand{\arraystretch}{1.3}" << endl;
292 >    tout << "\\begin{center}" << endl;
293 >    tout << "\\caption{Observed upper limits on the cross section of different LM benchmark points " << (ConsiderSignalContaminationForLimits?"  (accounting for signal contamination)":"  (not accounting for signal contamination)") << "}\\label{tab:lmresults}" << endl;
294 >    tout << "" << endl;
295 >    tout << "\\begin{tabular}{ | l | ";
296 >    for (int irow=0;irow<jzbcuts.size();irow++) tout << " l |";
297 >    tout << "} " << endl << " \\hline " << endl << "& \t ";
298 >    for (int irow=0;irow<jzbcuts.size();irow++) {
299 >      tout << "JZB $>$ " << jzbcuts[irow] << " GeV & \t ";
300 >    }
301 >    tout << " \\\\ \\hline " << endl;
302 >    for(int irow=0;irow<limits.size();irow++) {
303 >      tout << limits[irow][0] << " \t";
304 >      for(int ientry=0;ientry<jzbcuts.size();ientry++) {
305 >        if(vlimits[irow][2*ientry]>0) tout << " & " << Round(vlimits[irow][2*ientry],2) << " \t (" << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "x \\sigma ) \t";
306 >        else tout << " & ( N / A ) \t";
307 > //      dout << Round(vlimits[irow][2*ientry],3) << " / " << Round(vlimits[irow][2*ientry+1],3)<< "\t";
308 >      }
309 >      tout << " \\\\ \\hline " << endl;
310 >    }
311 >      tout << "\\end{tabular}" << endl;
312 >      tout << "      \\end{tabular}"<< endl;
313 >      tout << "\\end{center}"<< endl;
314 >      tout << "\\end{table} "<< endl;
315 >
316 >  }//do observed
317 >  
318 >  dout << endl << endl << "Final selection efficiencies with total statistical and systematic errors, and corresponding observed and expected upper limits (UL) on ($\\sigma\\times$  BR $\\times$ acceptance) for the LM4 and LM8 scenarios, in the different regions. The last column contains the predicted ($\\sigma \\times $BR$\\times$ acceptance) at NLO obtained from Monte Carlo simulation." << endl;
319 >  dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t \\sigma [pb]" << endl;
320 >  for(int icut=0;icut<jzbcuts.size();icut++) {
321 >    dout << "Region with JZB>" << jzbcuts[icut] << (ConsiderSignalContaminationForLimits?"  (accounting for signal contamination)":"  (not accounting for signal contamination)") << endl;
322 >    for(int isample=0;isample<signalsamples.collection.size();isample++) {
323 >      dout << limits[isample][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],3) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],3) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],3) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl;
324 >    }
325 >    dout << endl;
326 >  }
327    
328 <  myfile.close();
328 >  write_warning(__FUNCTION__,"Still need to update the script");
329   }
330  
331  
332 +
333 + /********************************************************************** new : Limits using SHAPES ***********************************
334 +
335 +
336 +   SSSSSSSSSSSSSSS hhhhhhh                                                                                      
337 + SS:::::::::::::::Sh:::::h                                                                                      
338 + S:::::SSSSSS::::::Sh:::::h                                                                                      
339 + S:::::S     SSSSSSSh:::::h                                                                                      
340 + S:::::S             h::::h hhhhh         aaaaaaaaaaaaa  ppppp   ppppppppp       eeeeeeeeeeee        ssssssssss  
341 + S:::::S             h::::hh:::::hhh      a::::::::::::a p::::ppp:::::::::p    ee::::::::::::ee    ss::::::::::s  
342 + S::::SSSS          h::::::::::::::hh    aaaaaaaaa:::::ap:::::::::::::::::p  e::::::eeeee:::::eess:::::::::::::s
343 +  SS::::::SSSSS     h:::::::hhh::::::h            a::::app::::::ppppp::::::pe::::::e     e:::::es::::::ssss:::::s
344 +    SSS::::::::SS   h::::::h   h::::::h    aaaaaaa:::::a p:::::p     p:::::pe:::::::eeeee::::::e s:::::s  ssssss
345 +       SSSSSS::::S  h:::::h     h:::::h  aa::::::::::::a p:::::p     p:::::pe:::::::::::::::::e    s::::::s      
346 +            S:::::S h:::::h     h:::::h a::::aaaa::::::a p:::::p     p:::::pe::::::eeeeeeeeeee        s::::::s  
347 +            S:::::S h:::::h     h:::::ha::::a    a:::::a p:::::p    p::::::pe:::::::e           ssssss   s:::::s
348 + SSSSSSS     S:::::S h:::::h     h:::::ha::::a    a:::::a p:::::ppppp:::::::pe::::::::e          s:::::ssss::::::s
349 + S::::::SSSSSS:::::S h:::::h     h:::::ha:::::aaaa::::::a p::::::::::::::::p  e::::::::eeeeeeee  s::::::::::::::s
350 + S:::::::::::::::SS  h:::::h     h:::::h a::::::::::aa:::ap::::::::::::::pp    ee:::::::::::::e   s:::::::::::ss  
351 + SSSSSSSSSSSSSSS    hhhhhhh     hhhhhhh  aaaaaaaaaa  aaaap::::::pppppppp        eeeeeeeeeeeeee    sssssssssss    
352 +                                                         p:::::p                                                
353 +                                                         p:::::p                                                
354 +                                                        p:::::::p                                                
355 +                                                        p:::::::p                                                
356 +                                                        p:::::::p                                                
357 +                                                        ppppppppp                                                
358 +                                                                                                                
359 +
360 + *********************************************************************** new : Limits using SHAPES ***********************************/
361 +
362 +
363 + void limit_shapes_for_systematic_effect(TFile *limfile, string identifier, string mcjzb, string datajzb, int JES,vector<float> binning, TCanvas *limcan) {
364 +  dout << "Creatig shape templates ... ";
365 +  if(identifier!="") dout << "for systematic called "<<identifier;
366 +  dout << endl;
367 +  int dataormc=mcwithsignal;//this is only for tests - for real life you want dataormc=data !!!
