ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/cbrown/AnalysisFramework/Plotting/Modules/LimitCalculation.C
Revision: 1.5
Committed: Wed Jul 20 14:34:31 2011 UTC (13 years, 9 months ago) by buchmann
Content type: text/plain
Branch: MAIN
Changes since 1.4: +148 -35 lines
Log Message:
Moved functions that were for temporary studies out of the main workflow

File Contents

# Content
1 #include <iostream>
2 #include <vector>
3 #include <sys/stat.h>
4
5 #include <TCut.h>
6 #include <TROOT.h>
7 #include <TCanvas.h>
8 #include <TMath.h>
9 #include <TColor.h>
10 #include <TPaveText.h>
11 #include <TRandom.h>
12 #include <TH1.h>
13 #include <TH2.h>
14 #include <TF1.h>
15 #include <TSQLResult.h>
16 #include <TProfile.h>
17
18 //#include "TTbar_stuff.C"
19 using namespace std;
20
21 using namespace PlottingSetup;
22
23
24 void rediscover_the_top(string mcjzb, string datajzb) {
25 dout << "Hi! today we are going to (try to) rediscover the top!" << endl;
26 TCanvas *c3 = new TCanvas("c3","c3");
27 c3->SetLogy(1);
28 vector<float> binning;
29 //binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
30 /*
31 binning.push_back(50);
32 binning.push_back(100);
33 binning.push_back(150);
34 binning.push_back(200);
35 binning.push_back(500);
36
37
38 TH1F *dataprediction = allsamples.Draw("dataprediction", "-"+datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
39 TH1F *puresignal = allsamples.Draw("puresignal", datajzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
40 // TH1F *puresignal = allsamples.Draw("puresignal", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("TTJets"));
41 TH1F *observed = allsamples.Draw("observed", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
42 /*
43 ofstream myfile;
44 TH1F *ratio = (TH1F*)observed->Clone();
45 ratio->Divide(dataprediction);
46 ratio->GetYaxis()->SetTitle("Ratio obs/pred");
47 ratio->Draw();
48 c3->SaveAs("testratio.png");
49 myfile.open ("ShapeFit_log.txt");
50 establish_upper_limits(observed,dataprediction,puresignal,"LM4",myfile);
51 myfile.close();
52 */
53
54
55 int nbins=100;
56 float low=0;
57 float hi=500;
58 TCanvas *c4 = new TCanvas("c4","c4",900,900);
59 c4->Divide(2,2);
60 c4->cd(1);
61 c4->cd(1)->SetLogy(1);
62 TH1F *datapredictiont = allsamples.Draw("datapredictiont", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
63 TH1F *datapredictiono = allsamples.Draw("datapredictiono", "-"+datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
64 datapredictiont->Add(datapredictiono,-1);
65 dout << "Second way of doing this !!!! Analytical shape to the left :-D" << endl;
66 vector<TF1*> functions = do_cb_fit_to_plot(datapredictiont,10);
67 datapredictiont->SetMarkerColor(kRed);
68 datapredictiont->SetLineColor(kRed);
69 datapredictiont->Draw();
70 functions[1]->Draw("same");
71 TText *title1 = write_title("Top Background Prediction (JZB<0, with osof subtr)");
72 title1->Draw();
73
74 c4->cd(2);
75 c4->cd(2)->SetLogy(1);
76 TH1F *observedt = allsamples.Draw("observedt", datajzb, nbins,low,hi, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
77 observedt->Draw();
78 datapredictiont->Draw("histo,same");
79 functions[1]->Draw("same");
80 TText *title2 = write_title("Observed and predicted background");
81 title2->Draw();
82
83 c4->cd(3);
84 c4->cd(3)->SetLogy(1);
85 // TH1F *ratio = (TH1F*)observedt->Clone();
86
87 TH1F *analytical_background_prediction= new TH1F("analytical_background_prediction","",nbins,low,hi);
88 for(int i=0;i<=nbins;i++) {
89 analytical_background_prediction->SetBinContent(i+1,functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5)));
90 analytical_background_prediction->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(((hi-low)/((float)nbins))*(i+0.5))));
91 }
92 analytical_background_prediction->GetYaxis()->SetTitle("JZB [GeV]");
93 analytical_background_prediction->GetYaxis()->CenterTitle();
