ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/cbrown/AnalysisFramework/Plotting/Modules/Systematics.C
Revision: 1.41
Committed: Wed Oct 19 10:36:31 2011 UTC (13 years, 6 months ago) by buchmann
Content type: text/plain
Branch: MAIN
CVS Tags: Honeypot, cbaf_2p1ifb
Changes since 1.40: +2 -4 lines
Log Message:
fixing an issue that appeared for 2 points in mSUGRA space

File Contents

# Content
1 #include <iostream>
2 #include <vector>
3 #include <sys/stat.h>
4 #include <algorithm>
5 #include <cmath>
6
7 #include <TMath.h>
8 #include <TColor.h>
9 #include <TPaveText.h>
10 #include <TRandom.h>
11 #include <TF1.h>
12
13 #ifndef SampleClassLoaded
14 #include "ActiveSamples.C"
15 #endif
16
17 #ifndef Verbosity
18 #define Verbosity 0
19 #endif
20
21 #include <TFile.h>
22 #include <TTree.h>
23 #include <TH1.h>
24 #include <TCut.h>
25 #include <TMath.h>
26 #include <TLine.h>
27 #include <TCanvas.h>
28 #include <TProfile.h>
29 #include <TF1.h>
30
31
32
33 Int_t nBins = 100;
34 Float_t jzbMin = -207;
35 Float_t jzbMax = 243;
36 Float_t jzbSel = 100;
37 int iplot=0;
38 int verbose=0;
39 string geqleq;
40 string mcjzbexpression;
41 bool automatized=false;//if we're running this fully automatized we don't want each function to flood the screen
42
43 TString geq_or_leq() {
44 if(geqleq=="geq") return TString(">=");
45 if(geqleq=="leq") return TString("<=");
46 return TString("GEQ_OR_LEQ_ERROR");
47 }
48
49 TString ngeq_or_leq() {
50 if(geqleq=="geq") return TString("<=");
51 if(geqleq=="leq") return TString(">=");
52 return TString("NGEQ_OR_LEQ_ERROR");
53 }
54
55 //______________________________________________________________________________
56 Double_t Interpolate(Double_t x, TH1 *histo)
57 {
58 // Given a point x, approximates the value via linear interpolation
59 // based on the two nearest bin centers
60 // Andy Mastbaum 10/21/08
61 // in newer ROOT versions but not in the one I have so I had to work around that ...
62
63 Int_t xbin = histo->FindBin(x);
64 Double_t x0,x1,y0,y1;
65
66 if(x<=histo->GetBinCenter(1)) {
67 return histo->GetBinContent(1);
68 } else if(x>=histo->GetBinCenter(histo->GetNbinsX())) {
69 return histo->GetBinContent(histo->GetNbinsX());
70 } else {
71 if(x<=histo->GetBinCenter(xbin)) {
72 y0 = histo->GetBinContent(xbin-1);
73 x0 = histo->GetBinCenter(xbin-1);
74 y1 = histo->GetBinContent(xbin);
75 x1 = histo->GetBinCenter(xbin);
76 } else {
77 y0 = histo->GetBinContent(xbin);
78 x0 = histo->GetBinCenter(xbin);
79 y1 = histo->GetBinContent(xbin+1);
80 x1 = histo->GetBinCenter(xbin+1);
81 }
82 return y0 + (x-x0)*((y1-y0)/(x1-x0));
83 }
84 }
85
86 //____________________________________________________________________________________
87 // Plotting with all contributions, i.e. sidebands, peak, osof,ossf ... (for a systematic)
88 float allcontributionsplot(TTree* events, TCut kBaseCut, TCut kMassCut, TCut kSidebandCut, TCut JZBPosCut, TCut JZBNegCut) {
89 iplot++;
90 int count=iplot;
91 // Define new histogram
92 string hname=GetNumericHistoName();
93 TH1F* hossfp = new TH1F(hname.c_str(),hname.c_str(),1,-14000,14000);
94 events->Draw(TString(mcjzbexpression)+">>"+TString(hname),kBaseCut&&kMassCut&&JZBPosCut&&cutOSSF,"goff");
95 hname=GetNumericHistoName();