368 +  if(dataormc!=data) write_warning(__FUNCTION__,"WATCH OUT! Not using data for limits!!!! this is ok for tests, but not ok for anything official!");
369 +  
370 +  TCut limitnJetcut;
371 +  if(JES==noJES) limitnJetcut=cutnJets;
372 +  else {
373 +    if(JES==JESdown) limitnJetcut=cutnJetsJESdown;
374 +    if(JES==JESup) limitnJetcut=cutnJetsJESup;
375 +  }
376 +  TH1F *ZOSSFP = allsamples.Draw("ZOSSFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
377 +  TH1F *ZOSOFP = allsamples.Draw("ZOSOFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
378 +  TH1F *ZOSSFN = allsamples.Draw("ZOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
379 +  TH1F *ZOSOFN = allsamples.Draw("ZOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
380 +  
381 +  TH1F *SBOSSFP = allsamples.Draw("SBOSSFP",datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
382 +  TH1F *SBOSOFP = allsamples.Draw("SBOSOFP",datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
383 +  TH1F *SBOSSFN = allsamples.Draw("SBOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
384 +  TH1F *SBOSOFN = allsamples.Draw("SBOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
385 +  
386 +  TH1F *LZOSSFP = allsamples.Draw("LZOSSFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
387 +  TH1F *LZOSOFP = allsamples.Draw("LZOSOFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
388 +  TH1F *LZOSSFN = allsamples.Draw("LZOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
389 +  TH1F *LZOSOFN = allsamples.Draw("LZOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
390 +  
391 +  TH1F *LSBOSSFP = allsamples.Draw("LSBOSSFP",mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
392 +  TH1F *LSBOSOFP = allsamples.Draw("LSBOSOFP",mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
393 +  TH1F *LSBOSSFN = allsamples.Draw("LSBOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
394 +  TH1F *LSBOSOFN = allsamples.Draw("LSBOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
395 +  
396 +  string obsname="data_obs";
397 +  string predname="background";
398 +  string signalname="signal";
399 +  if(identifier!="") {
400 +    obsname=("data_"+identifier);
401 +    predname=("background_"+identifier);
402 +    signalname="signal_"+identifier;
403 +  }
404 +  
405 +  TH1F *obs = (TH1F*)ZOSSFP->Clone();
406 +  obs->SetName(obsname.c_str());
407 +  obs->Write();
408 +  TH1F *pred = (TH1F*)ZOSSFN->Clone();
409 +  pred->Add(ZOSOFP,1.0/3);
410 +  pred->Add(ZOSOFN,-1.0/3);
411 +  pred->Add(SBOSSFP,1.0/3);
412 +  pred->Add(SBOSSFN,-1.0/3);
413 +  pred->Add(SBOSOFP,1.0/3);
414 +  pred->Add(SBOSOFN,-1.0/3);
415 +  pred->SetName(predname.c_str());
416 +  pred->Write();
417 +  
418 + //  TH1F *Lobs = (TH1F*)LZOSSFP->Clone();
419 + //  TH1F *Lpred = (TH1F*)LZOSSFN->Clone();
420 +  
421 +  TH1F *Lobs = new TH1F("Lobs","Lobs",binning.size()-1,&binning[0]);
422 +  TH1F *Lpred = new TH1F("Lpred","Lpred",binning.size()-1,&binning[0]);
423 +  Lobs->Add(LZOSSFP);
424 +  Lpred->Add(LZOSSFN);
425 +  Lpred->Add(LZOSOFP,1.0/3);
426 +  Lpred->Add(LZOSOFN,-1.0/3);
427 +  Lpred->Add(LSBOSSFP,1.0/3);
428 +  Lpred->Add(LSBOSSFN,-1.0/3);
429 +  Lpred->Add(LSBOSOFP,1.0/3);
430 +  Lpred->Add(LSBOSOFN,-1.0/3);
431 +  TH1F *signal = (TH1F*)Lobs->Clone();
432 +  signal->Add(Lpred,-1);
433 +  signal->SetName(signalname.c_str());
434 +  signal->Write();
435 +  
