ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/cbrown/AnalysisFramework/Plotting/Modules/LimitCalculation.C
Revision: 1.11
Committed: Thu Aug 25 20:19:12 2011 UTC (13 years, 8 months ago) by buchmann
Content type: text/plain
Branch: MAIN
Changes since 1.10: +28 -13 lines
Log Message:
Updated the limit calculation to use efficiencies not with respect to the acceptance but OVERALL numbers to get a limit on the cross section instead of the xs x acc; also readied it for cases where signal contamination is stronger than the signal

File Contents

# Content
1 #include <iostream>
2 #include <vector>
3 #include <sys/stat.h>
4 #include <fstream>
5
6 #include <TCut.h>
7 #include <TROOT.h>
8 #include <TCanvas.h>
9 #include <TMath.h>
10 #include <TColor.h>
11 #include <TPaveText.h>
12 #include <TRandom.h>
13 #include <TH1.h>
14 #include <TH2.h>
15 #include <TF1.h>
16 #include <TSQLResult.h>
17 #include <TProfile.h>
18
19 //#include "TTbar_stuff.C"
20 using namespace std;
21
22 using namespace PlottingSetup;
23
24
25 void rediscover_the_top(string mcjzb, string datajzb) {
26 dout << "Hi! today we are going to (try to) rediscover the top!" << endl;
27 TCanvas *c3 = new TCanvas("c3","c3");
28 c3->SetLogy(1);
29 vector<float> binning;
30 //binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
31 /*
32 binning.push_back(50);
33 binning.push_back(100);
34 binning.push_back(150);
35 binning.push_back(200);
36 binning.push_back(500);
37
38
39 TH1F *dataprediction = allsamples.Draw("dataprediction", "-"+datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
40 TH1F *puresignal = allsamples.Draw("puresignal", datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
41 // TH1F *puresignal = allsamples.Draw("puresignal", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("TTJets"));
42 TH1F *observed = allsamples.Draw("observed", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
43 /*
44 ofstream myfile;
45 TH1F *ratio = (TH1F*)observed->Clone();
46 ratio->Divide(dataprediction);
47 ratio->GetYaxis()->SetTitle("Ratio obs/pred");
48 ratio->Draw();
49 c3->SaveAs("testratio.png");
50 myfile.open ("ShapeFit_log.txt");
51 establish_upper_limits(observed,dataprediction,puresignal,"LM4",myfile);
52 myfile.close();
53 */
54
55
56 int nbins=100;
57 float low=0;
58 float hi=500;
59 TCanvas *c4 = new TCanvas("c4","c4",900,900);
60 c4->Divide(2,2);
61 c4->cd(1);
62 c4->cd(1)->SetLogy(1);
63 TH1F *datapredictiont = allsamples.Draw("datapredictiont", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
64 TH1F *datapredictiono = allsamples.Draw("datapredictiono", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
65 datapredictiont->Add(datapredictiono,-1);
66 dout << "Second way of doing this !!!! Analytical shape to the left :-D" << endl;
67 vector<TF1*> functions = do_cb_fit_to_plot(datapredictiont,10);
68 datapredictiont->SetMarkerColor(kRed);
69 datapredictiont->SetLineColor(kRed);
70 datapredictiont->Draw();
71 functions[1]->Draw("same");
72 TText *title1 = write_title("Top Background Prediction (JZB<0, with osof subtr)");
73 title1->Draw();
74
75 c4->cd(2);
76 c4->cd(2)->SetLogy(1);
77 TH1F *observedt = allsamples.Draw("observedt", datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
78 observedt->Draw();
79 datapredictiont->Draw("histo,same");
80 functions[1]->Draw("same");
81 TText *title2 = write_title("Observed and predicted background");
82 title2->Draw();
83
84 c4->cd(3);
85 c4->cd(3)->SetLogy(1);
86 // TH1F *ratio = (TH1F*)observedt->Clone();
87
88 TH1F *analytical_background_prediction= new TH1F("analytical_background_prediction","",nbins,low,hi);
89 for(int i=0;i<=nbins;i++) {