96 TH1F* hossfn = new TH1F(hname.c_str(),hname.c_str(),1,-14000,14000);
97 events->Draw(TString(mcjzbexpression)+">>"+TString(hname),kBaseCut&&kMassCut&&JZBNegCut&&cutOSSF,"goff");
98
99 hname=GetNumericHistoName();
100 TH1F* hosofp = new TH1F(hname.c_str(),hname.c_str(),1,-14000,14000);
101 events->Draw(TString(mcjzbexpression)+">>"+TString(hname),kBaseCut&&kMassCut&&JZBPosCut&&cutOSOF,"goff");
102 hname=GetNumericHistoName();
103 TH1F* hosofn = new TH1F(hname.c_str(),hname.c_str(),1,-14000,14000);
104 events->Draw(TString(mcjzbexpression)+">>"+TString(hname),kBaseCut&&kMassCut&&JZBNegCut&&cutOSOF,"goff");
105
106 hname=GetNumericHistoName();
107 TH1F* sbhossfp = new TH1F(hname.c_str(),hname.c_str(),1,-14000,14000);
108 events->Draw(TString(mcjzbexpression)+">>"+TString(hname),kBaseCut&&kSidebandCut&&JZBPosCut&&cutOSSF,"goff");
109 hname=GetNumericHistoName();
110 TH1F* sbhossfn = new TH1F(hname.c_str(),hname.c_str(),1,-14000,14000);
111 events->Draw(TString(mcjzbexpression)+">>"+TString(hname),kBaseCut&&kSidebandCut&&JZBNegCut&&cutOSSF,"goff");
112
113 hname=GetNumericHistoName();
114 TH1F* sbhosofp = new TH1F(hname.c_str(),hname.c_str(),1,-14000,14000);
115 events->Draw(TString(mcjzbexpression)+">>"+TString(hname),kBaseCut&&kSidebandCut&&JZBPosCut&&cutOSOF,"goff");
116 hname=GetNumericHistoName();
117 TH1F* sbhosofn = new TH1F(hname.c_str(),hname.c_str(),1,-14000,14000);
118 events->Draw(TString(mcjzbexpression)+">>"+TString(hname),kBaseCut&&kSidebandCut&&JZBNegCut&&cutOSOF,"goff");
119
120 float obs = hossfp->Integral();
121 float pred= hossfn->Integral() + (1.0/3)*( hosofp->Integral() - hosofn->Integral() + sbhossfp->Integral() - sbhossfn->Integral() + sbhosofp->Integral() - sbhosofn->Integral());
122
123 delete hossfp,hossfn,hosofp,hosofn;
124 delete sbhossfp,sbhossfn,sbhosofp,sbhosofn;
125 return obs-pred;
126 }
127
128
129 //____________________________________________________________________________________
130 // Efficiency plot
131 TH1F* plotEff(TTree* events, TCut kbase, TString informalname) {
132 iplot++;
133 int count=iplot;
134 // Define new histogram
135 char hname[30]; sprintf(hname,"hJzbEff%d",count);
136 TH1F* hJzbEff = new TH1F(hname,"JZB selection efficiency ; JZB (GeV/c); Efficiency",
137 nBins,jzbMin,jzbMax);
138 Float_t step = (jzbMax-jzbMin)/static_cast<Float_t>(nBins);
139
140 events->Draw(mcjzbexpression.c_str(),"genJZB>-400"&&kbase,"goff");
141 Float_t maxEff = events->GetSelectedRows();
142 if(verbose>0) dout << hname << " (" << informalname <<") " << maxEff << std::endl;
143
144 if(verbose>0) dout << "JZB max = " << jzbMax << std::endl;
145 // Loop over steps to get efficiency curve
146 char cut[256];
147 for ( Int_t iBin = 0; iBin<nBins; ++iBin ) {
148 sprintf(cut,"genJZB>%3f",jzbMin+iBin*step);
149 events->Draw(mcjzbexpression.c_str(),TCut(cut)&&kbase,"goff");
150 Float_t eff = static_cast<Float_t>(events->GetSelectedRows())/maxEff;
151 // dout << "COUCOU " << __LINE__ << std::endl;
152 hJzbEff->SetBinContent(iBin+1,eff);
153 hJzbEff->SetBinError(iBin+1,TMath::Sqrt(eff*(1-eff)/maxEff));
154 }
155 return hJzbEff;
156
157
158 }
159
160
161 //________________________________________________________________________________________
162 // Master Formula
163 void master_formula(std::vector<float> eff, float &errHi, float &errLo) {
164
165 float x0 = eff[0];
166 float deltaPos = 0, deltaNeg = 0;
167 for(int k = 0; k < (eff.size()-1)/2; k++) {
168 float xneg = eff[2*k+2];
169 float xpos = eff[2*k+1];
170 if(xpos-x0>0 || xneg-x0>0) {
171 if(xpos-x0 > xneg-x0) {
172 deltaPos += (xpos-x0)*(xpos-x0);
173 } else {
174 deltaPos += (xneg-x0)*(xneg-x0);
175 }
176 }
177 if(x0-xpos>0 || x0-xneg>0) {
178 if(x0-xpos > x0-xneg) {
179 deltaNeg += (xpos-x0)*(xpos-x0);
180 } else {
181 deltaNeg += (xneg-x0)*(xneg-x0);
182 }
183 }
184 }
185 errHi = sqrt(deltaPos);
186 errLo = sqrt(deltaNeg);
187
188 }
189
190
191 //________________________________________________________________________________________
192 // Get normalization factor for the PDFs
193 float get_norm_pdf_factor(TTree *events, int k) {
194
195 TH1F *haux = new TH1F("haux", "", 10000, 0, 5);
196 char nameVar[20];
197 sprintf(nameVar, "pdfW[%d]", k);
198 events->Project("haux", nameVar);
199 float thisW = haux->Integral();
200 events->Project("haux", "pdfW[0]");
201 float normW = haux->Integral();
202
203 float factor=thisW/normW;
204
205 delete haux;
206
207 return factor;
208
209 }
210
211
212
213 //________________________________________________________________________________________
214 // Pile-up efficiency
215 float pileup(TTree *events, bool requireZ, string informalname, string addcut="",Float_t myJzbMax = 140. ) {
216 nBins = 16;
217 jzbMax = myJzbMax;
218
219 // Acceptance cuts
220 TCut kbase("abs(genMll-91.2)<20&&genNjets>2&&genZPt>0&&abs(mll-91.2)<20&&((id1+1)*(id2+1)*ch1*ch2)!=-2");
221 if(addcut!="") kbase=kbase&&addcut.c_str();//this is mostly for SUSY scans (adding requirements on masses)
222
223 if(requireZ) kbase=kbase&&"TMath::Abs(genMID)==23";
224 TH1F* hLM4 = plotEff(events,kbase,informalname);
225 hLM4->SetMinimum(0.);
226
227 // Nominal function
228 TF1* func = new TF1("func","0.5*TMath::Erfc([0]*x-[1])",jzbMin,jzbMax);
229 func->SetParameter(0,0.03);
230 func->SetParameter(1,0.);
231 hLM4->Fit(func,"Q");
232
233 // Pimped-up function
234 TF1* funcUp = (TF1*)func->Clone();
235 funcUp->SetParameter( 0., func->GetParameter(0)/1.1); // 10% systematic error (up in sigma => 0.1 in erfc)
236 if(!automatized) dout << " PU: " << funcUp->Eval(jzbSel) << " " << func->Eval(jzbSel)
237 << "(" << (funcUp->Eval(jzbSel)-func->Eval(jzbSel))/func->Eval(jzbSel)*100. << "%)" << std::endl;
238
239 return (funcUp->Eval(jzbSel)-func->Eval(jzbSel))/func->Eval(jzbSel);
240
241 }
242
243 //____________________________________________________________________________________
244 // Effect of peak shifting
245 void PeakError(TTree *events,float &result, string mcjzb, float peakerr,string addcut="") {
246 TString peakup("("+TString(mcjzb)+"+"+TString(any2string(TMath::Abs(peakerr)))+")"+geq_or_leq()+TString(any2string(jzbSel)));
247 TString peakdown("("+TString(mcjzb)+"-"+TString(any2string(TMath::Abs(peakerr)))+")"+geq_or_leq()+TString(any2string(jzbSel)));
248 TString peakcentral("("+TString(mcjzb)+")"+geq_or_leq()+TString(any2string(jzbSel)));
249 TString npeakup("("+TString(mcjzb)+"+"+TString(any2string(TMath::Abs(peakerr)))+")"+ngeq_or_leq()+"-"+TString(any2string(jzbSel)));
250 TString npeakdown("("+TString(mcjzb)+"-"+TString(any2string(TMath::Abs(peakerr)))+")"+ngeq_or_leq()+"-"+TString(any2string(jzbSel)));