436 +  delete Lobs;
437 +  delete Lpred;
438 +  
439 +  delete ZOSSFP;
440 +  delete ZOSOFP;
441 +  delete ZOSSFN;
442 +  delete ZOSOFN;
443 +  
444 +  delete SBOSSFP;
445 +  delete SBOSOFP;
446 +  delete SBOSSFN;
447 +  delete SBOSOFN;
448 +  
449 +  delete LZOSSFP;
450 +  delete LZOSOFP;
451 +  delete LZOSSFN;
452 +  delete LZOSOFN;
453 +  
454 +  delete LSBOSSFP;
455 +  delete LSBOSOFP;
456 +  delete LSBOSSFN;
457 +  delete LSBOSOFN;
458 +
459 + }
460  
461 + void prepare_datacard(TFile *f) {
462 + TH1F *dataob = (TH1F*)f->Get("data_obs");
463 + TH1F *signal = (TH1F*)f->Get("signal");
464 + TH1F *background = (TH1F*)f->Get("background");
465  
466 + ofstream datacard;
467 + ensure_directory_exists(get_directory()+"/limits");
468 + datacard.open ((get_directory()+"/limits/susydatacard.txt").c_str());
469 + datacard << "Writing this to a file.\n";
470 + datacard << "imax 1\n";
471 + datacard << "jmax 1\n";
472 + datacard << "kmax *\n";
473 + datacard << "---------------\n";
474 + datacard << "shapes * * limitfile.root $PROCESS $PROCESS_$SYSTEMATIC\n";
475 + datacard << "---------------\n";
476 + datacard << "bin 1\n";
477 + datacard << "observation "<<dataob->Integral()<<"\n";
478 + datacard << "------------------------------\n";
479 + datacard << "bin             1          1\n";
480 + datacard << "process         signal     background\n";
481 + datacard << "process         0          1\n";
482 + datacard << "rate            "<<signal->Integral()<<"         "<<background->Integral()<<"\n";
483 + datacard << "--------------------------------\n";
484 + datacard << "lumi     lnN    1.10       1.0\n";
485 + datacard << "bgnorm   lnN    1.00       1.4  uncertainty on our prediction (40%)\n";
486 + datacard << "JES    shape    1          1    uncertainty on background shape and normalization\n";
487 + datacard << "peak   shape    1          1    uncertainty on signal resolution. Assume the histogram is a 2 sigma shift, \n";
488 + datacard << "#                                so divide the unit gaussian by 2 before doing the interpolation\n";
489 + datacard.close();
490 + }
491 +
492 +
493 + void prepare_limits(string mcjzb, string datajzb, float jzbpeakerrordata, float jzbpeakerrormc, vector<float> jzbbins) {
494 +  ensure_directory_exists(get_directory()+"/limits");
495 +  TFile *limfile = new TFile((get_directory()+"/limits/limitfile.root").c_str(),"RECREATE");
496 +  TCanvas *limcan = new TCanvas("limcan","Canvas for calculating limits");
497 +  limit_shapes_for_systematic_effect(limfile,"",mcjzb,datajzb,noJES,jzbbins,limcan);
498 +  limit_shapes_for_systematic_effect(limfile,"peakUp",newjzbexpression(mcjzb,jzbpeakerrormc),newjzbexpression(datajzb,jzbpeakerrordata),noJES,jzbbins,limcan);
499 +  limit_shapes_for_systematic_effect(limfile,"peakDown",newjzbexpression(mcjzb,-jzbpeakerrormc),newjzbexpression(datajzb,-jzbpeakerrordata),noJES,jzbbins,limcan);
500 +  limit_shapes_for_systematic_effect(limfile,"JESUp",mcjzb,datajzb,JESup,jzbbins,limcan);
501 +  limit_shapes_for_systematic_effect(limfile,"JESDown",mcjzb,datajzb,JESdown,jzbbins,limcan);
502 +  
503 +  prepare_datacard(limfile);
504 +  limfile->Close();
505 +  write_info("prepare_limits","limitfile.root and datacard.txt have been generated. You can now use them to calculate limits!");
506 +  
507 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines