ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/cbrown/AnalysisFramework/Plotting/Modules/LimitCalculation.C
(Generate patch)

Comparing UserCode/cbrown/AnalysisFramework/Plotting/Modules/LimitCalculation.C (file contents):
Revision 1.3 by buchmann, Wed Jul 20 08:52:17 2011 UTC vs.
Revision 1.12 by buchmann, Fri Aug 26 10:37:21 2011 UTC

# Line 1 | Line 1
1   #include <iostream>
2   #include <vector>
3   #include <sys/stat.h>
4 + #include <fstream>
5  
6   #include <TCut.h>
7   #include <TROOT.h>
# Line 167 | Line 168 | ratio_binning.push_back(80);
168    
169   }
170  
170 void calculate_upper_limits(string mcjzb, string datajzb) {
171  write_warning("calculate_upper_limits","Upper limit calculation temporarily deactivated");
172 //  write_warning("calculate_upper_limits","Calculation of SUSY upper limits has been temporarily suspended in favor of top discovery");
173 //  rediscover_the_top(mcjzb,datajzb);
174 /*  
175  TCanvas *c3 = new TCanvas("c3","c3");
176  c3->SetLogy(1);
177  vector<float> binning;
178  //binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
179  binning.push_back(50);
180  binning.push_back(100);
181  binning.push_back(150);
182  binning.push_back(200);
183  binning.push_back(500);
184  TH1F *datapredictiona = allsamples.Draw("datapredictiona",    "-"+datajzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc,  luminosity);
185  TH1F *datapredictionb = allsamples.Draw("datapredictionb",    "-"+datajzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc,  luminosity);
186  TH1F *datapredictionc = allsamples.Draw("datapredictionc",    datajzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc,  luminosity);
187  TH1F *dataprediction = (TH1F*)datapredictiona->Clone();
188  dataprediction->Add(datapredictionb,-1);
189  dataprediction->Add(datapredictionc);
190  TH1F *puresignal     = allsamples.Draw("puresignal",        mcjzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc,  luminosity,allsamples.FindSample("LM4"));
191  TH1F *signalpred     = allsamples.Draw("signalpred",    "-"+mcjzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc,  luminosity,allsamples.FindSample("LM4"));
192  TH1F *signalpredlo   = allsamples.Draw("signalpredlo",  "-"+mcjzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc,  luminosity,allsamples.FindSample("LM4"));
193  TH1F *signalpredro   = allsamples.Draw("signalpredro",      mcjzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc,  luminosity,allsamples.FindSample("LM4"));
194  TH1F *puredata       = allsamples.Draw("puredata",          datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
195  signalpred->Add(signalpredlo,-1);
196  signalpred->Add(signalpredro);
197  puresignal->Add(signalpred,-1);//subtracting signal contamination
198  ofstream myfile;
199  myfile.open ("ShapeFit_log.txt");
200  establish_upper_limits(puredata,dataprediction,puresignal,"LM4",myfile);
201  myfile.close();
202 */
203 }
204
171   vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, bool doobserved=false) {
172 <  float sigma95=0.0,sigma95A=0.0;
173 <  dout << "Now calling : CL95(" << luminosity << "," <<  lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << 1<< ") " << endl;
174 <  sigma95 = CL95(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], Nobs[ibin], false, 1);
172 >  float sigma95=-9.9,sigma95A=-9.9;
173 >  int nuisancemodel=1;
174 >  if(mceff<=0) {
175 >    write_warning(__FUNCTION__,"Cannot compute upper limit in this configuration as the efficiency is negative:");
176 >    dout << "mc efficiency=" << mceff << " +/- " << mcefferr;
177 >    vector<float> sigmas;
178 >    sigmas.push_back(-1);
179 >    sigmas.push_back(-1);
180 >    return sigmas;
181 >  } else {
182 >  dout << "Now calling : CL95(" << luminosity << "," <<  lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl;
183 >  sigma95 = CL95(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], Nobs[ibin], false, nuisancemodel);
184    if(doobserved) {
185 <    dout << "Now calling : CL95A(" << luminosity << "," <<  lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << 1<< ") " << endl;
186 <    sigma95A = CLA(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], 1);
185 >    dout << "Now calling : CLA(" << luminosity << "," <<  lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << nuisancemodel<< ") " << endl;
186 >    sigma95A = CLA(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], nuisancemodel);
187    }
188    vector<float> sigmas;
189    sigmas.push_back(sigma95);
190    sigmas.push_back(sigma95A);
191    return sigmas;
192 +  }
193   }
194  
195   void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doobserved) {
# Line 234 | Line 210 | void compute_upper_limits_from_counting_
210        float staterr=uncertainties[isample*jzbcuts.size()+ibin][2];
211        float systerr=uncertainties[isample*jzbcuts.size()+ibin][3];
212        float toterr =uncertainties[isample*jzbcuts.size()+ibin][4];
213 <      float observed,null,result;
214 <      fill_result_histos(observed, null,null,null,null,null,null,null,mcjzb,JZBcutat,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples);
215 <      observed-=result;//this is the actual excess we see!
216 <      float expected=observed/luminosity;
213 >      float observed,observederr,null,result;
214 >      
215 > //      fill_result_histos(observed,observederr, null,null,null,null,null,null,null,mcjzb,JZBcutat,14000,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples);
216 > //      observed-=result;//this is the actual excess we see!
217 > //      float expected=observed/luminosity;
218        
219        dout << "Sample: " << signalsamples.collection[isample].samplename << ", JZB>"<<JZBcutat<< " : " << mceff << " +/- " << staterr << " (stat) +/- " << systerr << " (syst) --> toterr = " << toterr << endl;
220        vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,doobserved);
221        
222        if(doobserved) {
223 <        rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")");
223 > //      rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")");
224 >        rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(signalsamples.collection[isample].xs)+")");
225          vrows.push_back(sigmas[0]);
226          vrows.push_back(sigmas[1]);
227 <        vrows.push_back(expected);
227 > //      vrows.push_back(expected);
228 >        vrows.push_back(signalsamples.collection[isample].xs);
229        }
230        else {
231 <        rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")");
231 > //      rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")");
232 >        rows.push_back(any2string(sigmas[0]));
233          vrows.push_back(sigmas[0]);
234 <        vrows.push_back(expected);
234 >        vrows.push_back(signalsamples.collection[isample].xs);
235 > //      vrows.push_back(expected);
236        }
237      }//end of bin loop
238      limits.push_back(rows);
239      vlimits.push_back(vrows);
240    }//end of sample loop
241 <  dout << endl << endl << "PAS table 3: " << endl << endl;
241 >  dout << endl << endl << endl << "_________________________________________________________________________________________________" << endl << endl;
242 >  dout << endl << endl << "PAS table 3:   (notation: limit [95%CL])" << endl << endl;
243    dout << "\t";
244    for (int irow=0;irow<jzbcuts.size();irow++) {
245      dout << jzbcuts[irow] << "\t";
# Line 265 | Line 247 | void compute_upper_limits_from_counting_
247    dout << endl;
248    for(int irow=0;irow<limits.size();irow++) {
249      for(int ientry=0;ientry<limits[irow].size();ientry++) {
250 <      dout << limits[irow][ientry] << "\t";
250 >      if (limits[irow][ientry]>0) dout << limits[irow][ientry] << "\t";
251 >      else dout << " (N/A) \t";
252      }
253      dout << endl;
254    }
255    
256    if(!doobserved) {
257 <    dout << endl << endl << "LIMITS: " << endl;
258 <    dout << "\t";
257 >    dout << endl << endl << "LIMITS: (Tex)" << endl;
258 >    tout << "\\begin{tabular}{ | l | ";
259 >    for (int irow=0;irow<jzbcuts.size();irow++) tout << " l |";
260 >    tout << "} " << endl << " \\hline " << endl << "& \t ";
261      for (int irow=0;irow<jzbcuts.size();irow++) {
262 <      dout << jzbcuts[irow] << "\t";
262 >      tout << "JZB $>$ " << jzbcuts[irow] << " GeV & \t ";
263      }
264 <    dout << endl;
264 >    tout << " \\\\ \\hline " << endl;
265      for(int irow=0;irow<limits.size();irow++) {
266 <      dout << limits[irow][0] << "\t";
266 >      tout << limits[irow][0] << " \t";
267        for(int ientry=0;ientry<jzbcuts.size();ientry++) {
268 <        dout << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "\t";
268 >        if(vlimits[irow][2*ientry]>0) tout << " & " << Round(vlimits[irow][2*ientry],2) << " \t (" << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "x \\sigma ) \t";
269 >        else tout << " & ( N / A ) \t";
270 > //      dout << Round(vlimits[irow][2*ientry],3) << " / " << Round(vlimits[irow][2*ientry+1],3)<< "\t";
271        }
272 <      dout << endl;
272 >      tout << " \\\\ \\hline " << endl;
273      }
274 +      tout << "\\end{tabular}" << endl;
275    }//do observed
276    
277    dout << endl << endl << "Final selection efficiencies with total statistical and systematic errors, and corresponding observed and expected upper limits (UL) on ($\\sigma\\times$  BR $\\times$ acceptance) for the LM4 and LM8 scenarios, in the different regions. The last column contains the predicted ($\\sigma \\times $BR$\\times$ acceptance) at NLO obtained from Monte Carlo simulation." << endl;
278 <  dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t Prediction [pb]" << endl;
278 >  dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t \\sigma [pb]" << endl;
279    for(int icut=0;icut<jzbcuts.size();icut++) {
280      dout << "Region with JZB>" << jzbcuts[icut] << endl;
281      for(int isample=0;isample<signalsamples.collection.size();isample++) {
282 <      dout << limits[icut][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],1) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],1) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],1) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl;
282 >      dout << limits[isample][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],3) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],3) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],3) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl;
283      }
284      dout << endl;
285    }
286 +  
287 +  write_warning(__FUNCTION__,"Still need to update the script");
288   }
289  
300 void susy_scan_axis_labeling(TH2F *histo) {
301  histo->GetXaxis()->SetTitle("#Chi_{2}^{0}-LSP");
302  histo->GetXaxis()->CenterTitle();
303  histo->GetYaxis()->SetTitle("m_{#tilde{q}}");
304  histo->GetYaxis()->CenterTitle();
305 }
290  
291 < void scan_susy_space(string mcjzb, string datajzb) {
292 <  TCanvas *c3 = new TCanvas("c3","c3");
293 <  vector<float> binning;
294 <  binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
295 <  float arrbinning[binning.size()];
296 <  for(int i=0;i<binning.size();i++) arrbinning[i]=binning[i];
297 <  TH1F *puredata   = allsamples.Draw("puredata",  datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
298 <  puredata->SetMarkerSize(DataMarkerSize);
299 <  TH1F *allbgs   = allsamples.Draw("allbgs",  "-"+datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
300 <  TH1F *allbgsb   = allsamples.Draw("allbgsb",  "-"+datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data,luminosity);
301 <  TH1F *allbgsc   = allsamples.Draw("allbgsc",  datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data,luminosity);
302 <  allbgs->Add(allbgsb,-1);
303 <  allbgs->Add(allbgsc);
304 <  int ndata=puredata->Integral();
305 <  ofstream myfile;
306 <  myfile.open ("susyscan_log.txt");
307 <  TFile *susyscanfile = new TFile("/scratch/fronga/SMS/T5z_SqSqToQZQZ_38xFall10.root");
308 <  TTree *suevents = (TTree*)susyscanfile->Get("events");
309 <  TH2F *exclusionmap = new TH2F("exclusionmap","",20,0,500,20,0,1000);
310 <  TH2F *exclusionmap1s = new TH2F("exclusionmap1s","",20,0,500,20,0,1000);
311 <  TH2F *exclusionmap2s = new TH2F("exclusionmap2s","",20,0,500,20,0,1000);
312 <  TH2F *exclusionmap3s = new TH2F("exclusionmap3s","",20,0,500,20,0,1000);
313 <  
314 <  susy_scan_axis_labeling(exclusionmap);
315 <  susy_scan_axis_labeling(exclusionmap1s);
316 <  susy_scan_axis_labeling(exclusionmap2s);
317 <  susy_scan_axis_labeling(exclusionmap3s);
318 <  
319 <  Int_t MyPalette[100];
320 <  Double_t r[]    = {0., 0.0, 1.0, 1.0, 1.0};
321 <  Double_t g[]    = {0., 0.0, 0.0, 1.0, 1.0};
322 <  Double_t b[]    = {0., 1.0, 0.0, 0.0, 1.0};
323 <  Double_t stop[] = {0., .25, .50, .75, 1.0};
324 <  Int_t FI = TColor::CreateGradientColorTable(5, stop, r, g, b, 100);
325 <  for (int i=0;i<100;i++) MyPalette[i] = FI+i;
326 <  
327 <  gStyle->SetPalette(100, MyPalette);
344 <  
345 <  for(int m23=50;m23<500;m23+=25) {
346 <    for (int m0=(2*(m23-50)+150);m0<=1000;m0+=50)
347 <    {
348 <      c3->cd();
349 <      stringstream drawcondition;
350 <      drawcondition << "pfJetGoodNum>=3&&(TMath::Abs(masses[0]-"<<m0<<")<10&&TMath::Abs(masses[2]-masses[3]-"<<m23<<")<10)&&mll>5&&id1==id2";
351 <      TH1F *puresignal = new TH1F("puresignal","puresignal",binning.size()-1,arrbinning);
352 <      TH1F *puresignall= new TH1F("puresignall","puresignal",binning.size()-1,arrbinning);
353 <      stringstream drawvar,drawvar2;
354 <      drawvar<<mcjzb<<">>puresignal";
355 <      drawvar2<<"-"<<mcjzb<<">>puresignall";
356 <      suevents->Draw(drawvar.str().c_str(),drawcondition.str().c_str());
357 <      suevents->Draw(drawvar2.str().c_str(),drawcondition.str().c_str());
358 <      if(puresignal->Integral()<60) {
359 <        delete puresignal;
360 <        continue;
361 <      }
362 <      puresignal->Add(puresignall,-1);//we need to correct for the signal contamination - we effectively only see (JZB>0)-(JZB<0) !!
363 <      puresignal->Scale(ndata/(20*puresignal->Integral()));//normalizing it to 5% of the data
364 <      stringstream saveas;
365 <      saveas<<"Model_Scan/m0_"<<m0<<"__m23_"<<m23;
366 <      dout << "PLEASE KEEP IN MIND THAT SIGNAL CONTAMINATION IS NOT REALLY TAKEN CARE OF YET DUE TO LOW STATISTICS! SHOULD BE SOMETHING LIKE THIS : "<< endl;
367 < //        TH1F *signalpredlo   = allsamples.Draw("signalpredlo",  "-"+mcjzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc,  luminosity,allsamples.FindSample("LM4"));
368 < //        TH1F *signalpredro   = allsamples.Draw("signalpredro",      mcjzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc,  luminosity,allsamples.FindSample("LM4"));
369 < //        TH1F *puredata       = allsamples.Draw("puredata",          datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
370 < //        signalpred->Add(signalpredlo,-1);
371 < //        signalpred->Add(signalpredro);
372 < //        puresignal->Add(signalpred,-1);//subtracting signal contamination
373 < //---------------------
374 < //      dout << "(m0,m23)=("<<m0<<","<<m23<<") contains " << puresignal->Integral() << endl;
375 < //    TH1F *puresignal = allsamples.Draw("puresignal",mcjzb,  binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc,  luminosity,allsamples.FindSample("LM4"));
376 <      vector<float> results=establish_upper_limits(puredata,allbgs,puresignal,saveas.str(),myfile);  
377 <      if(results.size()==0) {
378 <        delete puresignal;
379 <        continue;
380 <      }
381 <      exclusionmap->Fill(m23,m0,results[0]);
382 <      exclusionmap1s->Fill(m23,m0,results[1]);
383 <      exclusionmap2s->Fill(m23,m0,results[2]);
384 <      exclusionmap3s->Fill(m23,m0,results[3]);
385 <      delete puresignal;
386 <      dout << "(m0,m23)=("<<m0<<","<<m23<<") : 3 sigma at " << results[3] << endl;
387 <    }
388 <  }//end of model scan for loop
291 >
292 > /********************************************************************** new : Limits using SHAPES ***********************************
293 >
294 >
295 >   SSSSSSSSSSSSSSS hhhhhhh                                                                                      
296 > SS:::::::::::::::Sh:::::h                                                                                      