251 TString npeakcentral("("+TString(mcjzb)+")"+ngeq_or_leq()+"-"+TString(any2string(jzbSel)));
252 nBins = 1;
253 string informalname="PeakErrorCalculation";
254 float resup,resdown,rescent;
255 for(int i=0;i<3;i++) {
256 string poscut,negcut;
257 if(i==0) {
258 poscut=peakcentral;
259 negcut=npeakcentral;
260 } else if(i==1) {
261 poscut=peakdown;
262 negcut=npeakdown;
263 } else if(i==2) {
264 poscut=peakup;
265 negcut=npeakup;
266 }
267 float res;
268 if(addcut=="") res=allcontributionsplot(events,cutnJets,cutmass,sidebandcut,poscut.c_str(),negcut.c_str());
269 else res=allcontributionsplot(events,cutnJets&&addcut.c_str(),cutmass,sidebandcut,poscut.c_str(),negcut.c_str());
270 if(i==0) rescent=res;
271 else if(i==1) resdown=res;
272 else if(i==2) resup=res;
273 }
274 if(TMath::Abs(rescent-resup)>TMath::Abs(rescent-resdown)) result=(TMath::Abs(rescent-resup)/(float)rescent);
275 else result=(TMath::Abs(rescent-resdown)/(float)rescent);
276 }
277
278 //____________________________________________________________________________________
279 // Total selection efficiency (MC)
280 //returns the efficiency WITHOUT signal contamination, and the result and resulterr contain the result and the corresponding error
281 Value MCefficiency(TTree *events,float &result, float &resulterr,string mcjzb,bool requireZ,int Neventsinfile, string addcut="", int k = 0) {
282 if(!events) {
283 write_error(__FUNCTION__,"Tree passed for efficiency calculation is invalid!");
284 result=0;resulterr=0;
285 return Value(0,0);
286 }
287 char jzbSelStr[256]; sprintf(jzbSelStr,"%f",jzbSel);
288 // All acceptance cuts at gen. level
289 //TCut kbase("abs(genMll-91.2)<20&&genNjets>2&&genZPt>0&&genJZB"+geq_or_leq()+TString(jzbSelStr)+"&&genId1==-genId2");
290 TCut kbase("");
291 if(requireZ) kbase=kbase&&"TMath::Abs(genMID)==23";
292 if(addcut!="") kbase=kbase&&addcut.c_str();//this is mostly for SUSY scans (adding requirements on masses)
293 // Corresponding reco. cuts
294 TCut ksel("pfJetGoodNum>2&&abs(mll-91.2)<20&&id1==id2&&"+TString(mcjzb)+geq_or_leq()+TString(jzbSelStr));
295 TCut ksel2("pfJetGoodNum>2&&abs(mll-91.2)<20&&id1==id2&&"+TString(mcjzb)+ngeq_or_leq()+TString("-")+TString(jzbSelStr));
296 TCut posSide = kbase&&ksel;
297 TCut negSide = kbase&&ksel2;
298 string sposSide(posSide);
299 string snegSide(negSide);
300 char var[20];
301 sprintf(var, "pdfW[%d]", k);
302 string svar(var);
303 string newPosSide = "(" + sposSide + ")*" + svar;
304 string newNegSide = "(" + snegSide + ")*" + svar;
305
306 TH1F *effh= new TH1F("effh","effh",1,-14000,14000);
307 if(k>=0)events->Draw((mcjzbexpression+">>effh").c_str(), newPosSide.c_str(),"goff");
308 else events->Draw((mcjzbexpression+">>effh").c_str(), sposSide.c_str(),"goff");
309 Float_t sel = effh->Integral();
310 Float_t nsel=0;
311 if(ConsiderSignalContaminationForLimits) {
312 if(k>=0)events->Draw((mcjzbexpression+">>effh").c_str(), newNegSide.c_str(),"goff");
313 else events->Draw((mcjzbexpression+">>effh").c_str(), snegSide.c_str(),"goff");
314 nsel = effh->Integral();
315 }
316 //Corrections due to normalization in the PDF. This has to be applied as well to the number of events in a file if the definition changes at some point.
