15 |
|
#include <TF1.h> |
16 |
|
#include <TSQLResult.h> |
17 |
|
#include <TProfile.h> |
18 |
+ |
#include <TSystem.h> |
19 |
+ |
#include "LimitDroplet.C" |
20 |
|
|
21 |
|
//#include "TTbar_stuff.C" |
22 |
|
using namespace std; |
170 |
|
|
171 |
|
} |
172 |
|
|
173 |
< |
vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, bool doobserved=false) { |
173 |
> |
vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, string plotfilename, bool doobserved) { |
174 |
|
float sigma95=-9.9,sigma95A=-9.9; |
175 |
< |
int nuisancemodel=1; |
175 |
> |
/* |
176 |
> |
USAGE OF ROOSTATS_CL95 |
177 |
> |
" Double_t limit = roostats_cl95(ilum, slum, eff, seff, bck, sbck, n, gauss = false, nuisanceModel, method, plotFileName, seed); \n" |
178 |
> |
" LimitResult expected_limit = roostats_clm(ilum, slum, eff, seff, bck, sbck, ntoys, nuisanceModel, method, seed); \n" |
179 |
> |
" Double_t average_limit = roostats_cla(ilum, slum, eff, seff, bck, sbck, nuisanceModel, method, seed); \n" |
180 |
> |
" \n" |
181 |
> |
" |
182 |
> |
" Double_t obs_limit = limit.GetObservedLimit(); \n" |
183 |
> |
" Double_t exp_limit = limit.GetExpectedLimit(); \n" |
184 |
> |
" Double_t exp_up = limit.GetOneSigmaHighRange(); \n" |
185 |
> |
" Double_t exp_down = limit.GetOneSigmaLowRange(); \n" |
186 |
> |
" Double_t exp_2up = limit.GetTwoSigmaHighRange(); \n" |
187 |
> |
" Double_t exp_2down = limit.GetTwoSigmaLowRange(); \n" |
188 |
> |
*/ |
189 |
|
if(mceff<=0) { |
190 |
|
write_warning(__FUNCTION__,"Cannot compute upper limit in this configuration as the efficiency is negative:"); |
191 |
|
dout << "mc efficiency=" << mceff << " +/- " << mcefferr; |
194 |
|
sigmas.push_back(-1); |
195 |
|
return sigmas; |
196 |
|
} else { |
197 |
< |
dout << "Now calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl; |
198 |
< |
sigma95 = CL95(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], Nobs[ibin], false, nuisancemodel); |
197 |
> |
int nlimittoysused=1; |
198 |
> |
|
199 |
> |
///------------------------------------------ < NEW > ---------------------------------------------------------- |
200 |
> |
|
201 |
> |
int secondssince1970=time(NULL); |
202 |
> |
stringstream repname; |
203 |
> |
repname << PlottingSetup::cbafbasedir << "/exchange/report_" << secondssince1970 << "_"<<plotfilename<< "__"<< ".txt"; |
204 |
> |
|
205 |
> |
/* - report filename [1] |
206 |
> |
- luminosity [2] |
207 |
> |
- lumi uncert [3] |
208 |
> |
- MC efficiency [4] |
209 |
> |
- MC efficiency error [5] |
210 |
> |
- Npred [6] |
211 |
> |
- Nprederr [7] |
212 |
> |
- Nobs [8] |
213 |
> |
- JZB cut [9] |
214 |
> |
- plot name [10]*/ |
215 |
> |
|
216 |
> |
dout << "Calling limit capsule instead of calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl; |
217 |
> |
|
218 |
> |
stringstream command; |
219 |
> |
command << PlottingSetup::cbafbasedir << "/DistributedModelCalculations/Limits/LimitCapsule.exec " << repname.str() << " " << luminosity << " " << luminosity*lumiuncert << " " << mceff << " " << mcefferr << " " << Npred[ibin] << " " << Nprederr[ibin] << " " << Nobs[ibin] << " " << -1 << " " << plotfilename; |
220 |
> |
dout << command.str() << endl; |
221 |
> |
|
222 |
> |
int retval = 256; |
223 |
> |
int attempts=0; |
224 |
> |
while(!(retval==0||attempts>=5)) {//try up to 5 times |
225 |
> |
attempts++; |
226 |
> |
dout << "Starting limit calculation (LimitCapsule) now : Attempt " << attempts << endl; |