90 analytical_background_prediction->SetBinContent(i+1,functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5)));
91 analytical_background_prediction->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5))));
92 }
93 analytical_background_prediction->GetYaxis()->SetTitle("JZB [GeV]");
94 analytical_background_prediction->GetYaxis()->CenterTitle();
95 TH1F *analyticaldrawonly = (TH1F*)analytical_background_prediction->Clone();
96 analytical_background_prediction->SetFillColor(TColor::GetColor("#3399FF"));
97 analytical_background_prediction->SetMarkerSize(0);
98 analytical_background_prediction->Draw("e5");
99 analyticaldrawonly->Draw("histo,same");
100 functions[1]->Draw("same");
101 TText *title3 = write_title("Analytical bg pred histo");
102 title3->Draw();
103
104 c4->cd(4);
105 // c4->cd(4)->SetLogy(1);
106 vector<float> ratio_binning;
107 ratio_binning.push_back(0);
108 ratio_binning.push_back(5);
109 ratio_binning.push_back(10);
110 ratio_binning.push_back(20);
111 ratio_binning.push_back(50);
112 // ratio_binning.push_back(60);
113 /*
114 ratio_binning.push_back(51);
115 ratio_binning.push_back(52);
116 ratio_binning.push_back(53);
117 ratio_binning.push_back(54);
118 ratio_binning.push_back(55);
119 ratio_binning.push_back(56);
120 ratio_binning.push_back(57);
121 ratio_binning.push_back(58);
122 ratio_binning.push_back(59);
123 ratio_binning.push_back(60);
124 // ratio_binning.push_back(70);*/
125 // ratio_binning.push_back(80);
126 // ratio_binning.push_back(90);
127 ratio_binning.push_back(80);
128 // ratio_binning.push_back(110);
129 ratio_binning.push_back(500);
130
131 TH1F *observedtb = allsamples.Draw("observedtb", datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
132 TH1F *datapredictiontb = allsamples.Draw("datapredictiontb", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
133 TH1F *datapredictiontbo = allsamples.Draw("datapredictiontbo", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
134 datapredictiontb->Add(datapredictiontbo,-1);
135 TH1F *analytical_background_predictionb = allsamples.Draw("analytical_background_predictionb",datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets&&"mll<2",data, luminosity);
136 for(int i=0;i<=ratio_binning.size();i++) {
137 analytical_background_predictionb->SetBinContent(i+1,functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i)));
138 analytical_background_predictionb->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i))));
139 }
140
141 TH1F *ratio = (TH1F*) observedtb->Clone();
142 ratio->Divide(datapredictiontb);
143
144 for (int i=0;i<=ratio_binning.size();i++) {
145 dout << observedtb->GetBinLowEdge(i+1) << ";"<<observedtb->GetBinContent(i+1) << ";" << datapredictiontb->GetBinContent(i+1) << " --> " << ratio->GetBinContent(i+1) << "+/-" << ratio->GetBinError(i+1) << endl;
146 }
147
148 // ratio->Divide(datapredictiontb);
149 // ratio->Divide(analytical_background_predictionb);
150 // TGraphAsymmErrors *JZBratio= histRatio(observedtb,analytical_background_predictionb,data,ratio_binning);
151 // ratio->Divide(analytical_background_prediction);
152 // ratio->Divide(datapredictiont);
153 // ratio->GetYaxis()->SetTitle("obs/pred");
154 // JZBratio->Draw("AP");
155 ratio->GetYaxis()->SetRangeUser(0,10);
156 ratio->Draw();
157 //analytical_background_predictionb->Draw();
158 // JZBratio->SetTitle("");
159 TText *title4 = write_title("Ratio of observed to predicted");
160 title4->Draw();
161
162 // CompleteSave(c4,"test/ttbar_discovery_dataprediction___analytical_function");
163 CompleteSave(c4,"test/ttbar_discovery_dataprediction__analytical__new_binning_one_huge_bin_from_80");
164
165
166
167
168
169 }
170
