ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/cbrown/AnalysisFramework/Plotting/Modules/LimitCalculation.C
Revision: 1.27
Committed: Mon Oct 24 15:26:14 2011 UTC (13 years, 6 months ago) by buchmann
Content type: text/plain
Branch: MAIN
Changes since 1.26: +1 -1 lines
Log Message:
Now officially using the timed limit capsule

File Contents

# Content
1 /****
2
3 Off peak status (RestrictToMassPeak) :
4
5 x Necessary adaptations identified
6 x Started working on necessary adaptations
7 x Necessary adaptations implemented
8 x Necessary adaptations tested
9
10 DONE!
11
12
13 ****/
14 #include <iostream>
15 #include <vector>
16 #include <sys/stat.h>
17 #include <fstream>
18
19 #include <TCut.h>
20 #include <TROOT.h>
21 #include <TCanvas.h>
22 #include <TMath.h>
23 #include <TColor.h>
24 #include <TPaveText.h>
25 #include <TRandom.h>
26 #include <TH1.h>
27 #include <TH2.h>
28 #include <TF1.h>
29 #include <TSQLResult.h>
30 #include <TProfile.h>
31 #include <TSystem.h>
32 #include "LimitDroplet.C"
33
34 //#include "TTbar_stuff.C"
35 using namespace std;
36
37 using namespace PlottingSetup;
38
39
40 void rediscover_the_top(string mcjzb, string datajzb) {
41 dout << "Hi! today we are going to (try to) rediscover the top!" << endl;
42 TCanvas *c3 = new TCanvas("c3","c3");
43 c3->SetLogy(1);
44 vector<float> binning;
45 //binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
46 /*
47 binning.push_back(50);
48 binning.push_back(100);
49 binning.push_back(150);
50 binning.push_back(200);
51 binning.push_back(500);
52
53
54 TH1F *dataprediction = allsamples.Draw("dataprediction", "-"+datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
55 TH1F *puresignal = allsamples.Draw("puresignal", datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
56 // TH1F *puresignal = allsamples.Draw("puresignal", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("TTJets"));
57 TH1F *observed = allsamples.Draw("observed", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
58 /*
59 ofstream myfile;
60 TH1F *ratio = (TH1F*)observed->Clone();
61 ratio->Divide(dataprediction);
62 ratio->GetYaxis()->SetTitle("Ratio obs/pred");
63 ratio->Draw();
64 c3->SaveAs("testratio.png");
65 myfile.open ("ShapeFit_log.txt");
66 establish_upper_limits(observed,dataprediction,puresignal,"LM4",myfile);
67 myfile.close();
68 */
69
70
71 int nbins=100;
72 float low=0;
73 float hi=500;
74 TCanvas *c4 = new TCanvas("c4","c4",900,900);
75 c4->Divide(2,2);
76 c4->cd(1);
77 c4->cd(1)->SetLogy(1);
78 TH1F *datapredictiont = allsamples.Draw("datapredictiont", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
79 TH1F *datapredictiono = allsamples.Draw("datapredictiono", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
80 datapredictiont->Add(datapredictiono,-1);
81 dout << "Second way of doing this !!!! Analytical shape to the left :-D" << endl;
82 vector<TF1*> functions = do_cb_fit_to_plot(datapredictiont,10);
83 datapredictiont->SetMarkerColor(kRed);
84 datapredictiont->SetLineColor(kRed);
85 datapredictiont->Draw();
86 functions[1]->Draw("same");
87 TText *title1 = write_title("Top Background Prediction (JZB<0, with osof subtr)");
88 title1->Draw();
89
90 c4->cd(2);
91 c4->cd(2)->SetLogy(1);
92 TH1F *observedt = allsamples.Draw("observedt", datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
93 observedt->Draw();
94 datapredictiont->Draw("histo,same");
95 functions[1]->Draw("same");
96 TText *title2 = write_title("Observed and predicted background");
97 title2->Draw();
98
99 c4->cd(3);
100 c4->cd(3)->SetLogy(1);
101 // TH1F *ratio = (TH1F*)observedt->Clone();
102
103 TH1F *analytical_background_prediction= new TH1F("analytical_background_prediction","",nbins,low,hi);
104 for(int i=0;i<=nbins;i++) {
105 analytical_background_prediction->SetBinContent(i+1,functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5)));
106 analytical_background_prediction->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5))));
107 }
108 analytical_background_prediction->GetYaxis()->SetTitle("JZB [GeV]");
109 analytical_background_prediction->GetYaxis()->CenterTitle();
110 TH1F *analyticaldrawonly = (TH1F*)analytical_background_prediction->Clone();
111 analytical_background_prediction->SetFillColor(TColor::GetColor("#3399FF"));
112 analytical_background_prediction->SetMarkerSize(0);
113 analytical_background_prediction->Draw("e5");
114 analyticaldrawonly->Draw("histo,same");
115 functions[1]->Draw("same");
116 TText *title3 = write_title("Analytical bg pred histo");
117 title3->Draw();
118
119 c4->cd(4);
120 // c4->cd(4)->SetLogy(1);
121 vector<float> ratio_binning;
122 ratio_binning.push_back(0);
123 ratio_binning.push_back(5);
124 ratio_binning.push_back(10);
125 ratio_binning.push_back(20);
126 ratio_binning.push_back(50);
127 // ratio_binning.push_back(60);
128 /*
129 ratio_binning.push_back(51);
130 ratio_binning.push_back(52);
131 ratio_binning.push_back(53);
132 ratio_binning.push_back(54);
133 ratio_binning.push_back(55);
134 ratio_binning.push_back(56);
135 ratio_binning.push_back(57);
136 ratio_binning.push_back(58);
137 ratio_binning.push_back(59);
138 ratio_binning.push_back(60);
139 // ratio_binning.push_back(70);*/
140 // ratio_binning.push_back(80);
141 // ratio_binning.push_back(90);
142 ratio_binning.push_back(80);
143 // ratio_binning.push_back(110);
144 ratio_binning.push_back(500);
145
146 TH1F *observedtb = allsamples.Draw("observedtb", datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
147 TH1F *datapredictiontb = allsamples.Draw("datapredictiontb", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
148 TH1F *datapredictiontbo = allsamples.Draw("datapredictiontbo", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
149 datapredictiontb->Add(datapredictiontbo,-1);
150 TH1F *analytical_background_predictionb = allsamples.Draw("analytical_background_predictionb",datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets&&"mll<2",data, luminosity);
151 for(int i=0;i<=ratio_binning.size();i++) {
152 analytical_background_predictionb->SetBinContent(i+1,functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i)));
153 analytical_background_predictionb->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i))));
154 }
155
156 TH1F *ratio = (TH1F*) observedtb->Clone();
157 ratio->Divide(datapredictiontb);
158
159 for (int i=0;i<=ratio_binning.size();i++) {
160 dout << observedtb->GetBinLowEdge(i+1) << ";"<<observedtb->GetBinContent(i+1) << ";" << datapredictiontb->GetBinContent(i+1) << " --> " << ratio->GetBinContent(i+1) << "+/-" << ratio->GetBinError(i+1) << endl;
161 }
162
163 // ratio->Divide(datapredictiontb);
164 // ratio->Divide(analytical_background_predictionb);
165 // TGraphAsymmErrors *JZBratio= histRatio(observedtb,analytical_background_predictionb,data,ratio_binning);
166 // ratio->Divide(analytical_background_prediction);
167 // ratio->Divide(datapredictiont);
168 // ratio->GetYaxis()->SetTitle("obs/pred");
169 // JZBratio->Draw("AP");
170 ratio->GetYaxis()->SetRangeUser(0,10);
171 ratio->Draw();
172 //analytical_background_predictionb->Draw();
173 // JZBratio->SetTitle("");
174 TText *title4 = write_title("Ratio of observed to predicted");
175 title4->Draw();
176
177 // CompleteSave(c4,"test/ttbar_discovery_dataprediction___analytical_function");
178 CompleteSave(c4,"test/ttbar_discovery_dataprediction__analytical__new_binning_one_huge_bin_from_80");
179
180
181
182
183
184 }
185
186 vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, string plotfilename, bool doexpected) {
187 float sigma95=-9.9,sigma95A=-9.9;
188 /*
189 USAGE OF ROOSTATS_CL95
190 " Double_t limit = roostats_cl95(ilum, slum, eff, seff, bck, sbck, n, gauss = false, nuisanceModel, method, plotFileName, seed); \n"
191 " LimitResult expected_limit = roostats_clm(ilum, slum, eff, seff, bck, sbck, ntoys, nuisanceModel, method, seed); \n"
192 " Double_t average_limit = roostats_cla(ilum, slum, eff, seff, bck, sbck, nuisanceModel, method, seed); \n"
193 " \n"
194 "
195 " Double_t obs_limit = limit.GetObservedLimit(); \n"
196 " Double_t exp_limit = limit.GetExpectedLimit(); \n"
197 " Double_t exp_up = limit.GetOneSigmaHighRange(); \n"
198 " Double_t exp_down = limit.GetOneSigmaLowRange(); \n"
199 " Double_t exp_2up = limit.GetTwoSigmaHighRange(); \n"
200 " Double_t exp_2down = limit.GetTwoSigmaLowRange(); \n"
201 */
202 if(mceff<=0) {
203 write_warning(__FUNCTION__,"Cannot compute upper limit in this configuration as the efficiency is negative:");
204 dout << "mc efficiency=" << mceff << " +/- " << mcefferr;
205 vector<float> sigmas;
206 sigmas.push_back(-1);
207 sigmas.push_back(-1);
208 return sigmas;
209 } else {
210 int nlimittoysused=1;
211
212 ///------------------------------------------ < NEW > ----------------------------------------------------------
213
214 int secondssince1970=time(NULL);
215 stringstream repname;
216 repname << PlottingSetup::cbafbasedir << "/exchange/report_" << secondssince1970 << "_"<<plotfilename<< "__"<< ".txt";
217
218 /* - report filename [1]
219 - luminosity [2]
220 - lumi uncert [3]
221 - MC efficiency [4]
222 - MC efficiency error [5]
223 - Npred [6]
224 - Nprederr [7]
225 - Nobs [8]
226 - JZB cut [9]
227 - plot name [10]*/
228
229 dout << "Calling limit capsule instead of calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl;
230
231 stringstream command;
232 command << PlottingSetup::cbafbasedir << "/DistributedModelCalculations/Limits/TimedLimitCapsule.exec " << repname.str() << " " << luminosity << " " << luminosity*lumiuncert << " " << mceff << " " << mcefferr << " " << Npred[ibin] << " " << Nprederr[ibin] << " " << Nobs[ibin] << " " << -1 << " " << PlottingSetup::basedirectory << "/" << plotfilename << " " << doexpected;
233 dout << command.str() << endl;
234
235 int retval = 256;
236 int attempts=0;
237 while(!(retval==0||attempts>=3)) {//try up to 3 times
238 attempts++;
239 dout << "Starting limit calculation (LimitCapsule) now : Attempt " << attempts << endl;
240 retval=gSystem->Exec(command.str().c_str());
241 }
242
243 LimitDroplet limres;
244 limres.readDroplet(repname.str());
245 dout << limres << endl;
246 remove(repname.str().c_str());
247 sigma95=limres.observed;
248
249
250 ///------------------------------------------ < /NEW > ----------------------------------------------------------
251 vector<float> sigmas;
252 sigmas.push_back(sigma95);
253 if(doexpected) {
254 sigmas.push_back(limres.expected);
255 sigmas.push_back(limres.upper68);
256 sigmas.push_back(limres.lower68);
257 sigmas.push_back(limres.upper95);
258 sigmas.push_back(limres.lower95);
259 }
260
261 return sigmas;
262
263
264 }//end of mc efficiency is ok
265 }
266
267 void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doexpected) {
268 dout << "Doing counting experiment ... " << endl;
269 vector<vector<string> > limits;
270 vector<vector<float> > vlimits;
271
272
273 for(int isample=0;isample<signalsamples.collection.size();isample++) {
274 vector<string> rows;
275 vector<float> vrows;
276 dout << "Considering sample " << signalsamples.collection[isample].samplename << endl;
277 rows.push_back(signalsamples.collection[isample].samplename);
278 for(int ibin=0;ibin<jzbcuts.size();ibin++) {
279 dout << "_________________________________________________________________________________" << endl;
280 float JZBcutat=uncertainties[isample*jzbcuts.size()+ibin][0];
281 float mceff=uncertainties[isample*jzbcuts.size()+ibin][1];
282 float staterr=uncertainties[isample*jzbcuts.size()+ibin][2];
283 float systerr=uncertainties[isample*jzbcuts.size()+ibin][3];
284 float toterr =uncertainties[isample*jzbcuts.size()+ibin][4];
285 float observed,observederr,null,result;
286
287 // fill_result_histos(observed,observederr, null,null,null,null,null,null,null,mcjzb,JZBcutat,14000,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples);
288 // observed-=result;//this is the actual excess we see!
289 // float expected=observed/luminosity;
290 string plotfilename=(string)(TString(signalsamples.collection[isample].samplename)+TString("___JZB_geq_")+TString(any2string(JZBcutat))+TString(".png"));
291 dout << "Sample: " << signalsamples.collection[isample].samplename << ", JZB>"<<JZBcutat<< " : " << mceff << " +/- " << staterr << " (stat) +/- " << systerr << " (syst) --> toterr = " << toterr << endl;
292 vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,plotfilename,doexpected);
293
294 if(doexpected) {
295 // rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")");
296 rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(signalsamples.collection[isample].xs)+")");
297 vrows.push_back(sigmas[0]);
298 vrows.push_back(sigmas[1]);
299 // vrows.push_back(expected);
300 vrows.push_back(signalsamples.collection[isample].xs);
301 }
302 else {
303 // rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")");
304 rows.push_back(any2string(sigmas[0]));
305 vrows.push_back(sigmas[0]);
306 vrows.push_back(signalsamples.collection[isample].xs);
307 // vrows.push_back(expected);
308 }
309 }//end of bin loop
310 limits.push_back(rows);
311 vlimits.push_back(vrows);
312 }//end of sample loop
313 dout << endl << endl << endl << "_________________________________________________________________________________________________" << endl << endl;
314 dout << endl << endl << "PAS table 3: (notation: limit [95%CL])" << endl << endl;
315 dout << "\t";
316 for (int irow=0;irow<jzbcuts.size();irow++) {
317 dout << jzbcuts[irow] << "\t";
318 }
319 dout << endl;
320 for(int irow=0;irow<limits.size();irow++) {
321 for(int ientry=0;ientry<limits[irow].size();ientry++) {
322 if (limits[irow][ientry]>0) dout << limits[irow][ientry] << "\t";
323 else dout << " (N/A) \t";
324 }
325 dout << endl;
326 }
327
328 if(!doexpected) {
329 dout << endl << endl << "LIMITS: (Tex)" << endl;
330 tout << "\\begin{table}[hbtp]" << endl;
331 tout << "\\renewcommand{\\arraystretch}{1.3}" << endl;
332 tout << "\\begin{center}" << endl;
333 tout << "\\caption{Observed upper limits on the cross section of different LM benchmark points " << (ConsiderSignalContaminationForLimits?" (accounting for signal contamination)":" (not accounting for signal contamination)") << "}\\label{tab:lmresults}" << endl;
334 tout << "" << endl;
335 tout << "\\begin{tabular}{ | l | ";
336 for (int irow=0;irow<jzbcuts.size();irow++) tout << " l |";
337 tout << "} " << endl << " \\hline " << endl << "& \t ";
338 for (int irow=0;irow<jzbcuts.size();irow++) {
339 tout << "JZB $>$ " << jzbcuts[irow] << " GeV & \t ";
340 }
341 tout << " \\\\ \\hline " << endl;
342 for(int irow=0;irow<limits.size();irow++) {
343 tout << limits[irow][0] << " \t";
344 for(int ientry=0;ientry<jzbcuts.size();ientry++) {
345 if(vlimits[irow][2*ientry]>0) tout << " & " << Round(vlimits[irow][2*ientry],2) << " \t (" << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "x \\sigma ) \t";
346 else tout << " & ( N / A ) \t";
347 // dout << Round(vlimits[irow][2*ientry],3) << " / " << Round(vlimits[irow][2*ientry+1],3)<< "\t";
348 }
349 tout << " \\\\ \\hline " << endl;
350 }
351 tout << "\\end{tabular}" << endl;
352 tout << " \\end{tabular}"<< endl;
353 tout << "\\end{center}"<< endl;
354 tout << "\\end{table} "<< endl;
355
356 }//do observed
357
358 dout << endl << endl << "Final selection efficiencies with total statistical and systematic errors, and corresponding observed and expected upper limits (UL) on ($\\sigma\\times$ BR $\\times$ acceptance) for the LM4 and LM8 scenarios, in the different regions. The last column contains the predicted ($\\sigma \\times $BR$\\times$ acceptance) at NLO obtained from Monte Carlo simulation." << endl;
359 dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t \\sigma [pb]" << endl;
360 for(int icut=0;icut<jzbcuts.size();icut++) {
361 dout << "Region with JZB>" << jzbcuts[icut] << (ConsiderSignalContaminationForLimits?" (accounting for signal contamination)":" (not accounting for signal contamination)") << endl;
362 for(int isample=0;isample<signalsamples.collection.size();isample++) {
363 dout << limits[isample][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],3) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],3) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],3) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl;
364 }
365 dout << endl;
366 }
367 }
368
369
370
371 /********************************************************************** new : Limits using SHAPES ***********************************
372
373
374 SSSSSSSSSSSSSSS hhhhhhh
375 SS:::::::::::::::Sh:::::h
376 S:::::SSSSSS::::::Sh:::::h
377 S:::::S SSSSSSSh:::::h
378 S:::::S h::::h hhhhh aaaaaaaaaaaaa ppppp ppppppppp eeeeeeeeeeee ssssssssss
379 S:::::S h::::hh:::::hhh a::::::::::::a p::::ppp:::::::::p ee::::::::::::ee ss::::::::::s
380 S::::SSSS h::::::::::::::hh aaaaaaaaa:::::ap:::::::::::::::::p e::::::eeeee:::::eess:::::::::::::s
381 SS::::::SSSSS h:::::::hhh::::::h a::::app::::::ppppp::::::pe::::::e e:::::es::::::ssss:::::s
382 SSS::::::::SS h::::::h h::::::h aaaaaaa:::::a p:::::p p:::::pe:::::::eeeee::::::e s:::::s ssssss
383 SSSSSS::::S h:::::h h:::::h aa::::::::::::a p:::::p p:::::pe:::::::::::::::::e s::::::s
384 S:::::S h:::::h h:::::h a::::aaaa::::::a p:::::p p:::::pe::::::eeeeeeeeeee s::::::s
385 S:::::S h:::::h h:::::ha::::a a:::::a p:::::p p::::::pe:::::::e ssssss s:::::s
386 SSSSSSS S:::::S h:::::h h:::::ha::::a a:::::a p:::::ppppp:::::::pe::::::::e s:::::ssss::::::s
387 S::::::SSSSSS:::::S h:::::h h:::::ha:::::aaaa::::::a p::::::::::::::::p e::::::::eeeeeeee s::::::::::::::s
388 S:::::::::::::::SS h:::::h h:::::h a::::::::::aa:::ap::::::::::::::pp ee:::::::::::::e s:::::::::::ss
389 SSSSSSSSSSSSSSS hhhhhhh hhhhhhh aaaaaaaaaa aaaap::::::pppppppp eeeeeeeeeeeeee sssssssssss
390 p:::::p
391 p:::::p
392 p:::::::p
393 p:::::::p
394 p:::::::p
395 ppppppppp
396
397
398 *********************************************************************** new : Limits using SHAPES ***********************************/
399
400
401 void limit_shapes_for_systematic_effect(TFile *limfile, string identifier, string mcjzb, string datajzb, int JES,vector<float> binning, TCanvas *limcan) {
402 dout << "Creatig shape templates ... ";
403 if(identifier!="") dout << "for systematic called "<<identifier;
404 dout << endl;
405 int dataormc=mcwithsignal;//this is only for tests - for real life you want dataormc=data !!!