227 |
> |
retval=gSystem->Exec(command.str().c_str()); |
228 |
> |
} |
229 |
> |
|
230 |
> |
LimitDroplet limres; |
231 |
> |
limres.readDroplet(repname.str()); |
232 |
> |
dout << limres << endl; |
233 |
> |
remove(repname.str().c_str()); |
234 |
> |
sigma95=limres.expected; |
235 |
> |
|
236 |
> |
|
237 |
> |
///------------------------------------------ < /NEW > ---------------------------------------------------------- |
238 |
> |
//if(doobserved) nlimittoysused=nlimittoys; |
239 |
> |
// nlimittoysused=nlimittoys; |
240 |
> |
// dout << "Now calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl; |
241 |
> |
// sigma95 = CL95(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], Nobs[ibin], false, nuisancemodel); |
242 |
> |
// sigma95 = CL95(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], Nobs[ibin], false, nuisancemodel); |
243 |
> |
|
244 |
> |
/* dout << "Now calling : roostats_cl95(" << luminosity << "," << lumiuncert*luminosity << ","<<mceff <<","<<mcefferr<<","<<Npred[ibin]<<","<<Nprederr[ibin] << ",n=" << nlimittoysused << ",gauss=" << false << ",nuisanceModel="<<nuisancemodel<<",method="<<limitmethod<<",plotfilename="<<plotfilename<<",seed=0) " << endl; |
245 |
> |
/* dout << "Now calling : roostats_limit(" << luminosity << "," << lumiuncert*luminosity << ","<<mceff <<","<<mcefferr<<","<<Npred[ibin]<<","<<Nprederr[ibin] << ",n=" << nlimittoysused << ",gauss=" << false << ", nuisanceModel="<<nuisancemodel<<",method="<<limitmethod<<",plotfilename="<<plotfilename<<",seed=1) " << endl; |
246 |
> |
LimitResult limit = roostats_limit(luminosity,lumiuncert*luminosity,mceff,mcefferr,Npred[ibin],Nprederr[ibin],nlimittoysused,false,nuisancemodel,limitmethod,plotfilename,0); |
247 |
> |
dout << "Now interpreting and saving results ... " << endl; |
248 |
> |
vector<float> sigmas; |
249 |
> |
sigmas.push_back(limit.GetExpectedLimit());//expected |
250 |
> |
sigmas.push_back(limit.GetObservedLimit());//observed |
251 |
> |
//up to here for backward compatibility |
252 |
> |
sigmas.push_back(limit.GetOneSigmaHighRange());//expected, up |
253 |
> |
sigmas.push_back(limit.GetTwoSigmaHighRange());//expected, 2 up |
254 |
> |
sigmas.push_back(limit.GetOneSigmaLowRange());//expected, down |
255 |
> |
sigmas.push_back(limit.GetTwoSigmaLowRange());//expected, 2 down |
256 |
> |
*/ |
257 |
> |
// float limit = roostats_cl95(luminosity,lumiuncert*luminosity,mceff,mcefferr,Npred[ibin],Nprederr[ibin],nlimittoysused,false,nuisancemodel,limitmethod,plotfilename,0); |
258 |
|
if(doobserved) { |
259 |
< |
dout << "Now calling : CLA(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << nuisancemodel<< ") " << endl; |
260 |
< |
sigma95A = CLA(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], nuisancemodel); |
259 |
> |
write_warning(__FUNCTION__,"OBSERVED LIMITS HAVE BEEN SWITCHED OFF TEMPORARILY"); |
260 |
> |
// dout << "Now calling : CLA(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << nuisancemodel<< ") " << endl; |
261 |
> |
// sigma95A = CLA(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], nuisancemodel); |
262 |
|
} |
263 |
+ |
// vector<float> sigmas; |
264 |
+ |
// sigmas.push_back(limit); |
265 |
|
vector<float> sigmas; |
266 |
|
sigmas.push_back(sigma95); |
267 |
|
sigmas.push_back(sigma95A); |
268 |
|
return sigmas; |
269 |
+ |
|
270 |
+ |
|
271 |
|
} |
272 |
+ |