171 vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, bool doobserved=false) {
172 float sigma95=-9.9,sigma95A=-9.9;
173 int nuisancemodel=1;
174 if(mceff<0) {
175 write_warning(__FUNCTION__,"Cannot compute upper limit in this configuration as the efficiency is negative:");
176 dout << "mc efficiency=" << mceff << " +/- " << mcefferr;
177 vector<float> sigmas;
178 sigmas.push_back(-1);
179 sigmas.push_back(-1);
180 return sigmas;
181 } else {
182 dout << "Now calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl;
183 sigma95 = CL95(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], Nobs[ibin], false, nuisancemodel);
184 if(doobserved) {
185 dout << "Now calling : CLA(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << nuisancemodel<< ") " << endl;
186 sigma95A = CLA(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], nuisancemodel);
187 }
188 vector<float> sigmas;
189 sigmas.push_back(sigma95);
190 sigmas.push_back(sigma95A);
191 return sigmas;
192 }
193 }
194
195 void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doobserved) {
196 dout << "Doing counting experiment ... " << endl;
197 vector<vector<string> > limits;
198 vector<vector<float> > vlimits;
199
200
201 for(int isample=0;isample<signalsamples.collection.size();isample++) {
202 vector<string> rows;
203 vector<float> vrows;
204 dout << "Considering sample " << signalsamples.collection[isample].samplename << endl;
205 rows.push_back(signalsamples.collection[isample].samplename);
206 for(int ibin=0;ibin<jzbcuts.size();ibin++) {
207 dout << "_________________________________________________________________________________" << endl;
208 float JZBcutat=uncertainties[isample*jzbcuts.size()+ibin][0];
209 float mceff=uncertainties[isample*jzbcuts.size()+ibin][1];
210 float staterr=uncertainties[isample*jzbcuts.size()+ibin][2];
211 float systerr=uncertainties[isample*jzbcuts.size()+ibin][3];
212 float toterr =uncertainties[isample*jzbcuts.size()+ibin][4];
213 float observed,observederr,null,result;
214
215 // fill_result_histos(observed,observederr, null,null,null,null,null,null,null,mcjzb,JZBcutat,14000,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples);
216 // observed-=result;//this is the actual excess we see!
217 // float expected=observed/luminosity;
218
219 dout << "Sample: " << signalsamples.collection[isample].samplename << ", JZB>"<<JZBcutat<< " : " << mceff << " +/- " << staterr << " (stat) +/- " << systerr << " (syst) --> toterr = " << toterr << endl;
220 vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,doobserved);
221
222 if(doobserved) {
223 // rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")");
224 rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(signalsamples.collection[isample].xs)+")");
225 vrows.push_back(sigmas[0]);
226 vrows.push_back(sigmas[1]);
227 // vrows.push_back(expected);
228 vrows.push_back(signalsamples.collection[isample].xs);
229 }
230 else {
231 // rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")");
232 rows.push_back(any2string(sigmas[0]));
233 vrows.push_back(sigmas[0]);
234 vrows.push_back(signalsamples.collection[isample].xs);
235 // vrows.push_back(expected);
236 }
237 }//end of bin loop
238 limits.push_back(rows);
239 vlimits.push_back(vrows);
240 }//end of sample loop
241 dout << endl << endl << "PAS table 3: (notation: limit [95%CL])" << endl << endl;
242 dout << "\t";
243 for (int irow=0;irow<jzbcuts.size();irow++) {
244 dout << jzbcuts[irow] << "\t";
245 }
246 dout << endl;
247 for(int irow=0;irow<limits.size();irow++) {
248 for(int ientry=0;ientry<limits[irow].size();ientry++) {
249 dout << limits[irow][ientry] << "\t";
250 }
251 dout << endl;