297 > S:::::SSSSSS::::::Sh:::::h                                                                                      
298 > S:::::S     SSSSSSSh:::::h                                                                                      
299 > S:::::S             h::::h hhhhh         aaaaaaaaaaaaa  ppppp   ppppppppp       eeeeeeeeeeee        ssssssssss  
300 > S:::::S             h::::hh:::::hhh      a::::::::::::a p::::ppp:::::::::p    ee::::::::::::ee    ss::::::::::s  
301 > S::::SSSS          h::::::::::::::hh    aaaaaaaaa:::::ap:::::::::::::::::p  e::::::eeeee:::::eess:::::::::::::s
302 >  SS::::::SSSSS     h:::::::hhh::::::h            a::::app::::::ppppp::::::pe::::::e     e:::::es::::::ssss:::::s
303 >    SSS::::::::SS   h::::::h   h::::::h    aaaaaaa:::::a p:::::p     p:::::pe:::::::eeeee::::::e s:::::s  ssssss
304 >       SSSSSS::::S  h:::::h     h:::::h  aa::::::::::::a p:::::p     p:::::pe:::::::::::::::::e    s::::::s      
305 >            S:::::S h:::::h     h:::::h a::::aaaa::::::a p:::::p     p:::::pe::::::eeeeeeeeeee        s::::::s  
306 >            S:::::S h:::::h     h:::::ha::::a    a:::::a p:::::p    p::::::pe:::::::e           ssssss   s:::::s
307 > SSSSSSS     S:::::S h:::::h     h:::::ha::::a    a:::::a p:::::ppppp:::::::pe::::::::e          s:::::ssss::::::s
308 > S::::::SSSSSS:::::S h:::::h     h:::::ha:::::aaaa::::::a p::::::::::::::::p  e::::::::eeeeeeee  s::::::::::::::s
309 > S:::::::::::::::SS  h:::::h     h:::::h a::::::::::aa:::ap::::::::::::::pp    ee:::::::::::::e   s:::::::::::ss  
310 > SSSSSSSSSSSSSSS    hhhhhhh     hhhhhhh  aaaaaaaaaa  aaaap::::::pppppppp        eeeeeeeeeeeeee    sssssssssss    
311 >                                                         p:::::p                                                
312 >                                                         p:::::p                                                
313 >                                                        p:::::::p                                                
314 >                                                        p:::::::p                                                
315 >                                                        p:::::::p                                                
316 >                                                        ppppppppp                                                
317 >                                                                                                                
318 >
319 > *********************************************************************** new : Limits using SHAPES ***********************************/
320 >
321 >
322 > void limit_shapes_for_systematic_effect(TFile *limfile, string identifier, string mcjzb, string datajzb, int JES,vector<float> binning, TCanvas *limcan) {
323 >  dout << "Creatig shape templates ... ";
324 >  if(identifier!="") dout << "for systematic called "<<identifier;
325 >  dout << endl;
326 >  int dataormc=mcwithsignal;//this is only for tests - for real life you want dataormc=data !!!
327 >  if(dataormc!=data) write_warning(__FUNCTION__,"WATCH OUT! Not using data for limits!!!! this is ok for tests, but not ok for anything official!");
328    
329 <  dout << "Exclusion Map contains" << exclusionmap->Integral() << " (integral) and entries: " << exclusionmap->GetEntries() << endl;
330 <  c3->cd();
331 <  exclusionmap->Draw("CONTZ");
332 <  CompleteSave(c3,"Model_Scan/CONT/Model_Scan_Mean_values");
333 <  exclusionmap->Draw("COLZ");
334 <  CompleteSave(c3,"Model_Scan/COL/Model_Scan_Mean_values");
335 <  
336 <  exclusionmap1s->Draw("CONTZ");
337 <  CompleteSave(c3,"Model_Scan/CONT/Model_Scan_1sigma_values");