94 TH1F *analyticaldrawonly = (TH1F*)analytical_background_prediction->Clone();
95 analytical_background_prediction->SetFillColor(TColor::GetColor("#3399FF"));
96 analytical_background_prediction->SetMarkerSize(0);
97 analytical_background_prediction->Draw("e5");
98 analyticaldrawonly->Draw("histo,same");
99 functions[1]->Draw("same");
100 TText *title3 = write_title("Analytical bg pred histo");
101 title3->Draw();
102
103 c4->cd(4);
104 // c4->cd(4)->SetLogy(1);
105 vector<float> ratio_binning;
106 ratio_binning.push_back(0);
107 ratio_binning.push_back(5);
108 ratio_binning.push_back(10);
109 ratio_binning.push_back(20);
110 ratio_binning.push_back(50);
111 // ratio_binning.push_back(60);
112 /*
113 ratio_binning.push_back(51);
114 ratio_binning.push_back(52);
115 ratio_binning.push_back(53);
116 ratio_binning.push_back(54);
117 ratio_binning.push_back(55);
118 ratio_binning.push_back(56);
119 ratio_binning.push_back(57);
120 ratio_binning.push_back(58);
121 ratio_binning.push_back(59);
122 ratio_binning.push_back(60);
123 // ratio_binning.push_back(70);*/
124 // ratio_binning.push_back(80);
125 // ratio_binning.push_back(90);
126 ratio_binning.push_back(80);
127 // ratio_binning.push_back(110);
128 ratio_binning.push_back(500);
129
130 TH1F *observedtb = allsamples.Draw("observedtb", datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
131 TH1F *datapredictiontb = allsamples.Draw("datapredictiontb", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data, luminosity);
132 TH1F *datapredictiontbo = allsamples.Draw("datapredictiontbo", "-"+datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data, luminosity);
133 datapredictiontb->Add(datapredictiontbo,-1);
134 TH1F *analytical_background_predictionb = allsamples.Draw("analytical_background_predictionb",datajzb, ratio_binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets&&"mll<2",data, luminosity);
135 for(int i=0;i<=ratio_binning.size();i++) {
136 analytical_background_predictionb->SetBinContent(i+1,functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i)));
137 analytical_background_predictionb->SetBinError(i+1,TMath::Sqrt(functions[1]->Eval(analytical_background_predictionb->GetBinCenter(i))));
138 }
139
140 TH1F *ratio = (TH1F*) observedtb->Clone();
141 ratio->Divide(datapredictiontb);
142
143 for (int i=0;i<=ratio_binning.size();i++) {
144 dout << observedtb->GetBinLowEdge(i+1) << ";"<<observedtb->GetBinContent(i+1) << ";" << datapredictiontb->GetBinContent(i+1) << " --> " << ratio->GetBinContent(i+1) << "+/-" << ratio->GetBinError(i+1) << endl;
145 }
146
147 // ratio->Divide(datapredictiontb);
148 // ratio->Divide(analytical_background_predictionb);
149 // TGraphAsymmErrors *JZBratio= histRatio(observedtb,analytical_background_predictionb,data,ratio_binning);
150 // ratio->Divide(analytical_background_prediction);
151 // ratio->Divide(datapredictiont);
152 // ratio->GetYaxis()->SetTitle("obs/pred");
153 // JZBratio->Draw("AP");
154 ratio->GetYaxis()->SetRangeUser(0,10);
155 ratio->Draw();
156 //analytical_background_predictionb->Draw();
157 // JZBratio->SetTitle("");
158 TText *title4 = write_title("Ratio of observed to predicted");
159 title4->Draw();
160
161 // CompleteSave(c4,"test/ttbar_discovery_dataprediction___analytical_function");
162 CompleteSave(c4,"test/ttbar_discovery_dataprediction__analytical__new_binning_one_huge_bin_from_80");
163
164
165
166
167
168 }
169
170 vector<float> compute_one_upper_limit(float mceff,float mcefferr, int ibin, string mcjzb, bool doobserved=false) {
171 float sigma95=0.0,sigma95A=0.0;
172 int nuisancemodel=1;
173 dout << "Now calling : CL95(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << Nobs[ibin] << "," << false << "," << nuisancemodel<< ") " << endl;
174 sigma95 = CL95(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], Nobs[ibin], false, nuisancemodel);
175 if(doobserved) {