252 }
253
254 if(!doobserved) {
255 dout << endl << endl << "LIMITS: " << endl;
256 dout << "\t";
257 for (int irow=0;irow<jzbcuts.size();irow++) {
258 dout << jzbcuts[irow] << "\t";
259 }
260 dout << endl;
261 for(int irow=0;irow<limits.size();irow++) {
262 dout << limits[irow][0] << "\t";
263 for(int ientry=0;ientry<jzbcuts.size();ientry++) {
264 dout << "(" << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "x \\sigma ) \t";
265 // dout << Round(vlimits[irow][2*ientry],3) << " / " << Round(vlimits[irow][2*ientry+1],3)<< "\t";
266 }
267 dout << endl;
268 }
269 }//do observed
270
271 dout << endl << endl << "Final selection efficiencies with total statistical and systematic errors, and corresponding observed and expected upper limits (UL) on ($\\sigma\\times$ BR $\\times$ acceptance) for the LM4 and LM8 scenarios, in the different regions. The last column contains the predicted ($\\sigma \\times $BR$\\times$ acceptance) at NLO obtained from Monte Carlo simulation." << endl;
272 dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t \\sigma [pb]" << endl;
273 for(int icut=0;icut<jzbcuts.size();icut++) {
274 dout << "Region with JZB>" << jzbcuts[icut] << endl;
275 for(int isample=0;isample<signalsamples.collection.size();isample++) {
276 dout << limits[isample][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],3) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],3) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],3) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl;
277 }
278 dout << endl;
279 }
280
281 write_warning(__FUNCTION__,"Still need to update the script");
282 }
283
284
285
286 /********************************************************************** new : Limits using SHAPES ***********************************
287
288
289 SSSSSSSSSSSSSSS hhhhhhh
290 SS:::::::::::::::Sh:::::h
291 S:::::SSSSSS::::::Sh:::::h
292 S:::::S SSSSSSSh:::::h
293 S:::::S h::::h hhhhh aaaaaaaaaaaaa ppppp ppppppppp eeeeeeeeeeee ssssssssss
294 S:::::S h::::hh:::::hhh a::::::::::::a p::::ppp:::::::::p ee::::::::::::ee ss::::::::::s
295 S::::SSSS h::::::::::::::hh aaaaaaaaa:::::ap:::::::::::::::::p e::::::eeeee:::::eess:::::::::::::s
296 SS::::::SSSSS h:::::::hhh::::::h a::::app::::::ppppp::::::pe::::::e e:::::es::::::ssss:::::s
297 SSS::::::::SS h::::::h h::::::h aaaaaaa:::::a p:::::p p:::::pe:::::::eeeee::::::e s:::::s ssssss
298 SSSSSS::::S h:::::h h:::::h aa::::::::::::a p:::::p p:::::pe:::::::::::::::::e s::::::s
299 S:::::S h:::::h h:::::h a::::aaaa::::::a p:::::p p:::::pe::::::eeeeeeeeeee s::::::s
300 S:::::S h:::::h h:::::ha::::a a:::::a p:::::p p::::::pe:::::::e ssssss s:::::s
301 SSSSSSS S:::::S h:::::h h:::::ha::::a a:::::a p:::::ppppp:::::::pe::::::::e s:::::ssss::::::s
302 S::::::SSSSSS:::::S h:::::h h:::::ha:::::aaaa::::::a p::::::::::::::::p e::::::::eeeeeeee s::::::::::::::s
303 S:::::::::::::::SS h:::::h h:::::h a::::::::::aa:::ap::::::::::::::pp ee:::::::::::::e s:::::::::::ss
304 SSSSSSSSSSSSSSS hhhhhhh hhhhhhh aaaaaaaaaa aaaap::::::pppppppp eeeeeeeeeeeeee sssssssssss
305 p:::::p
306 p:::::p
307 p:::::::p
308 p:::::::p
309 p:::::::p
310 ppppppppp
311
312
313 *********************************************************************** new : Limits using SHAPES ***********************************/
314
315
316 void limit_shapes_for_systematic_effect(TFile *limfile, string identifier, string mcjzb, string datajzb, int JES,vector<float> binning, TCanvas *limcan) {
317 dout << "Creatig shape templates ... ";
318 if(identifier!="") dout << "for systematic called "<<identifier;
319 dout << endl;
320 int dataormc=mcwithsignal;//this is only for tests - for real life you want dataormc=data !!!
321 if(dataormc!=data) write_warning(__FUNCTION__,"WATCH OUT! Not using data for limits!!!! this is ok for tests, but not ok for anything official!");
322
323 TCut limitnJetcut;
324 if(JES==noJES) limitnJetcut=cutnJets;
325 else {
326 if(JES==JESdown) limitnJetcut=cutnJetsJESdown;
327 if(JES==JESup) limitnJetcut=cutnJetsJESup;
328 }
329 TH1F *ZOSSFP = allsamples.Draw("ZOSSFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
330 TH1F *ZOSOFP = allsamples.Draw("ZOSOFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
331 TH1F *ZOSSFN = allsamples.Draw("ZOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
332 TH1F *ZOSOFN = allsamples.Draw("ZOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
333
334 TH1F *SBOSSFP = allsamples.Draw("SBOSSFP",datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
335 TH1F *SBOSOFP = allsamples.Draw("SBOSOFP",datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
336 TH1F *SBOSSFN = allsamples.Draw("SBOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
337 TH1F *SBOSOFN = allsamples.Draw("SBOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
338
339 TH1F *LZOSSFP = allsamples.Draw("LZOSSFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
340 TH1F *LZOSOFP = allsamples.Draw("LZOSOFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
341 TH1F *LZOSSFN = allsamples.Draw("LZOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
342 TH1F *LZOSOFN = allsamples.Draw("LZOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
343
344 TH1F *LSBOSSFP = allsamples.Draw("LSBOSSFP",mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
345 TH1F *LSBOSOFP = allsamples.Draw("LSBOSOFP",mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
346 TH1F *LSBOSSFN = allsamples.Draw("LSBOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
347 TH1F *LSBOSOFN = allsamples.Draw("LSBOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
348
349 string obsname="data_obs";
350 string predname="background";
351 string signalname="signal";
352 if(identifier!="") {
353 obsname=("data_"+identifier);
354 predname=("background_"+identifier);
355 signalname="signal_"+identifier;
356 }
357
358 TH1F *obs = (TH1F*)ZOSSFP->Clone();
359 obs->SetName(obsname.c_str());
360 obs->Write();
361 TH1F *pred = (TH1F*)ZOSSFN->Clone();
362 pred->Add(ZOSOFP,1.0/3);
363 pred->Add(ZOSOFN,-1.0/3);
364 pred->Add(SBOSSFP,1.0/3);
365 pred->Add(SBOSSFN,-1.0/3);
366 pred->Add(SBOSOFP,1.0/3);
367 pred->Add(SBOSOFN,-1.0/3);
368 pred->SetName(predname.c_str());
369 pred->Write();
370
371 // TH1F *Lobs = (TH1F*)LZOSSFP->Clone();
372 // TH1F *Lpred = (TH1F*)LZOSSFN->Clone();
373
374 TH1F *Lobs = new TH1F("Lobs","Lobs",binning.size()-1,&binning[0]);
375 TH1F *Lpred = new TH1F("Lpred","Lpred",binning.size()-1,&binning[0]);
376 Lobs->Add(LZOSSFP);
377 Lpred->Add(LZOSSFN);
378 Lpred->Add(LZOSOFP,1.0/3);
379 Lpred->Add(LZOSOFN,-1.0/3);
380 Lpred->Add(LSBOSSFP,1.0/3);
381 Lpred->Add(LSBOSSFN,-1.0/3);
382 Lpred->Add(LSBOSOFP,1.0/3);
383 Lpred->Add(LSBOSOFN,-1.0/3);
384 TH1F *signal = (TH1F*)Lobs->Clone();
385 signal->Add(Lpred,-1);
386 signal->SetName(signalname.c_str());
387 signal->Write();
388
389 delete Lobs;
390 delete Lpred;
391
392 delete ZOSSFP;
393 delete ZOSOFP;
394 delete ZOSSFN;
395 delete ZOSOFN;
396
397 delete SBOSSFP;
398 delete SBOSOFP;
399 delete SBOSSFN;
400 delete SBOSOFN;
401
402 delete LZOSSFP;
403 delete LZOSOFP;
404 delete LZOSSFN;
405 delete LZOSOFN;
406
407 delete LSBOSSFP;
408 delete LSBOSOFP;
409 delete LSBOSSFN;
410 delete LSBOSOFN;
411
412 }
413
414 void prepare_datacard(TFile *f) {
415 TH1F *dataob = (TH1F*)f->Get("data_obs");
416 TH1F *signal = (TH1F*)f->Get("signal");
417 TH1F *background = (TH1F*)f->Get("background");
418
419 ofstream datacard;
420 ensure_directory_exists(get_directory()+"/limits");
421 datacard.open ((get_directory()+"/limits/susydatacard.txt").c_str());
422 datacard << "Writing this to a file.\n";
423 datacard << "imax 1\n";
424 datacard << "jmax 1\n";
425 datacard << "kmax *\n";
426 datacard << "---------------\n";
427 datacard << "shapes * * limitfile.root $PROCESS $PROCESS_$SYSTEMATIC\n";
428 datacard << "---------------\n";
429 datacard << "bin 1\n";
430 datacard << "observation "<<dataob->Integral()<<"\n";
431 datacard << "------------------------------\n";
432 datacard << "bin 1 1\n";
433 datacard << "process signal background\n";
434 datacard << "process 0 1\n";
435 datacard << "rate "<<signal->Integral()<<" "<<background->Integral()<<"\n";
436 datacard << "--------------------------------\n";
437 datacard << "lumi lnN 1.10 1.0\n";
438 datacard << "bgnorm lnN 1.00 1.4 uncertainty on our prediction (40%)\n";
439 datacard << "JES shape 1 1 uncertainty on background shape and normalization\n";
440 datacard << "peak shape 1 1 uncertainty on signal resolution. Assume the histogram is a 2 sigma shift, \n";
441 datacard << "# so divide the unit gaussian by 2 before doing the interpolation\n";
442 datacard.close();
443 }
444
445
446 void prepare_limits(string mcjzb, string datajzb, float jzbpeakerrordata, float jzbpeakerrormc, vector<float> jzbbins) {
447 ensure_directory_exists(get_directory()+"/limits");
448 TFile *limfile = new TFile((get_directory()+"/limits/limitfile.root").c_str(),"RECREATE");
449 TCanvas *limcan = new TCanvas("limcan","Canvas for calculating limits");
450 limit_shapes_for_systematic_effect(limfile,"",mcjzb,datajzb,noJES,jzbbins,limcan);
451 limit_shapes_for_systematic_effect(limfile,"peakUp",newjzbexpression(mcjzb,jzbpeakerrormc),newjzbexpression(datajzb,jzbpeakerrordata),noJES,jzbbins,limcan);
452 limit_shapes_for_systematic_effect(limfile,"peakDown",newjzbexpression(mcjzb,-jzbpeakerrormc),newjzbexpression(datajzb,-jzbpeakerrordata),noJES,jzbbins,limcan);
453 limit_shapes_for_systematic_effect(limfile,"JESUp",mcjzb,datajzb,JESup,jzbbins,limcan);
454 limit_shapes_for_systematic_effect(limfile,"JESDown",mcjzb,datajzb,JESdown,jzbbins,limcan);
455
456 prepare_datacard(limfile);
457 limfile->Close();
458 write_info("prepare_limits","limitfile.root and datacard.txt have been generated. You can now use them to calculate limits!");
459
460 }