338 <  exclusionmap1s->Draw("COLZ");
339 <  CompleteSave(c3,"Model_Scan/COL/Model_Scan_1sigma_values");
340 <  
341 <  exclusionmap2s->Draw("CONTZ");
342 <  CompleteSave(c3,"Model_Scan/CONT/Model_Scan_2sigma_values");
343 <  exclusionmap2s->Draw("COLZ");
344 <  CompleteSave(c3,"Model_Scan/COL/Model_Scan_2sigma_values");
345 <  
346 <  exclusionmap3s->Draw("CONTZ");
347 <  CompleteSave(c3,"Model_Scan/CONT/Model_Scan_3sigma_values");
348 <  exclusionmap3s->Draw("COLZ");
349 <  CompleteSave(c3,"Model_Scan/COL/Model_Scan_3sigma_values");
350 <  
351 <  TFile *exclusion_limits = new TFile("exclusion_limits.root","RECREATE");
352 <  exclusionmap->Write();
353 <  exclusionmap1s->Write();
354 <  exclusionmap2s->Write();
355 <  exclusionmap3s->Write();
356 <  exclusion_limits->Close();
357 <  susyscanfile->Close();
329 >  TCut limitnJetcut;
330 >  if(JES==noJES) limitnJetcut=cutnJets;
331 >  else {
332 >    if(JES==JESdown) limitnJetcut=cutnJetsJESdown;
333 >    if(JES==JESup) limitnJetcut=cutnJetsJESup;
334 >  }
335 >  TH1F *ZOSSFP = allsamples.Draw("ZOSSFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
336 >  TH1F *ZOSOFP = allsamples.Draw("ZOSOFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
337 >  TH1F *ZOSSFN = allsamples.Draw("ZOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
338 >  TH1F *ZOSOFN = allsamples.Draw("ZOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
339 >  
340 >  TH1F *SBOSSFP = allsamples.Draw("SBOSSFP",datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
341 >  TH1F *SBOSOFP = allsamples.Draw("SBOSOFP",datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
342 >  TH1F *SBOSSFN = allsamples.Draw("SBOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
343 >  TH1F *SBOSOFN = allsamples.Draw("SBOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
344 >  
345 >  TH1F *LZOSSFP = allsamples.Draw("LZOSSFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
346 >  TH1F *LZOSOFP = allsamples.Draw("LZOSOFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
347 >  TH1F *LZOSSFN = allsamples.Draw("LZOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
348 >  TH1F *LZOSOFN = allsamples.Draw("LZOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
349 >  
350 >  TH1F *LSBOSSFP = allsamples.Draw("LSBOSSFP",mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
351 >  TH1F *LSBOSOFP = allsamples.Draw("LSBOSOFP",mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
352 >  TH1F *LSBOSSFN = allsamples.Draw("LSBOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
353 >  TH1F *LSBOSOFN = allsamples.Draw("LSBOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
354 >  
355 >  string obsname="data_obs";
356 >  string predname="background";
357 >  string signalname="signal";
358 >  if(identifier!="") {
359 >    obsname=("data_"+identifier);
360 >    predname=("background_"+identifier);
361 >    signalname="signal_"+identifier;
362 >  }
363    
364 <  myfile.close();
364 >  TH1F *obs = (TH1F*)ZOSSFP->Clone();
365 >  obs->SetName(obsname.c_str());
366 >  obs->Write();
367 >  TH1F *pred = (TH1F*)ZOSSFN->Clone();
368 >  pred->Add(ZOSOFP,1.0/3);
369 >  pred->Add(ZOSOFN,-1.0/3);
370 >  pred->Add(SBOSSFP,1.0/3);
371 >  pred->Add(SBOSSFN,-1.0/3);
372 >  pred->Add(SBOSOFP,1.0/3);
373 >  pred->Add(SBOSOFN,-1.0/3);
374 >  pred->SetName(predname.c_str());
375 >  pred->Write();
376 >  
377 > //  TH1F *Lobs = (TH1F*)LZOSSFP->Clone();
378 > //  TH1F *Lpred = (TH1F*)LZOSSFN->Clone();
379 >  
380 >  TH1F *Lobs = new TH1F("Lobs","Lobs",binning.size()-1,&binning[0]);
381 >  TH1F *Lpred = new TH1F("Lpred","Lpred",binning.size()-1,&binning[0]);
382 >  Lobs->Add(LZOSSFP);
383 >  Lpred->Add(LZOSSFN);
384 >  Lpred->Add(LZOSOFP,1.0/3);