176 dout << "Now calling : CLA(" << luminosity << "," << lumiuncert*luminosity << "," << mceff << "," << mcefferr << "," << Npred[ibin] << "," << Nprederr[ibin] << "," << nuisancemodel<< ") " << endl;
177 sigma95A = CLA(luminosity, lumiuncert*luminosity, mceff, mcefferr, Npred[ibin], Nprederr[ibin], nuisancemodel);
178 }
179 vector<float> sigmas;
180 sigmas.push_back(sigma95);
181 sigmas.push_back(sigma95A);
182 return sigmas;
183 }
184
185 void compute_upper_limits_from_counting_experiment(vector<vector<float> > uncertainties,vector<float> jzbcuts, string mcjzb, bool doobserved) {
186 dout << "Doing counting experiment ... " << endl;
187 vector<vector<string> > limits;
188 vector<vector<float> > vlimits;
189
190
191 for(int isample=0;isample<signalsamples.collection.size();isample++) {
192 vector<string> rows;
193 vector<float> vrows;
194 dout << "Considering sample " << signalsamples.collection[isample].samplename << endl;
195 rows.push_back(signalsamples.collection[isample].samplename);
196 for(int ibin=0;ibin<jzbcuts.size();ibin++) {
197 dout << "_________________________________________________________________________________" << endl;
198 float JZBcutat=uncertainties[isample*jzbcuts.size()+ibin][0];
199 float mceff=uncertainties[isample*jzbcuts.size()+ibin][1];
200 float staterr=uncertainties[isample*jzbcuts.size()+ibin][2];
201 float systerr=uncertainties[isample*jzbcuts.size()+ibin][3];
202 float toterr =uncertainties[isample*jzbcuts.size()+ibin][4];
203 float observed,null,result;
204 fill_result_histos(observed, null,null,null,null,null,null,null,mcjzb,JZBcutat,(int)5,result,(signalsamples.FindSample(signalsamples.collection[isample].filename)),signalsamples);
205 observed-=result;//this is the actual excess we see!
206 float expected=observed/luminosity;
207
208 dout << "Sample: " << signalsamples.collection[isample].samplename << ", JZB>"<<JZBcutat<< " : " << mceff << " +/- " << staterr << " (stat) +/- " << systerr << " (syst) --> toterr = " << toterr << endl;
209 vector<float> sigmas = compute_one_upper_limit(mceff,toterr,ibin,mcjzb,doobserved);
210
211 if(doobserved) {
212 rows.push_back(any2string(sigmas[0])+";"+any2string(sigmas[1])+";"+"("+any2string(expected)+")");
213 vrows.push_back(sigmas[0]);
214 vrows.push_back(sigmas[1]);
215 vrows.push_back(expected);
216 }
217 else {
218 rows.push_back(any2string(sigmas[0])+"("+any2string(expected)+")");
219 vrows.push_back(sigmas[0]);
220 vrows.push_back(expected);
221 }
222 }//end of bin loop
223 limits.push_back(rows);
224 vlimits.push_back(vrows);
225 }//end of sample loop
226 dout << endl << endl << "PAS table 3: " << endl << endl;
227 dout << "\t";
228 for (int irow=0;irow<jzbcuts.size();irow++) {
229 dout << jzbcuts[irow] << "\t";
230 }
231 dout << endl;
232 for(int irow=0;irow<limits.size();irow++) {
233 for(int ientry=0;ientry<limits[irow].size();ientry++) {
234 dout << limits[irow][ientry] << "\t";
235 }
236 dout << endl;
237 }
238
239 if(!doobserved) {
240 dout << endl << endl << "LIMITS: " << endl;
241 dout << "\t";
242 for (int irow=0;irow<jzbcuts.size();irow++) {
243 dout << jzbcuts[irow] << "\t";
244 }
245 dout << endl;
246 for(int irow=0;irow<limits.size();irow++) {
247 dout << limits[irow][0] << "\t";
248 for(int ientry=0;ientry<jzbcuts.size();ientry++) {
249 dout << Round(vlimits[irow][2*ientry] / vlimits[irow][2*ientry+1],3)<< "\t";
250 }
251 dout << endl;
252 }
253 }//do observed
254
255 dout << endl << endl << "Final selection efficiencies with total statistical and systematic errors, and corresponding observed and expected upper limits (UL) on ($\\sigma\\times$ BR $\\times$ acceptance) for the LM4 and LM8 scenarios, in the different regions. The last column contains the predicted ($\\sigma \\times $BR$\\times$ acceptance) at NLO obtained from Monte Carlo simulation." << endl;
256 dout << "Scenario \t Efficiency [%] \t Upper limits [pb] \t Prediction [pb]" << endl;
257 for(int icut=0;icut<jzbcuts.size();icut++) {
258 dout << "Region with JZB>" << jzbcuts[icut] << endl;
259 for(int isample=0;isample<signalsamples.collection.size();isample++) {
260 dout << limits[icut][0] << "\t" << Round(100*uncertainties[isample*jzbcuts.size()+icut][1],1) << "+/-" << Round(100*uncertainties[isample*jzbcuts.size()+icut][2],1) << " (stat) +/- " << Round(100*uncertainties[isample*jzbcuts.size()+icut][3],1) << " (syst) \t" << Round((vlimits[isample][2*icut]),3) << "\t" << Round(vlimits[isample][2*icut+1],3) << endl;
261 }
262 dout << endl;
263 }
264
265 write_warning("compute_upper_limits_from_counting_experiment","Still need to update the script");
266 }
267
268 void susy_scan_axis_labeling(TH2F *histo) {
269 histo->GetXaxis()->SetTitle("#Chi_{2}^{0}-LSP");
270 histo->GetXaxis()->CenterTitle();
271 histo->GetYaxis()->SetTitle("m_{#tilde{q}}");
272 histo->GetYaxis()->CenterTitle();
273 }
274
275 void scan_susy_space(string mcjzb, string datajzb) {
276 TCanvas *c3 = new TCanvas("c3","c3");
277 vector<float> binning;
278 binning=allsamples.get_optimal_binsize(mcjzb,cutmass&&cutOSSF&&cutnJets,20,50,800);
279 float arrbinning[binning.size()];
280 for(int i=0;i<binning.size();i++) arrbinning[i]=binning[i];
281 TH1F *puredata = allsamples.Draw("puredata", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
282 puredata->SetMarkerSize(DataMarkerSize);
283 TH1F *allbgs = allsamples.Draw("allbgs", "-"+datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
284 TH1F *allbgsb = allsamples.Draw("allbgsb", "-"+datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data,luminosity);
285 TH1F *allbgsc = allsamples.Draw("allbgsc", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,data,luminosity);
286 allbgs->Add(allbgsb,-1);
287 allbgs->Add(allbgsc);
288 int ndata=puredata->Integral();
289 ofstream myfile;
290 myfile.open ("susyscan_log.txt");
291 TFile *susyscanfile = new TFile("/scratch/fronga/SMS/T5z_SqSqToQZQZ_38xFall10.root");
292 TTree *suevents = (TTree*)susyscanfile->Get("events");
293 TH2F *exclusionmap = new TH2F("exclusionmap","",20,0,500,20,0,1000);
294 TH2F *exclusionmap1s = new TH2F("exclusionmap1s","",20,0,500,20,0,1000);
295 TH2F *exclusionmap2s = new TH2F("exclusionmap2s","",20,0,500,20,0,1000);
296 TH2F *exclusionmap3s = new TH2F("exclusionmap3s","",20,0,500,20,0,1000);
297
298 susy_scan_axis_labeling(exclusionmap);
299 susy_scan_axis_labeling(exclusionmap1s);
300 susy_scan_axis_labeling(exclusionmap2s);
301 susy_scan_axis_labeling(exclusionmap3s);
302
303 Int_t MyPalette[100];
304 Double_t r[] = {0., 0.0, 1.0, 1.0, 1.0};
305 Double_t g[] = {0., 0.0, 0.0, 1.0, 1.0};
306 Double_t b[] = {0., 1.0, 0.0, 0.0, 1.0};
307 Double_t stop[] = {0., .25, .50, .75, 1.0};
308 Int_t FI = TColor::CreateGradientColorTable(5, stop, r, g, b, 100);
309 for (int i=0;i<100;i++) MyPalette[i] = FI+i;
310
311 gStyle->SetPalette(100, MyPalette);
312
313 for(int m23=50;m23<500;m23+=25) {
314 for (int m0=(2*(m23-50)+150);m0<=1000;m0+=50)
315 {
316 c3->cd();
317 stringstream drawcondition;
318 drawcondition << "pfJetGoodNum>=3&&(TMath::Abs(masses[0]-"<<m0<<")<10&&TMath::Abs(masses[2]-masses[3]-"<<m23<<")<10)&&mll>5&&id1==id2";
319 TH1F *puresignal = new TH1F("puresignal","puresignal",binning.size()-1,arrbinning);
320 TH1F *puresignall= new TH1F("puresignall","puresignal",binning.size()-1,arrbinning);
321 stringstream drawvar,drawvar2;
322 drawvar<<mcjzb<<">>puresignal";
323 drawvar2<<"-"<<mcjzb<<">>puresignall";
324 suevents->Draw(drawvar.str().c_str(),drawcondition.str().c_str());
325 suevents->Draw(drawvar2.str().c_str(),drawcondition.str().c_str());
326 if(puresignal->Integral()<60) {
327 delete puresignal;
328 continue;
329 }
330 puresignal->Add(puresignall,-1);//we need to correct for the signal contamination - we effectively only see (JZB>0)-(JZB<0) !!
331 puresignal->Scale(ndata/(20*puresignal->Integral()));//normalizing it to 5% of the data
332 stringstream saveas;
333 saveas<<"Model_Scan/m0_"<<m0<<"__m23_"<<m23;
334 dout << "PLEASE KEEP IN MIND THAT SIGNAL CONTAMINATION IS NOT REALLY TAKEN CARE OF YET DUE TO LOW STATISTICS! SHOULD BE SOMETHING LIKE THIS : "<< endl;
335 // TH1F *signalpredlo = allsamples.Draw("signalpredlo", "-"+mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4"));
336 // TH1F *signalpredro = allsamples.Draw("signalpredro", mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSOF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4"));
337 // TH1F *puredata = allsamples.Draw("puredata", datajzb,binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,data,luminosity);
338 // signalpred->Add(signalpredlo,-1);
339 // signalpred->Add(signalpredro);
340 // puresignal->Add(signalpred,-1);//subtracting signal contamination
341 //---------------------
342 // dout << "(m0,m23)=("<<m0<<","<<m23<<") contains " << puresignal->Integral() << endl;
343 // TH1F *puresignal = allsamples.Draw("puresignal",mcjzb, binning, "JZB [GeV]", "events", cutmass&&cutOSSF&&cutnJets,mc, luminosity,allsamples.FindSample("LM4"));
344 vector<float> results=establish_upper_limits(puredata,allbgs,puresignal,saveas.str(),myfile);
345 if(results.size()==0) {
346 delete puresignal;
347 continue;
348 }
349 exclusionmap->Fill(m23,m0,results[0]);
350 exclusionmap1s->Fill(m23,m0,results[1]);
351 exclusionmap2s->Fill(m23,m0,results[2]);
352 exclusionmap3s->Fill(m23,m0,results[3]);
353 delete puresignal;
354 dout << "(m0,m23)=("<<m0<<","<<m23<<") : 3 sigma at " << results[3] << endl;
355 }
356 }//end of model scan for loop
357
358 dout << "Exclusion Map contains" << exclusionmap->Integral() << " (integral) and entries: " << exclusionmap->GetEntries() << endl;
359 c3->cd();
360 exclusionmap->Draw("CONTZ");
361 CompleteSave(c3,"Model_Scan/CONT/Model_Scan_Mean_values");
362 exclusionmap->Draw("COLZ");
363 CompleteSave(c3,"Model_Scan/COL/Model_Scan_Mean_values");
364
365 exclusionmap1s->Draw("CONTZ");
366 CompleteSave(c3,"Model_Scan/CONT/Model_Scan_1sigma_values");
367 exclusionmap1s->Draw("COLZ");
368 CompleteSave(c3,"Model_Scan/COL/Model_Scan_1sigma_values");
369
370 exclusionmap2s->Draw("CONTZ");
371 CompleteSave(c3,"Model_Scan/CONT/Model_Scan_2sigma_values");
372 exclusionmap2s->Draw("COLZ");
373 CompleteSave(c3,"Model_Scan/COL/Model_Scan_2sigma_values");
374
375 exclusionmap3s->Draw("CONTZ");
376 CompleteSave(c3,"Model_Scan/CONT/Model_Scan_3sigma_values");
377 exclusionmap3s->Draw("COLZ");
378 CompleteSave(c3,"Model_Scan/COL/Model_Scan_3sigma_values");
379
380 TFile *exclusion_limits = new TFile("exclusion_limits.root","RECREATE");
381 exclusionmap->Write();
382 exclusionmap1s->Write();
383 exclusionmap2s->Write();
384 exclusionmap3s->Write();
385 exclusion_limits->Close();
386 susyscanfile->Close();
387
388 myfile.close();
389 }
390
391
392
393
394 //********************************************************************** new : Limits using SHAPES ***********************************
395
396 void limit_shapes_for_systematic_effect(TFile *limfile, string identifier, string mcjzb, string datajzb, int JES,vector<float> binning, TCanvas *limcan) {
397 dout << "Creatig shape templates ... ";
398 if(identifier!="") dout << "for systematic called "<<identifier;
399 dout << endl;
400 int dataormc=mcwithsignal;//this is only for tests - for real life you want dataormc=data !!!
401 if(dataormc!=data) write_warning("limit_shapes_for_systematic_effect","WATCH OUT! Not using data for limits!!!! this is ok for tests, but not ok for anything official!");
402
403 TCut limitnJetcut;
404 if(JES==noJES) limitnJetcut=cutnJets;
405 else {
406 if(JES==JESdown) limitnJetcut=cutnJetsJESdown;
407 if(JES==JESup) limitnJetcut=cutnJetsJESup;
408 }
409 TH1F *ZOSSFP = allsamples.Draw("ZOSSFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
410 TH1F *ZOSOFP = allsamples.Draw("ZOSOFP",datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
411 TH1F *ZOSSFN = allsamples.Draw("ZOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,dataormc,luminosity);
412 TH1F *ZOSOFN = allsamples.Draw("ZOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,dataormc,luminosity);
413
414 TH1F *SBOSSFP = allsamples.Draw("SBOSSFP",datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
415 TH1F *SBOSOFP = allsamples.Draw("SBOSOFP",datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
416 TH1F *SBOSSFN = allsamples.Draw("SBOSSFN","-"+datajzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
417 TH1F *SBOSOFN = allsamples.Draw("SBOSOFN","-"+datajzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,dataormc,luminosity);
418
419 TH1F *LZOSSFP = allsamples.Draw("LZOSSFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
420 TH1F *LZOSOFP = allsamples.Draw("LZOSOFP",mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
421 TH1F *LZOSSFN = allsamples.Draw("LZOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSSF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
422 TH1F *LZOSOFN = allsamples.Draw("LZOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutmass&&cutOSOF&&limitnJetcut&&basiccut,mc,luminosity,allsamples.FindSample("LM4"));
423
424 TH1F *LSBOSSFP = allsamples.Draw("LSBOSSFP",mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
425 TH1F *LSBOSOFP = allsamples.Draw("LSBOSOFP",mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
426 TH1F *LSBOSSFN = allsamples.Draw("LSBOSSFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSSF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
427 TH1F *LSBOSOFN = allsamples.Draw("LSBOSOFN","-"+mcjzb,binning, "JZB4limits", "events",cutOSOF&&limitnJetcut&&basiccut&&sidebandcut,mc,luminosity,allsamples.FindSample("LM4"));
428
429 string obsname="data_obs";
430 string predname="background";
431 string signalname="signal";
432 if(identifier!="") {
433 obsname=("data_"+identifier);
434 predname=("background_"+identifier);
435 signalname="signal_"+identifier;
436 }
437
438 TH1F *obs = (TH1F*)ZOSSFP->Clone();
439 obs->SetName(obsname.c_str());
440 obs->Write();
441 TH1F *pred = (TH1F*)ZOSSFN->Clone();
442 pred->Add(ZOSOFP,1.0/3);
443 pred->Add(ZOSOFN,-1.0/3);
444 pred->Add(SBOSSFP,1.0/3);
445 pred->Add(SBOSSFN,-1.0/3);
446 pred->Add(SBOSOFP,1.0/3);
447 pred->Add(SBOSOFN,-1.0/3);
448 pred->SetName(predname.c_str());
449 pred->Write();
450
451 // TH1F *Lobs = (TH1F*)LZOSSFP->Clone();
452 // TH1F *Lpred = (TH1F*)LZOSSFN->Clone();
453
454 TH1F *Lobs = new TH1F("Lobs","Lobs",binning.size()-1,&binning[0]);
455 TH1F *Lpred = new TH1F("Lpred","Lpred",binning.size()-1,&binning[0]);
456 Lobs->Add(LZOSSFP);
457 Lpred->Add(LZOSSFN);
458 Lpred->Add(LZOSOFP,1.0/3);
459 Lpred->Add(LZOSOFN,-1.0/3);
460 Lpred->Add(LSBOSSFP,1.0/3);
461 Lpred->Add(LSBOSSFN,-1.0/3);
462 Lpred->Add(LSBOSOFP,1.0/3);
463 Lpred->Add(LSBOSOFN,-1.0/3);
464 TH1F *signal = (TH1F*)Lobs->Clone();
465 signal->Add(Lpred,-1);
466 signal->SetName(signalname.c_str());
467 signal->Write();
468
469 delete Lobs;
470 delete Lpred;
471
472 delete ZOSSFP;
473 delete ZOSOFP;
474 delete ZOSSFN;
475 delete ZOSOFN;
476
477 delete SBOSSFP;
478 delete SBOSOFP;
479 delete SBOSSFN;
480 delete SBOSOFN;
481
482 delete LZOSSFP;
483 delete LZOSOFP;
484 delete LZOSSFN;
485 delete LZOSOFN;
486
487 delete LSBOSSFP;
488 delete LSBOSOFP;
489 delete LSBOSSFN;
490 delete LSBOSOFN;
491
492 }
493
494 void prepare_datacard(TFile *f) {
495 TH1F *dataob = (TH1F*)f->Get("data_obs");
496 TH1F *signal = (TH1F*)f->Get("signal");
497 TH1F *background = (TH1F*)f->Get("background");
498
499 ofstream datacard;
500 ensure_directory_exists(get_directory()+"/limits");
501 datacard.open ((get_directory()+"/limits/susylm4datacard.txt").c_str());
502 datacard << "Writing this to a file.\n";
503 datacard << "imax 1\n";
504 datacard << "jmax 1\n";
505 datacard << "kmax *\n";
506 datacard << "---------------\n";
507 datacard << "shapes * * limitfile.root $PROCESS $PROCESS_$SYSTEMATIC\n";
508 datacard << "---------------\n";
509 datacard << "bin 1\n";
510 datacard << "observation "<<dataob->Integral()<<"\n";
511 datacard << "------------------------------\n";
512 datacard << "bin 1 1\n";
513 datacard << "process signal background\n";
514 datacard << "process 0 1\n";
515 datacard << "rate "<<signal->Integral()<<" "<<background->Integral()<<"\n";
516 datacard << "--------------------------------\n";
517 datacard << "lumi lnN 1.10 1.0\n";
518 datacard << "bgnorm lnN 1.00 1.4 uncertainty on our prediction (40%)\n";
519 datacard << "JES shape 1 1 uncertainty on background shape and normalization\n";
520 datacard << "peak shape 1 1 uncertainty on signal resolution. Assume the histogram is a 2 sigma shift, \n";
521 datacard << "# so divide the unit gaussian by 2 before doing the interpolation\n";
522 datacard.close();
523 }
524
525
526 void prepare_limits(string mcjzb, string datajzb, float jzbpeakerrordata, float jzbpeakerrormc, vector<float> jzbbins) {
527 ensure_directory_exists(get_directory()+"/limits");
528 TFile *limfile = new TFile((get_directory()+"/limits/limitfile.root").c_str(),"RECREATE");
529 TCanvas *limcan = new TCanvas("limcan","Canvas for calculating limits");
530 limit_shapes_for_systematic_effect(limfile,"",mcjzb,datajzb,noJES,jzbbins,limcan);
531 limit_shapes_for_systematic_effect(limfile,"peakUp",newjzbexpression(mcjzb,jzbpeakerrormc),newjzbexpression(datajzb,jzbpeakerrordata),noJES,jzbbins,limcan);
532 limit_shapes_for_systematic_effect(limfile,"peakDown",newjzbexpression(mcjzb,-jzbpeakerrormc),newjzbexpression(datajzb,-jzbpeakerrordata),noJES,jzbbins,limcan);
533 limit_shapes_for_systematic_effect(limfile,"JESUp",mcjzb,datajzb,JESup,jzbbins,limcan);
534 limit_shapes_for_systematic_effect(limfile,"JESDown",mcjzb,datajzb,JESdown,jzbbins,limcan);
535
536 prepare_datacard(limfile);
537
538 write_info("prepare_limits","limitfile.root and datacard.txt have been generated. You can now use them to calculate limits!");
539 limfile->Close();
540
541 }