write_warning(__FUNCTION__,"STILL MISSING SIGMAS, LIMITS, EVERYTHING ..."); |
273 |
|
} |
274 |
|
|
275 |
|
void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doobserved) { |
295 |
|
// fill_result_histos(observed,observederr, null,null,null,null,null,null,null,mcjzb,JZBcutat,14000,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples); |
296 |
|
// observed-=result;//this is the actual excess we see! |
297 |
|
// float expected=observed/luminosity; |
298 |
< |
|
298 |
> |
string plotfilename=(string)(TString(signalsamples.collection[isample].samplename)+TString("___JZB_geq_")+TString(any2string(JZBcutat))+TString(".png")); |
299 |
|
dout << "Sample: " << signalsamples.collection[isample].samplename << ", JZB>"<<JZBcutat<< " : " << mceff << " +/- " << staterr << " (stat) +/- " << systerr << " (syst) --> toterr = " << toterr << endl; |
300 |
< |
vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,doobserved); |
300 |
> |
vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,plotfilename,doobserved); |
301 |
|
|
302 |
|
if(doobserved) { |
303 |
|
// rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")"); |
336 |
|
if(!doobserved) { |
337 |
|
dout << endl << endl << "LIMITS: (Tex)" << endl; |
338 |
|
tout << "\\begin{table}[hbtp]" << endl; |
339 |
< |
tout << "\\renewcommand{\arraystretch}{1.3}" << endl; |
339 |
> |
tout << "\\renewcommand{\\arraystretch}{1.3}" << endl; |
340 |
|
tout << "\\begin{center}" << endl; |
341 |
< |
tout << "\\caption{Observed upper limits on the cross section of different LM benchmark points " << (ConsiderSignalContaminationForLimits?" (without considering signal contamination)":" (accounting for signal contamination)") << "}\\label{tab:lmresults}" << endl; |
341 |
> |
tout << "\\caption{Observed upper limits on the cross section of different LM benchmark points " << (ConsiderSignalContaminationForLimits?" (accounting for signal contamination)":" (not accounting for signal contamination)") << "}\\label{tab:lmresults}" << endl; |
342 |
|
tout << "" << endl; |
343 |
|
tout << "\\begin{tabular}{ | l | "; |
344 |
|
for (int irow=0;irow<jzbcuts.size();irow++) tout << " l |"; |
366 |
|
dout << endl << endl << "Final selection efficiencies with total statistical and systematic errors, and corresponding observed and expected upper limits (UL) on ($\\sigma\\times$ BR $\\times$ acceptance) for the LM4 and LM8 scenarios, in the different regions. The last column contains the predicted ($\\sigma \\times $BR$\\times$ acceptance) at NLO obtained from Monte Carlo simulation." << endl; |
367 |
|
dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t \\sigma [pb]" << endl; |
368 |
|
for(int icut=0;icut<jzbcuts.size();icut++) { |
369 |
< |
dout << "Region with JZB>" << jzbcuts[icut] << (ConsiderSignalContaminationForLimits?" (without accounting for signal contamination)":" (accounting for signal contamination)") << endl; |
369 |
> |
dout << "Region with JZB>" << jzbcuts[icut] << (ConsiderSignalContaminationForLimits?" (accounting for signal contamination)":" (not accounting for signal contamination)") << endl; |
370 |
|
for(int isample=0;isample<signalsamples.collection.size();isample++) { |
371 |
|
dout << limits[isample][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],3) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],3) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],3) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl; |
372 |
|
} |