317 float normFactor = 1;
318 if(k>=0) get_norm_pdf_factor(events, k);
319 sel = sel/normFactor;
320 nsel = nsel/normFactor;
321
322 // events->Draw(mcjzbexpression.c_str(),kbase,"goff");
323 // Float_t tot = events->GetSelectedRows();
324 Float_t tot = Neventsinfile;
325
326 Value result_wo_signalcont;
327
328 if(ConsiderSignalContaminationForLimits) {
329 result=(sel-nsel)/tot;
330 resulterr=(1.0/tot)*TMath::Sqrt(sel+nsel+(sel-nsel)*(sel-nsel)/tot);
331 result_wo_signalcont=Value(sel/tot,TMath::Sqrt(sel/tot*(1+sel/tot)/tot));
332 } else {//no signal contamination considered:
333 result=(sel)/tot;
334 resulterr=TMath::Sqrt(sel/tot*(1+sel/tot)/tot);
335 result_wo_signalcont=Value(result,resulterr);
336 }
337 if(!automatized && k>0 ) dout << "PDF assessment (" << k << ") : ";
338 if(!automatized) dout << " MC efficiency: " << result << "+-" << resulterr << " ( JZB>" << jzbSel << " : " << sel << " , JZB<-" << jzbSel << " : " << nsel << " and nevents=" << tot << ") with normFact=" << normFactor << std::endl;
339 delete effh;
340 return result_wo_signalcont;
341 }
342
343
344 //____________________________________________________________________________________
345 // Selection efficiency for one process (MC)
346 vector<float> processMCefficiency(TTree *events,string mcjzb,bool requireZ,int Neventsinfile, string addcut) {
347 vector<float> process_efficiencies;
348 for(int iprocess=0;iprocess<=10;iprocess++) {
349 float this_process_efficiency,efferr;
350 stringstream addcutplus;
351 addcutplus<<addcut<<"&&(process=="<<iprocess<<")";
352 MCefficiency(events,this_process_efficiency, efferr,mcjzb,requireZ,Neventsinfile, addcutplus.str(),-1);
353 process_efficiencies.push_back(this_process_efficiency);
354 }
355 return process_efficiencies;
356 }
357
358
359 void JZBefficiency(TTree *events, string informalname, float &jzbeff, float &jzbefferr, bool requireZ, string addcut="") {
360 TCut kbase("abs(genMll-91.2)<20&&genNjets>2&&genZPt>0&&abs(mll-91.2)<20&&((id1+1)*(id2+1)*ch1*ch2)!=-2");
361 if(addcut!="") kbase=kbase&&addcut.c_str();//this is mostly for SUSY scans (adding requirements on masses)
362 if(requireZ) kbase=kbase&&"TMath::Abs(genMID)==23";
363 TH1F* hLM4 = plotEff(events,kbase,informalname);
364 Int_t bin = hLM4->FindBin(jzbSel); // To get the error
365 jzbeff=Interpolate(jzbSel,hLM4);
366 jzbefferr=hLM4->GetBinError(bin);
367 if(!automatized) dout << " Efficiency at JZB==" << jzbSel << std::endl;
368 if(!automatized) dout << " " << jzbeff << "+-" << jzbefferr << std::endl;
369 }
370
371 //________________________________________________________________________
372 // Effect of energy scale on efficiency
373 void JZBjetScale(TTree *events, float &jesdown, float &jesup, string informalname,bool requireZ,string addcut="",float syst=0.1, Float_t jzbSelection=-1, TString plotName = "" ) {
374 TCut kbase("abs(genMll-91.2)<20&&genZPt>0");
375 if(addcut!="") kbase=kbase&&addcut.c_str();//this is mostly for SUSY scans (adding requirements on masses)
376 if(requireZ) kbase=kbase&&"TMath::Abs(genMID)==23";
377
378 TCut ksel("abs(mll-91.2)<20&&((id1+1)*(id2+1)*ch1*ch2)!=-2");
379 TCut nJets("pfJetGoodNum>2");
380 stringstream down,up;
381 down << "pfJetGoodNum"<<30*(1-syst)<<">=3";
382 up << "pfJetGoodNum"<<30*(1+syst)<<">=3";
383
384 TCut nJetsP(up.str().c_str());
385 TCut nJetsM(down.str().c_str());
386
387 if ( !(plotName.Length()>1) ) plotName = informalname;
388
389 nBins = 1; jzbMin = jzbSel*0.95; jzbMax = jzbSel*1.05;
390 TH1F* hist = plotEff(events,(kbase&&ksel&&nJets),informalname);
391
392 TH1F* histp = plotEff(events,(kbase&&ksel&&nJetsP),informalname);
393
394 TH1F* histm = plotEff(events,(kbase&&ksel&&nJetsM),informalname);
395
396 // Dump some information
397 Float_t eff = Interpolate(jzbSel,hist);
398 Float_t effp = Interpolate(jzbSel,histp);
399 Float_t effm = Interpolate(jzbSel,histm);
400 if(!automatized) dout << " Efficiency at JZB==" << jzbSel << std::endl;
401 if(!automatized) dout << " JESup: " << effp << " (" << (effp-eff)/eff*100. << "%)" << std::endl;
402 if(!automatized) dout << " central: " << eff << std::endl;
403 if(!automatized) dout << " JESdown: " << effm << " (" << (effm-eff)/eff*100. << "%)" << std::endl;
404 jesup=(effp-eff)/eff;
405 jesdown=(effm-eff)/eff;
406 }
407
408 //________________________________________________________________________
409 // Effect of energy scale on JZB efficiency
410 void doJZBscale(TTree *events, float &down, float &up, float &syst, float systematic, string informalname, bool requireZ, string addcut) {
411
412 TCut kbase("abs(genMll-91.2)<20&&genZPt>0&&genNjets>2");
413 if(addcut!="") kbase=kbase&&addcut.c_str();//this is mostly for SUSY scans (adding requirements on masses)
414 if(requireZ) kbase=kbase&&"TMath::Abs(genMID)==23";
415 TCut ksel("abs(mll-91.2)<20&&((id1+1)*(id2+1)*ch1*ch2)!=-2");
416
417 nBins = 50;
418 jzbMin = 0.5*jzbSel;
419 jzbMax = 2.0*jzbSel;
420
421 TH1F* hist = plotEff(events,kbase&&ksel,informalname);
422
423 // Dump some information
424 Float_t eff = Interpolate(jzbSel,hist);
425 Float_t effp = Interpolate(jzbSel*(1.+systematic),hist);
426 Float_t effm = Interpolate(jzbSel*(1.-systematic),hist);
427 if(!automatized) dout << " efficiency at JZB==" << jzbSel*(1.+systematic) << "(-"<<systematic*100<<"%) : " << effp << " (" << ((effp-eff)/eff)*100. << "%)" << std::endl;
428 if(!automatized) dout << " efficiency at JZB==" << jzbSel << ": " << eff << std::endl;
429 if(!automatized) dout << " efficiency at JZB==" << jzbSel*(1.-systematic) << "(-"<<systematic*100<<"%) : " << effm << " (" << ((effm-eff)/eff)*100. << "%)" << std::endl;
430 up=((effp-eff)/eff);
431 down=((effm-eff)/eff);
432 }
433
434 //________________________________________________________________________
435 // JZB response (true/reco. vs. true)
436 void JZBresponse(TTree *events, bool requireZ, float &resp, float &resperr, string addcut="",bool isMET = kFALSE, Float_t myJzbMax = 200., Int_t nPeriods = 9 ) {
437
438 jzbMin = 20;
439 TCut kbase("abs(genMll-91.2)<20&&genZPt>0&&genNjets>2");
440 if(addcut!="") kbase=kbase&&addcut.c_str();//this is mostly for SUSY scans (adding requirements on masses)
441 if(requireZ) kbase=kbase&&"TMath::Abs(genMID)==23";
442 TCut ksel("abs(mll-91.2)<20&&((id1+1)*(id2+1)*ch1*ch2)!=-2");
443
444 TProfile* hJzbResp = new TProfile("hJzbResp","JZB response ; JZB true (GeV/c); JZB reco. / JZB true", nPeriods, jzbMin, myJzbMax, "" );
445
446 if (!isMET) events->Project("hJzbResp","("+TString(mcjzbexpression)+")/genJZB:genJZB",kbase&&ksel);
447 else events->Project("hJzbResp","met[4]/genMET:genMET",kbase&&ksel);
448
449 hJzbResp->SetMaximum(1.2);
450 hJzbResp->SetMinimum(0.2);
451 hJzbResp->Fit("pol0","Q");
452 TF1 *fittedfunction = hJzbResp->GetFunction("pol0");
453 if(!fittedfunction) {
454 // in case there are not enough points passing our selection
455 cout << "OOPS response function invalid, assuming 100% error !!!!" << endl;
456 resp=1;
457 resperr=1;
458 } else {
459 resp=fittedfunction->GetParameter(0);
460 resperr=fittedfunction->GetParError(0);
461 if(!automatized) dout << " Response: " << resp << " +/- " << resperr << endl;
462 }
463 delete hJzbResp;
464 }
465
466
467 //________________________________________________________________________________________
468 // PDF uncertainty
469 float get_pdf_uncertainty(TTree *events, string mcjzb, bool requireZ, int Neventsinfile, int NPdfs, string addcut="") {
470 std::vector<float> efficiency;
471 for(int k = 1; k < NPdfs; k++) {
472 float result, resulterr;
473 MCefficiency(events, result, resulterr, mcjzb, requireZ, Neventsinfile, addcut, k);
474 efficiency.push_back(result);
475 }
476 float errHi, errLow,err;
477 master_formula(efficiency, errHi, errLow);
478 err=errLow;
479 if(errHi>errLow) err=errHi;
480 if(!automatized) dout << " Uncertainty from PDF: " << errLow << " (low) and " << errHi << "(high) ---> Picked " << err << endl;
481 return err;
482
483 }
484
485 int get_npdfs(TTree *events) {
486 int NPDFs;
487 events->SetBranchAddress("NPdfs",&NPDFs);
488 events->GetEntry(1);
489 return NPDFs;
490 }
491
492
493 void do_systematics_for_one_file(TTree *events,int Neventsinfile,string informalname, vector<vector<float> > &results,string mcjzb,string datajzb,float peakerror,bool requireZ=false, string addcut="", bool ismSUGRA=false) {
494 float JetEnergyScaleUncert=0.1;
495 float JZBScaleUncert=0.1;
496 mcjzbexpression=mcjzb;
497 float triggereff=5.0/100;// in range [0,1]
498 dout << "Trigger efficiency not implemented in this script yet, still using external one" << endl;
499 float leptonseleff=2.0/100;// in range [0,1]
500 leptonseleff=TMath::Sqrt(leptonseleff*leptonseleff+leptonseleff*leptonseleff); // because the 2% is per lepton
501 dout << "Lepton selection efficiency not implemented in this script yet, still using external one" << endl;
502
503 int NPdfs=0;
504 if(ismSUGRA) NPdfs = get_npdfs(events);
505
506 float mceff,mcefferr,jzbeff,jzbefferr;
507 if(!automatized) dout << "MC efficiencies:" << endl;
508 Value mceff_nosigcont = MCefficiency(events,mceff,mcefferr,mcjzb,requireZ,Neventsinfile,addcut,-1);
509 if(!automatized) cout << " Without signal contamination, we find an efficiency of " << mceff_nosigcont << endl;
510
511 if(PlottingSetup::computeJZBefficiency) JZBefficiency(events,informalname,jzbeff,jzbefferr,requireZ,addcut);
512 if(!automatized) dout << "JZB efficiency: " << jzbeff << "+/-" << jzbefferr << endl;
513
514
515 if(!(mceff>0)) write_warning(__FUNCTION__,"Efficiency is zero - the systematics will not be computed!");
516
517
518 if(!automatized) dout << "Error from Peak position:" << endl;
519 float sysfrompeak=0;
520 if(mceff>0) PeakError(events,sysfrompeak,mcjzb,peakerror,addcut);
521 else dout << "Not computed." << endl;
522
523 if(!automatized) dout << "Jet energy scale: " << std::endl;
524 float jesup=0,jesdown=0;
525 if(mceff>0) JZBjetScale(events,jesdown,jesup,informalname,requireZ,addcut,JetEnergyScaleUncert);
526 else dout << "Not computed." << endl;
527
528 if(!automatized) dout << "JZB scale: " << std::endl;
529 float scaleup=0,scaledown=0,scalesyst=0;
530 if(mceff>0) doJZBscale(events,scaledown,scaleup,scalesyst,JZBScaleUncert,informalname,requireZ,addcut);
531 else dout << "Not computed." << endl;
532
533 if(!automatized) dout << "JZB response: " << std::endl;
534 float resp=0,resperr=0;
535 if(PlottingSetup::computeJZBresponse && mceff>0) {
536 if(!automatized) dout << "JZB response: " << std::endl;
537 JZBresponse(events,requireZ,resp,resperr,addcut);
538 }
539
540 if(!automatized) dout << "Pileup: " << std::endl;
541 float resolution=0;
542 if(mceff>0) resolution=pileup(events,requireZ,informalname,addcut);
543 else dout << "Not computed." << endl;
544
545 float PDFuncert=0;
546 if(!automatized&&mceff>0) dout << "Assessing PDF uncertainty: " << std::endl;
547 if(ismSUGRA&&mceff>0) PDFuncert = get_pdf_uncertainty(events, mcjzb, requireZ, Neventsinfile, NPdfs, addcut);
548
549 dout << "_______________________________________________" << endl;
550 dout << " SUMMARY FOR " << informalname << " with JZB>" << jzbSel << " (all in %) ";
551 if(addcut!="") dout << "With additional cut: " << addcut;
552 dout << endl;
553 dout << "MC efficiency: " << mceff << "+/-" << mcefferr << endl; // in range [0,1]
554 dout << "Trigger efficiency: " << triggereff << endl; // in range [0,1]
555 dout << "Lepton Sel Eff: " << leptonseleff << endl; // in range [0,1]
556 dout << "Jet energy scale: " << jesup << " " << jesdown << endl; // in range [0,1]
557 dout << "JZB Scale Uncert: " << scaledown << " " << scaleup << endl; // in range [0,1]
558 dout << "Resolution : " << resolution << endl; // in range [0,1]
559 dout << "From peak : " << sysfrompeak << endl; // in range [0,1]
560 if(ismSUGRA) dout << "PDF uncertainty : " << PDFuncert << endl; // in range [0,1]
561 if(PlottingSetup::computeJZBefficiency) dout << "JZB efficiency: " << jzbeff << "+/-" << jzbefferr << " (not yet included below) " << endl; // in range [0,1]
562 if(PlottingSetup::computeJZBresponse)dout << "JZB response : " << resp << " +/-" << resperr << " (not yet included below) " << endl; // in range [0,1]
563
564 float toterr=0;
565 toterr+=(triggereff)*(triggereff);
566 toterr+=(leptonseleff)*(leptonseleff);
567 if(fabs(jesup)>fabs(jesdown)) toterr+=(jesup*jesup); else toterr+=(jesdown*jesdown);
568 if(fabs(scaleup)>fabs(scaledown)) toterr+=(scaleup*scaleup); else toterr+=(scaledown*scaledown);
569 toterr+=(resolution*resolution);
570 toterr+=(sysfrompeak*sysfrompeak);
571 if(ismSUGRA) toterr+=(PDFuncert*PDFuncert);
572 dout << "TOTAL SYSTEMATICS: " << TMath::Sqrt(toterr) << " --> " << TMath::Sqrt(toterr)*mceff << endl;
573 float systerr=TMath::Sqrt(toterr)*mceff;
574 toterr=TMath::Sqrt(toterr*mceff*mceff+mcefferr*mcefferr);//also includes stat err!
575
576 dout << "FINAL RESULT : " << 100*mceff << " +/- "<< 100*mcefferr << " (stat) +/- " << 100*systerr << " (syst) %" << endl;
577 dout << " we thus use the sqrt of the sum of the squares of the stat & syst err, which is : " << 100*toterr << endl;
578 dout << "_______________________________________________" << endl;
579
580 //Do not modify the lines below or mess with the order; this order is expected by all limit calculating functions!
581 vector<float> res;
582 res.push_back(jzbSel);
583 res.push_back(mceff);
584 res.push_back(mcefferr);
585 res.push_back(toterr);
586 res.push_back(TMath::Sqrt((mcefferr)*(mcefferr)+(toterr*toterr)));
587 if(fabs(jesup)>fabs(jesdown)) res.push_back(fabs(jesup)); else res.push_back(fabs(jesdown));
588 if(fabs(scaleup)>fabs(scaledown)) res.push_back(fabs(scaleup)); else res.push_back(fabs(scaledown));
589 res.push_back(fabs(resolution));
590 res.push_back(mceff_nosigcont.getValue());
591 res.push_back(mceff_nosigcont.getError());
592 if(ismSUGRA) res.push_back(PDFuncert);
593 results.push_back(res);
594 }
595
596 vector<vector<float> > compute_systematics(string mcjzb, float mcpeakerror, string datajzb, samplecollection &signalsamples, vector<float> bins, bool requireZ=false) {
597 automatized=true;
598 vector< vector<float> > systematics;
599 for (int isignal=0; isignal<signalsamples.collection.size();isignal++) {
600 dout << "Looking at signal " << (signalsamples.collection)[isignal].filename << endl;
601 for(int ibin=0;ibin<bins.size();ibin++) {
602 jzbSel=bins[ibin];
603 geqleq="geq";
604 do_systematics_for_one_file((signalsamples.collection)[isignal].events,(signalsamples.collection)[isignal].Nentries,(signalsamples.collection)[isignal].samplename,systematics,mcjzb,datajzb,mcpeakerror,requireZ);
605 }//end of bin loop
606 }//end of signal loop
607 return systematics;
608 }