406 if(dataormc!=data) write_warning(__FUNCTION__,"WATCH OUT! Not using data for limits!!!! this is ok for tests, but not ok for anything official!");
407
408 TCut limitnJetcut;
409 if(JES==noJES) limitnJetcut=cutnJets;
410 else {
411 if(JES==JESdown) limitnJetcut=cutnJetsJESdown;
412 if(JES==JESup) limitnJetcut=cutnJetsJESup;
413 }
414 TH1F *ZOSSFP = allsamples.Draw("ZOSSFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
415 TH1F *ZOSOFP = allsamples.Draw("ZOSOFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
416 TH1F *ZOSSFN = allsamples.Draw("ZOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
417 TH1F *ZOSOFN = allsamples.Draw("ZOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
418
419 TH1F *SBOSSFP;
420 TH1F *SBOSOFP;
421 TH1F *SBOSSFN;
422 TH1F *SBOSOFN;
423
424 TH1F *LZOSSFP = allsamples.Draw("LZOSSFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
425 TH1F *LZOSOFP = allsamples.Draw("LZOSOFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
426 TH1F *LZOSSFN = allsamples.Draw("LZOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
427 TH1F *LZOSOFN = allsamples.Draw("LZOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
428
429 TH1F *LSBOSSFP;
430 TH1F *LSBOSOFP;
431 TH1F *LSBOSSFN;
432 TH1F *LSBOSOFN;
433
434 flag_this_change(__FUNCTION__,__LINE__,false);//PlottingSetup::RestrictToMassPeak
435 if(PlottingSetup::RestrictToMassPeak) {
436 SBOSSFP = allsamples.Draw("SBOSSFP",datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
437 SBOSOFP = allsamples.Draw("SBOSOFP",datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
438 SBOSSFN = allsamples.Draw("SBOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
439 SBOSOFN = allsamples.Draw("SBOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
440
441 LSBOSSFP = allsamples.Draw("LSBOSSFP",mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
442 LSBOSOFP = allsamples.Draw("LSBOSOFP",mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
443 LSBOSSFN = allsamples.Draw("LSBOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
444 LSBOSOFN = allsamples.Draw("LSBOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
445 }
446
447 string obsname="data_obs";
448 string predname="background";
449 string signalname="signal";
450 if(identifier!="") {
451 obsname=("data_"+identifier);
452 predname=("background_"+identifier);
453 signalname="signal_"+identifier;
454 }
455
456 TH1F *obs = (TH1F*)ZOSSFP->Clone("observation");
457 obs->SetName(obsname.c_str());
458 obs->Write();
459 TH1F *pred = (TH1F*)ZOSSFN->Clone("prediction");
460 flag_this_change(__FUNCTION__,__LINE__,false);//PlottingSetup::RestrictToMassPeak
461 if(PlottingSetup::RestrictToMassPeak) {
462 pred->Add(ZOSOFP,1.0/3);
463 pred->Add(ZOSOFN,-1.0/3);
464 pred->Add(SBOSSFP,1.0/3);
465 pred->Add(SBOSSFN,-1.0/3);
466 pred->Add(SBOSOFP,1.0/3);
467 pred->Add(SBOSOFN,-1.0/3);
468 } else {
469 pred->Add(ZOSOFP,1.0);
470 pred->Add(ZOSOFN,-1.0);
471 }
472
473 pred->SetName(predname.c_str());
474 pred->Write();
475
476 // TH1F *Lobs = (TH1F*)LZOSSFP->Clone();
477 // TH1F *Lpred = (TH1F*)LZOSSFN->Clone();
478
479 TH1F *Lobs = new TH1F("Lobs","Lobs",binning.size()-1,&binning[0]);
480 TH1F *Lpred = new TH1F("Lpred","Lpred",binning.size()-1,&binning[0]);
481 Lobs->Add(LZOSSFP);
482 Lpred->Add(LZOSSFN);
483 flag_this_change(__FUNCTION__,__LINE__,false);//PlottingSetup::RestrictToMassPeak
484 if(PlottingSetup::RestrictToMassPeak) {
485 Lpred->Add(LZOSOFP,1.0/3);
486 Lpred->Add(LZOSOFN,-1.0/3);
487 Lpred->Add(LSBOSSFP,1.0/3);
488 Lpred->Add(LSBOSSFN,-1.0/3);
489 Lpred->Add(LSBOSOFP,1.0/3);
490 Lpred->Add(LSBOSOFN,-1.0/3);
491 } else {
492 Lpred->Add(LZOSOFP,1.0);
493 Lpred->Add(LZOSOFN,-1.0);
494 }
495
496 TH1F *signal = (TH1F*)Lobs->Clone();
497 signal->Add(Lpred,-1);
498 signal->SetName(signalname.c_str());
499 signal->Write();
500
501 delete Lobs;
502 delete Lpred;
503
504 delete ZOSSFP;
505 delete ZOSOFP;
506 delete ZOSSFN;
507 delete ZOSOFN;
508
509 if(PlottingSetup::RestrictToMassPeak) {
510 delete SBOSSFP;
511 delete SBOSOFP;
512 delete SBOSSFN;
513 delete SBOSOFN;
514 }
515
516 delete LZOSSFP;
517 delete LZOSOFP;
518 delete LZOSSFN;
519 delete LZOSOFN;
520
521 if(PlottingSetup::RestrictToMassPeak) {
522 delete LSBOSSFP;
523 delete LSBOSOFP;
524 delete LSBOSSFN;
525 delete LSBOSOFN;
526 }
527
528 }
529
530 void prepare_datacard(TFile *f) {
531 TH1F *dataob = (TH1F*)f->Get("data_obs");
532 TH1F *signal = (TH1F*)f->Get("signal");
533 TH1F *background = (TH1F*)f->Get("background");
534
535 ofstream datacard;
536 ensure_directory_exists(get_directory()+"/limits");
537 datacard.open ((get_directory()+"/limits/susydatacard.txt").c_str());
538 datacard << "Writing this to a file.\n";
539 datacard << "imax 1\n";
540 datacard << "jmax 1\n";
541 datacard << "kmax *\n";
542 datacard << "---------------\n";
543 datacard << "shapes * * limitfile.root $PROCESS $PROCESS_$SYSTEMATIC\n";
544 datacard << "---------------\n";
545 datacard << "bin 1\n";
546 datacard << "observation "<<dataob->Integral()<<"\n";
547 datacard << "------------------------------\n";
548 datacard << "bin 1 1\n";
549 datacard << "process signal background\n";
550 datacard << "process 0 1\n";
551 datacard << "rate "<<signal->Integral()<<" "<<background->Integral()<<"\n";
552 datacard << "--------------------------------\n";
553 datacard << "lumi lnN 1.10 1.0\n";
554 datacard << "bgnorm lnN 1.00 1.4 uncertainty on our prediction (40%)\n";
555 datacard << "JES shape 1 1 uncertainty on background shape and normalization\n";
556 datacard << "peak shape 1 1 uncertainty on signal resolution. Assume the histogram is a 2 sigma shift, \n";
557 datacard << "# so divide the unit gaussian by 2 before doing the interpolation\n";
558 datacard.close();
559 }
560
561
562 void prepare_limits(string mcjzb, string datajzb, float jzbpeakerrordata, float jzbpeakerrormc, vector<float> jzbbins) {
563 ensure_directory_exists(get_directory()+"/limits");
564 TFile *limfile = new TFile((get_directory()+"/limits/limitfile.root").c_str(),"RECREATE");
565 TCanvas *limcan = new TCanvas("limcan","Canvas for calculating limits");
566 limit_shapes_for_systematic_effect(limfile,"",mcjzb,datajzb,noJES,jzbbins,limcan);
567 limit_shapes_for_systematic_effect(limfile,"peakUp",newjzbexpression(mcjzb,jzbpeakerrormc),newjzbexpression(datajzb,jzbpeakerrordata),noJES,jzbbins,limcan);
568 limit_shapes_for_systematic_effect(limfile,"peakDown",newjzbexpression(mcjzb,-jzbpeakerrormc),newjzbexpression(datajzb,-jzbpeakerrordata),noJES,jzbbins,limcan);
569 limit_shapes_for_systematic_effect(limfile,"JESUp",mcjzb,datajzb,JESup,jzbbins,limcan);
570 limit_shapes_for_systematic_effect(limfile,"JESDown",mcjzb,datajzb,JESdown,jzbbins,limcan);
571
572 prepare_datacard(limfile);
573 limfile->Close();
574 write_info("prepare_limits","limitfile.root and datacard.txt have been generated. You can now use them to calculate limits!");
575
576 }