385 >  Lpred->Add(LZOSOFN,-1.0/3);
386 >  Lpred->Add(LSBOSSFP,1.0/3);
387 >  Lpred->Add(LSBOSSFN,-1.0/3);
388 >  Lpred->Add(LSBOSOFP,1.0/3);
389 >  Lpred->Add(LSBOSOFN,-1.0/3);
390 >  TH1F *signal = (TH1F*)Lobs->Clone();
391 >  signal->Add(Lpred,-1);
392 >  signal->SetName(signalname.c_str());
393 >  signal->Write();
394 >  
395 >  delete Lobs;
396 >  delete Lpred;
397 >  
398 >  delete ZOSSFP;
399 >  delete ZOSOFP;
400 >  delete ZOSSFN;
401 >  delete ZOSOFN;
402 >  
403 >  delete SBOSSFP;
404 >  delete SBOSOFP;
405 >  delete SBOSSFN;
406 >  delete SBOSOFN;
407 >  
408 >  delete LZOSSFP;
409 >  delete LZOSOFP;
410 >  delete LZOSSFN;
411 >  delete LZOSOFN;
412 >  
413 >  delete LSBOSSFP;
414 >  delete LSBOSOFP;
415 >  delete LSBOSSFN;
416 >  delete LSBOSOFN;
417 >
418   }
419  
420 + void prepare_datacard(TFile *f) {
421 + TH1F *dataob = (TH1F*)f->Get("data_obs");
422 + TH1F *signal = (TH1F*)f->Get("signal");
423 + TH1F *background = (TH1F*)f->Get("background");
424 +
425 + ofstream datacard;
426 + ensure_directory_exists(get_directory()+"/limits");
427 + datacard.open ((get_directory()+"/limits/susydatacard.txt").c_str());
428 + datacard << "Writing this to a file.\n";
429 + datacard << "imax 1\n";
430 + datacard << "jmax 1\n";
431 + datacard << "kmax *\n";
432 + datacard << "---------------\n";
433 + datacard << "shapes * * limitfile.root $PROCESS $PROCESS_$SYSTEMATIC\n";
434 + datacard << "---------------\n";
435 + datacard << "bin 1\n";
436 + datacard << "observation "<<dataob->Integral()<<"\n";
437 + datacard << "------------------------------\n";
438 + datacard << "bin             1          1\n";
439 + datacard << "process         signal     background\n";
440 + datacard << "process         0          1\n";
441 + datacard << "rate            "<<signal->Integral()<<"         "<<background->Integral()<<"\n";
442 + datacard << "--------------------------------\n";
443 + datacard << "lumi     lnN    1.10       1.0\n";
444 + datacard << "bgnorm   lnN    1.00       1.4  uncertainty on our prediction (40%)\n";
445 + datacard << "JES    shape    1          1    uncertainty on background shape and normalization\n";
446 + datacard << "peak   shape    1          1    uncertainty on signal resolution. Assume the histogram is a 2 sigma shift, \n";
447 + datacard << "#                                so divide the unit gaussian by 2 before doing the interpolation\n";
448 + datacard.close();
449 + }
450  
451  
452 <
452 > void prepare_limits(string mcjzb, string datajzb, float jzbpeakerrordata, float jzbpeakerrormc, vector<float> jzbbins) {
453 >  ensure_directory_exists(get_directory()+"/limits");
454 >  TFile *limfile = new TFile((get_directory()+"/limits/limitfile.root").c_str(),"RECREATE");
455 >  TCanvas *limcan = new TCanvas("limcan","Canvas for calculating limits");
456 >  limit_shapes_for_systematic_effect(limfile,"",mcjzb,datajzb,noJES,jzbbins,limcan);
457 >  limit_shapes_for_systematic_effect(limfile,"peakUp",newjzbexpression(mcjzb,jzbpeakerrormc),newjzbexpression(datajzb,jzbpeakerrordata),noJES,jzbbins,limcan);
458 >  limit_shapes_for_systematic_effect(limfile,"peakDown",newjzbexpression(mcjzb,-jzbpeakerrormc),newjzbexpression(datajzb,-jzbpeakerrordata),noJES,jzbbins,limcan);
459 >  limit_shapes_for_systematic_effect(limfile,"JESUp",mcjzb,datajzb,JESup,jzbbins,limcan);
460 >  limit_shapes_for_systematic_effect(limfile,"JESDown",mcjzb,datajzb,JESdown,jzbbins,limcan);
461 >  
462 >  prepare_datacard(limfile);
463 >  limfile->Close();
464 >  write_info("prepare_limits","limitfile.root and datacard.txt have been generated. You can now use them to calculate limits!");
465 >  
466 > }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines